
Algorithms 2023: String Processing

(Based on [Manber 1989])

Yih-Kuen Tsay

October 22, 2023

1 Data Compression

Data Compression

Problem 1. Given a text (a sequence of characters), find an encoding for the characters that satisfies the
prefix constraint and that minimizes the total number of bits needed to encode the text.

The prefix constraint states that the prefixes of an encoding of one character must not be equal to a
complete encoding of another character.

Denote the characters by c1, c2, · · · , cn and their frequencies by f1, f2, · · · , fn. Given an encoding E in
which a bit string si represents ci, the length (number of bits) of the text encoded by using E is

∑n
i=1 |si| ·fi.

A Code Tree

0

00

01

010 011

1

Figure: The tree representation of encoding (for four characters).
Source: redrawn from [Manber 1989, Figure 6.17].

How Bits May Be Saved

• Consider encoding the following text of four characters A, B, C, and D.

AABCDAACDAADAAD

• Use code words of uniform length.

– A: 00, B: 01, C: 10, D: 11 (each of length 2).

1

– Encoding of the text: 000001101100001011000011000011

– Total number of bits: 30

• Use code words from the preceding code tree.

– A: 1, B: 010, C: 011, D: 00 (each of length 2).

– Encoding of the text: 1101001100110110011001100

– Total number of bits: 25

A Huffman Tree

5

E

4

2

1

F B

C

3

D A

Figure: The Huffman tree for a text with frequencies of A: 5, B: 2, C: 3, D: 4, E: 10, F:1. The code (word) of B, for

example, is 1001. The numbers labeling the internal nodes indicate the order in which the corresponding subtrees are formed.

Source: redrawn from [Manber 1989, Figure 6.19].

/* The basic idea of a Huffman tree is for the characters with lower frequencies to get longer code words
(and the characters with higher frequencies to get shorter code words) so that the total number of bits is
minimized. In the tree above, the two nodes for the two characters with the lowest frequencies, namely F and
B, are the lowest leaves. Node 1 may be regarded as the node for an imaginary character combining F and
B, with frequency 3 (= 1 + 2). If we remove the two leaves for F and B, then we get another Huffman tree
with Node 1 as a new leaf. In the new tree, the two nodes for the two characters with the lowest frequencies,
now C and the imaginary character represented by Node 1, are among the lowest leaves. This generalizes to
subtrees obtained by removing two sibling leaves at a time.

Did you see how induction works here? The whole tree is a code tree for n characters, which can be seen
as obtained from a code tree for n− 1 characters, one of which is a combination of the two characters with
the lowest frequencies in the original tree (the other n− 2 characters being the same). */

Huffman Encoding

Algorithm Huffman Encoding (S, f);
insert all characters into a heap H

according to their frequencies;
while H not empty do

if H contains only one character X then
make X the root of T

else
delete X and Y with lowest frequencies;

from H;

2

create Z with a frequency equal to the
sum of the frequencies of X and Y ;

insert Z into H;
make X and Y children of Z in T

What is its time complexity? O(n log n)

/* The while loop requires n iterations, as the heap H initially contains n elements and each iteration reduces
its size by one (removing two elements and adding one new element). Each iteration takes O(log n) time. */

2 String Matching

String Matching

Problem 2. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the first occurrence (if any) of
B in A. In other words, find the smallest k such that, for all i, 1 ≤ i ≤ m, we have ak−1+i = bi.

A (non-empty) substring of a string A is a consecutive sequence of characters aiai+1 · · · aj (i ≤ j) from
A.

Straightforward String Matching

A = xyxxyxyxyyxyxyxyyxyxyxx. B = xyxyyxyxyxx.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x y x x y x y x y y x y x y x y y x y x y x x

1 : x y x y · · ·
2 : x · · ·
3 : x y · · ·
4 : x y x y y · · ·
5 : x · · ·
6 : x y x y y x y x y x x
7 : x · · ·
8 : x y x · · ·
9 : x · · ·
10 : x · · ·
11 : x y x y y · · ·
12 : x · · ·
13 : x y x y y x y x y x x

Figure: An example of a straightforward string matching.
Source: redrawn from [Manber 1989, Figure 6.20].

Straightforward String Matching (cont.)

• What is the time complexity?

– B (= b1b2 · · · bm) may be compared against

∗ a1a2 · · · am,

∗ a2a3 · · · am+1,

∗ . . ., and

∗ an−m+1an−m+2 · · · an
– For example, A = xxxx . . . xxxy and B = xxxy.

• So, the time complexity is O(m× n).

3

• But the best possible is linear-time, with a preprocessing.

• The cause of deficiency: tries from 7 to 12 in the example are doomed to fail. Why?

• How can we avoid the futile tries?

Matching the Pattern Against Itself

• In the example, when the ongoing matching fails at b11 against a16, we know that b1b2 . . . b10 equals
a6a7 . . . a15.

• The next possible substring of A that equals B must start at a13, because a13a14a15 is the longest
suffix of a6a7 . . . a15 that equals a prefix of b1b2 . . . b10, namely b1b2b3.

/* The reason can be restated as: b1b2b3 is the longest proper prefix that is also a suffix of a6a7 . . . a15
(which equals b1b2 . . . b10). If we know this in advance, then we should next try b4 against a16 (rather
than b1 against a7). */

• We can tell this by just looking at B, as a13a14a15 equals b8b9b10.

B = x y x y y x y x y x x
x · · ·

x y x · · ·
x · · ·

x · · ·
x y x y y

x · · ·
x y x

Figure: Matching the pattern against itself.

Source: redrawn from [Manber 1989, Figure 6.21].

The Values of next

i = 1 2 3 4 5 6 7 8 9 10 11
B = x y x y y x y x y x x
next = −1 0 0 1 2 0 1 2 3 4 3

Figure: The values of next .
Source: redrawn from [Manber 1989, Figure 6.22].

The value of next [j] tells the length of the longest proper prefix that is equal to a suffix of b1b2 . . . bj−1.

If the ongoing matching fails at bj against ai, then bnext[j]+1 is the next to try against ai.

/* This is safe (without missing an earlier matching substring of A), as b1b2 . . . bnext[j] is the longest
proper prefix of b1b2 . . . bj−1 that equals a suffix of b1b2 . . . bj−1, namely bj−next[j]bj−next[j]+1 . . . bj−1, which
equals ai−next[j]ai−next[j]+1 . . . ai−1. */

Note: next [1] is set to −1 so that this unique case is easily differentiated (see the main loop of the KMP
algorithm).

4

The KMP Algorithm

Algorithm String Match (A,n,B,m);
begin

j := 1; i := 1;
Start := 0;
while Start = 0 and i ≤ n do

if B[j] = A[i] then
j := j + 1; i := i+ 1

else
j := next[j] + 1;
if j = 0 then

j := 1; i := i+ 1;
if j = m+ 1 then Start := i−m

end

The KMP Algorithm (cont.)

next [j] + 1
j =
next [i − 1] + 1 i− 1 i

Figure: Computing next [i].
Source: redrawn from [Manber 1989, Figure 6.24].

/* Having proceeded inductively, we now know next [i − 1], which tells the length of the longest proper
prefix that equals the longest suffix of b1b2 . . . bi−2. So, hoping to extend the length by 1 for B[i], we compare
B[j (= next [i− 1]+1)] against B[i− 1]. If B[j] = B[i− 1], then next [i] is simply next [i− 1]+1, which is the
best we can get. Otherwise (i.e., B[j] ̸= B[i−1]), this is analogous to the case of B[j] ̸= A[i] when searching
for B in A, and we should then compare B[next [j] + 1] against B[i − 1]. If B[next [j] + 1] = B[i − 1], then
next [i] is next [j] + 1. Otherwise, we repeat until we either have a match against B[i − 1] or exhausted all
possible proper prefixes. */

The KMP Algorithm (cont.)

Algorithm Compute Next (B,m);
begin

next[1] := −1; next [2] := 0;
for i := 3 to m do

j := next [i− 1] + 1;
while B[i− 1] ̸= B[j] and j > 0 do

j := next [j] + 1;
next [i] := j

end

The KMP Algorithm (cont.)

• What is its time complexity?

5

– Because of backtracking, ai may be compared against

∗ bj ,

∗ bj−1,

∗ . . ., and

∗ b2

– However, for these to happen, each of ai−j+2, ai−j+3, . . . , ai−1 was compared against the corre-
sponding character in b1b2 . . . bj−1 just once.

– We may re-assign the costs of comparing ai against bj−1, bj−2, . . . , b2 to those of comparing
ai−j+2ai−j+3 . . . ai−1 against b1b2 . . . bj−1.

• Every ai is incurred the cost of at most two comparisons.

• So, the time complexity is O(n).

3 String Editing

String Editing

Problem 3. Given two strings A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the minimum number of
changes required to change A character by character such that it becomes equal to B.

Three types of changes (or edit steps) allowed: (1) insert, (2) delete, and (3) replace.

String Editing (cont.)
Let C(i, j) denote the minimum cost of changing A(i) to B(j), where A(i) = a1a2 · · · ai and B(j) =

b1b2 · · · bj .

For i = 0 or j = 0,
C(i, 0) = i
C(0, j) = j

/* C(i, 0) is the cost of editing a string of length i into the empty string by deleting i characters, while
C(0, j) is the cost of editing the empty string into a string of length j by inserting j characters. */

For i > 0 and j > 0,

C(i, j) = min

C(i− 1, j) + 1 (deleting ai)
C(i, j − 1) + 1 (inserting bj)
C(i− 1, j − 1) + 1 (ai → bj)
C(i− 1, j − 1) (ai = bj)

String Editing (cont.)

6

j

i C(i, j)

Figure: The dependencies of C(i, j).
Source: redrawn from [Manber 1989, Figure 6.26].

String Editing (cont.)
The minimum cost matrix of editing abbc into babba:

b a b b a

0 1 2 3 4 5

0 0 1 2 3 4 5

a 1 1 1 1 2 3 4

b 2 2 1 2 1 2 3

b 3 3 2 2 2 1 2

c 4 4 3 3 3 2 2

String Editing (cont.)

Algorithm Minimum Edit Distance (A,n,B,m);
for i := 0 to n do C[i, 0] := i;
for j := 1 to m do C[0, j] := j;
for i := 1 to n do

for j := 1 to m do
x := C[i− 1, j] + 1;
y := C[i, j − 1] + 1;
if ai = bj then

z := C[i− 1, j − 1]
else

z := C[i− 1, j − 1] + 1;
C[i, j] := min(x, y, z)

7

Its time complexity is clearly O(mn).

8

