
Algorithms [Compiled on December 5, 2023] Fall 2023

Homework Assignment #10:
Programming Exercise #2

Due Time/Date

2:20PM Tuesday, December 12, 2023. Late submission will be penalized by 20% for each
working day overdue.

Problem Description

Implement the algorithm (discussed in class) for computing the strongly connected com-
ponents of a directed graph. (Note: you may want to take this opportunity to try the two
different ways of updating the High value of a vertex when it sees another “undetermined”
vertex through a cross or back edge.)

Please follow the input format as described below. The first line of an input contains
one integer n (≤ 1000), indicating the number of vertices in the graph; the vertices
are then identified by numbers 1 through n. Each of the following lines represents the
adjacency list of a particular vertex u, with the first integer giving the identifier of u
followed by the identifiers of those vertices (in no particular order) that are connected by
an edge from u. Below is a sample input file:

9

1 2 8

2 3

3 1 4 7

4 5

5 6

6 4

7 5

8 3 9

9 7

For the output, each line contains the identifiers of a strongly connected component.

4 5 6

7

9

1 2 3 8

Important Notes

This assignment constitutes 4% of your grade. You may discuss the problem with
others, but copying code is strictly forbidden. Some of you may be requested to
demonstrate your program.

1



Submission Guidelines

• Pack everything, excluding compiler-generated files, in a .zip file, named with the
pattern “b117050xx-alg2023-hw10.zip”.

• Upload the .zip file to the NTU COOL site for Algorithms 2023.

• If you use a Makefile, make sure that it outputs “hw10”. Otherwise, make sure that
the whole application can be compiled by a single command like “gcc hw10.c”,
“g++ hw10.cpp”, ‘javac hw10.java”, etc.

Grading

Your work will be graded according to its correctness and presentation. Before submis-
sion, you should have tested your program on several input cases. You should organize
and document your program (preferably as comments in the source code) in such a way
that other programmers, for example your classmates, can understand it. In the docu-
mentation of your program, you are encouraged to describe how you have applied the
algorithmic techniques, in particular design by induction and/or reduction, learned in
class.

Below is a more specific grading policy:

Criteria Score

incomplete or doesn’t compile ≤ 20
complete, compiles, but with major errors ≤ 40
complete, compiles, but with minor errors ≤ 70
correct (passing all test cases) ≤ 90
correct and reasonably efficient (at least around the class-average) ≤ 100
well-organized and with helpful code comments + ≤ 10

2


