
Algorithms [Compiled on September 15, 2023] Fall 2023

Homework Assignment #3

Due Time/Date

2:20PM Tuesday, September 26, 2023. Late submission will be penalized by 20% for each
working day overdue.

How to Submit

Please write or type your answers on A4 (or similar size) paper. Drop your homework by the
due time in Yih-Kuen Tsay’s mail box on the first floor of Management College Building 2. You
may discuss the problems with others, but copying answers is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. (Note: problems
marked with “(X.XX)” are taken from [Manber 1989] with probable adaptation.)

1. (3.5) For each of the following pairs of functions, determine whether f(n) = O(g(n))
and/or f(n) = Ω(g(n)). Justify your answers.

f(n) g(n)

(a)
√
n (log n)2

(b) n42n 4n

2. Suppose f is a strictly increasing function that maps every positive integer to another
positive integer, i.e., if 1 ≤ n1 < n2, then 1 ≤ f(n1) < f(n2), and f(n) = O(g(n)) for
some other function g. Is it true that log f(n) = O(log g(n))? Please justify your answer.
How about 2f(n) = O(2g(n))? Is it true?

3. (3.18) Consider the recurrence relation

T (n) = 2 T (n/2) + 1, T (2) = 1.

We try to prove that T (n) = O(n) (we limit our attention to powers of 2). We guess that
T (n) ≤ cn for some (as yet unknown) c, and substitute cn in the expression. We have to
show that cn ≥ 2c(n/2) + 1. But this is clearly not true. Find the correct solution of this
recurrence (you can assume that n is a power of 2), and explain why this attempt failed.

4. Solve the following recurrence relation using generating functions. This is a very simple
recurrence relation, but for the purpose of practicing you must use generating functions
in your solution. 

T (0) = 0
T (1) = 1
T (n) = T (n− 1) + 2 T (n− 2), n ≥ 2

1

5. The Fibonacci word sequence of bit strings is defined as follows:

FW (i) =


0 if i = 0
1 if i = 1
FW (i− 1) · FW (i− 2) if i ≥ 2

Here · denotes the operation of string concatenation. The first six Fibonacci words (from
FW (0) to FW (5)), for instance, are: 0, 1, 10, 101, 10110, 10110101. A given bit pattern
may or may not occur in a Fibonacci word (as a substring). For instance, 10101 occurs
in FW (5) (but not FW (4) or earlier), while 11101 never occurs in any Fibonacci word.

Suppose we are given a bit pattern p (that is not just a single bit) and asked to determine
whether it occurs in some Fibonacci word. To be efficient, we certainly want to search
as few Fibonacci words as possible for the pattern. Please give a lower bound ml and an
upper bound mu in terms of F−1(|p|) (|p| denotes the length of p), as tight as possible,
such that, if p will ever occur in any Fibonacci word, it occurs already in some word
between FW (ml) and FW (mu) inclusively.

Note: Let F−1(n) (for n ≥ 2) denote the index value i (i ≥ 2) such that F (i− 1) < n ≤
F (i), i.e., n is between the two Fibonacci numbers F (i − 1) and F (i), possibly equal to
F (i) but greater than F (i−1); here, the Fibonacci numbers start from 1, which is indexed
as the 0-th element in the sequence. For instance, F−1(2) = 2, F−1(3) = 3, F−1(5) = 4,
F−1(8) = 5, and F−1(6) = F−1(7) = 5.

2

