Homework Assignment \#6

Due Time/Date

2:20PM Tuesday, November 7, 2023. To be better prepared for the midterm exam on October 31, you are advised to complete the assignment before the exam. Late submission will be penalized by 20% for each working day overdue.

How to Submit

Please write or type your answers on A4 (or similar size) paper. Drop your homework by the due time in Yih-Kuen Tsay's mail box on the first floor of Management College Building 2. You may discuss the problems with others, but copying answers is strictly forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. (Note: problems marked with "(X.XX)" are taken from [Manber 1989] with probable adaptation.)

1. Consider the solutions to the union-find problem discussed in class. Suppose we start with a collection of ten elements: $A, B, C, D, E, F, G, H, I$, and J.
(a) Assuming the balancing, but not path compression, technique is used, draw a diagram showing the grouping of these ten elements after the following operations (in the order listed) are completed: union(A,B), union(C,D), union(E,F), union (G, H), union (I, J), union (A, D), union (F, G), union (D, J), union (J, H).
In the case of combining two groups of the same size, please always point the second group to the first.
(b) Repeat the above, but with both balancing and path compression.
2. (6.32) Prove that the sum of the heights of all nodes in a complete binary tree with n nodes is at most $n-1$. (A complete binary tree with n nodes is one that can be compactly represented by an array A of size n, where the root is stored in $A[1]$ and the left and the right children of $A[i], 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$, are stored respectively in $A[2 i]$ and $A[2 i+1]$. Notice that, in Manber's book a complete binary tree is referred to as a balanced binary tree and a full binary tree as a complete binary tree. Manber's definitions seem to be less frequently used. Do not let the different names confuse you. "Balanced binary tree" in the original problem description is the same as "complete binary tree")
3. (6.40) Design an algorithm that, given a set of integers $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, finds a nonempty subset $R \subseteq S$, such that

$$
\sum_{x_{i} \in R} x_{i} \equiv 0 \quad(\bmod n)
$$

Before presenting your algorithm, please argue why such a nonempty subset must exist.
4. Consider the next table as in the KMP algorithm for string $B[1 . .9]=a b a a b a b a a$.

1	2	3	4	5	6	7	8	9
a	b	a	a	b	a	b	a	a
-1	0	0	1	1	2	3	2	3

Suppose that, during an execution of the KMP algorithm, $B[6]$ (which is an a) is being compared with a letter in A, say $A[i]$, which is not an a and so the matching fails. The algorithm will next try to compare $B[\operatorname{next}[6]+1]$, i.e., $B[3]$ which is also an a, with $A[i]$. The matching is bound to fail for the same reason. This comparison could have been avoided, as we know from B itself that $B[6]$ equals $B[3]$ and, if $B[6]$ does not match $A[i]$, then $B[3]$ certainly will not, either. $B[5], B[8]$, and $B[9]$ all have the same problem, but $B[7]$ does not.
Please adapt the computation of the next table so that such wasted comparisons can be avoided. Also, please give, for string $B[1 . .9]=a b b a a b b a a$, the values of the original next table and those of the new next table according to the adaptation.
5. (6.17 adapted) Given two strings $A=b b a a a$ and $B=b b b a b a$, what is the result of the minimal cost matrix $C[0 . .5,0 . .6]$, according to the algorithm discussed in class for changing A character by character into B? Aside from giving the cost matrix, please show the details of how the entry $C[4,5]$ is computed from the values of $C[3,4], C[3,5]$, and $C[4,4]$.

