
Algorithms [Compiled on November 27, 2023] Fall 2023

Homework Assignment #9

Due Time/Date

2:20PM Tuesday, December 5, 2023. Late submission will be penalized by 20% for each
working day overdue.

How to Submit

Please write or type your answers on A4 (or similar size) paper. Drop your homework
by the due time in Yih-Kuen Tsay’s mail box on the first floor of Management College
Building 2. You may discuss the problems with others, but copying answers is strictly
forbidden.

Problems

There are five problems in this assignment, each accounting for 20 points. (Note: prob-
lems marked with “(X.XX)” are taken from [Manber 1989] with probable adaptation.)

1. (7.16 modified)

(a) Run the strongly connected components algorithm (the original version) on the
directed graph shown in Figure 1. When traversing the graph, the algorithm
should follow the given DFS numbers (from 9 down to 1). Show the High
values as computed by the algorithm in each step.

(b) Add the edge (6, 5) to the graph and discuss the changes this makes to the
execution of the algorithm.

9

1 6

3 8 4

2 5

7

Figure 1: A directed graph with DFS numbers (from 9 down to 1)

1



2. (7.88) Let G = (V,E) be a directed graph, and let T be a DFS tree of G. Prove
that the intersection of the edges of T with the edges of any strongly connected
component of G form a subtree of T .

3. We have discussed in class the idea of using DFS to find an augmenting path (if one
exists) in a network with some given flow. Please present the algorithm in suitable
pseudocode.

4. Consider designing an algorithm by dynamic programming to determine the length
of a longest common subsequence of two strings (sequences of letters). For example,
“abbcc” is a longest common subsequence of “abcabcabc” and “aaabbbccc”, and
so is “abccc”.

(a) Formulate the solution using recurrence relations.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

5. The cost of finding a key value in a binary search tree is linearly proportional to
the depth/level of the node where the key value is stored, with the root considered
to be at level 0. Obviously, for a key value that is known to be looked up more
frequently, it is better stored in a node at a smaller level.

Consider designing by dynamic programming an algorithm that, given the look-up
frequencies of n key values, constructs an optimal binary search tree that will incur
the least total cost for performing all the look-ups.

(a) Formulate the solution using recurrence relations; let F [1..n] be the look-up
frequencies of the n key values K[1..n], which are in sorted order.

(b) Present the algorithm in suitable pseudocode, based on the previous recursive
formulation. What is the time complexity of your algorithm?

2


