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Question 1
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Question 1
function Dijkstra(G, v)

for all vertices w do
w.mark := false;
w.SP := ∞;

end for
v.SP := 0;
while there exists an unmarked vertex do

let w be an unmarked vertex such that w.SP is minimal;
w.mark := true
for all edges (w, z) such that z is unmarked do

if w.SP + length(w, z) < z.SP then
z.SP := w.SP + length(w, z);

end if
end for

end while
end function
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Question 1

The 2 key operations:
select vertex v with minimum SP (and remove it from data
structure)
for each vertex v, update its neighbor’s SP
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Question 1

Using min heap:
Remove minimum SP from heap: O(log |V |)
Insert the updated SP into heap: O(log |V |)

The while loop repeat |V | times and the update takes at most |E |
times.

Time Complexity: O(|V | × log |V |) + O(|E | × log |V |)
= O((|V |+ |E |)× log |V |)
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Question 1

Using array:
Remove minimum SP from array: O(|V |)
Insert the updated SP into array: O(1)

The while loop repeat |V | times and the update takes at most |E |
times.

Time Complexity: O(|V | × |V |) + O(|E |)
= O(|V |2)
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Question 2
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Question 2

We will proof by contradiction:
Suppose there exist two distinct minimum-cost spanning trees
MST1 and MST2 for a given connect graph G.
First, we sort the edges of MST1 and MST2 in ascending order
of cost:

▶ MST1: w(e1) < w(e2) < · · · < w(ei−1) < w(ei) < · · ·
▶ MST2: w(e1) < w(e2) < · · · < w(ei−1) < w(ej) < · · ·

Without loss of generality, assume that w(ei) < w(ej); that is, ei
is the minimum cost edge that is in MST1 but not in MST2.
Since MST2 is an MST, MST2 ∪ {ei} will create a cycle c.
Let’s now take a look at c. Since ei ∈ MST1 and MST1 is an
MST, there must exist an edge ek ∈ c with a higher cost than ei
(and, of course, no smaller than ej) and not in MST1.
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Question 2

Note that c ⊂ MST2 ∪ {ei} and ek ∈ c, so it is obvious that
ek ∈ MST2 and ek /∈ MST1.
Now, consider MST2 ∪ {ei}\{ek}. This is an MST that costs
less than MST2. Thus, we know MST2 is not a minimum-cost
spanning tree.
By contradiction, we know that G has exactly one unique
minimum-cost spanning tree. ■
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Question 3
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Question 3

The steps of Kruskal’s algorithm are as follows:
1 Remove all self-loops.
2 Sort all edges in increasing order by their weights.
3 Pick the unchosen edge with the minimal weight if its

appearance doesn’t form any cycle; otherwise, move on to the
next edge in the order.

Ultimately, all trees (the vertices) in the forest are connected,
resulting in the desired MST.
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Question 3
Algorithm Kruskal(G(V,E))

begin
T := ∅;
LE := sort E in ascending order;
for v in V do

MakeSet(v);
end for
for i := 1 to |E | do

LE[i] = {u, v};
if Find(u) ̸= Find(v) then

T.add(LE[i]);
Union(u, v);

end if
if |T | = |V | − 1 then

return T;
end if

end for
end

end Algorithm
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Question 3

Theorem
If both balancing and path compression are used, any sequence of m
Find or Union operations (where m ≥ n) takes O(m log∗ n) steps.

Time complexity:
Sort edges: O(|E | log |E |).
Union-Find: O((2|E |+ |V | − 1) · log∗ |V |)

▶ Find: 2|E | operations
▶ Union: |V | − 1 operations
▶ Total: 2|E |+ |V | − 1 operations

Thus, we have O(|E | log |E |) + O((2|E |+ |V | − 1) · log∗ |V |). And
since log∗ |V | grows extremely slowly, the time complexity can also be
written as O(|E | log |E |).
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Question 4
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Question 4

Some details are missing in the algorithm.

1 How to divide the graph?
2 How to break a tie when the edges have the same weight?
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Question 4

Most importantly, the algorithm does not ensure preserving all the
important edges of MCST.

It derives wrong result when at least two important edges are cut at
the same time.
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Question 4

For example, edge AB, BD, and CD constitutes the MCST:

A B

C D

1

200 3

2
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Question 4
But if we divide the graph by cutting through AB and CD, we will
obtain the tree shown in the bottom right figure. This is because we
are forced to pick the smallest weight edge among the cuts, but
actually both of them are crucial to the MCST.

A B

C D

1

200 3

2
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2
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Question 5
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Question 5

Given a spanning tree T of a graph. If we arbitrarily add an edge to
T (creating a cycle) and the edge always has the largest cost of the
cycle, T is an MCST.
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Question 5

For the decreased edge {u, v}, there are two cases: {u, v} is in T or
not.

Obviously, if {u, v} is in T, T must still be an MCST of G, so we only
need to consider the situation that {u, v} is not in T.

The idea is to add {u, v} to T, which creates a cycle in the tree.
After locating the cycle, we remove the edge with the largest cost in
the cycle and obtain a new MCST.
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Question 5
Algorithm FindNewMCST(G(V,E),T, e{u, v})

begin
if e /∈ T then

newEdge := e ;
add e to T ;
run DFS on T to find the cycle C
for all edges {x, y} ∈ C do

if cost({x, y}) > cost(newEdge) then
newEdge := {x, y};

end if
end for
remove newEdge from T;

end if
end

end Algorithm
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Question 5

Let T = (V,E ′), where E ′ ⊆ E and |E ′| = |V | − 1.

Time complexity:
finding cycle: O(|V |+ |E ′|) = O(|V |).
finding maximum cost edge in a cycle: O(|E ′| ) = O(|V |).

Total time complexity: O(|V | ).
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