
Algorithms [Compiled on November 11, 2024] Fall 2024

Suggested Solutions to Midterm Problems

1. Consider the following two-player counting game: given a positive integer N , player A
and player B take turns counting to N . In her/his turn, a player may advance the count
by 1 or 2. For example, player A may start by saying “1, 2”, player B follows by saying
“3”, player A follows by saying “4”, etc. The player who eventually has to say the number
N loses the game.

A game is determined if one of the two players always has a way to win the game. Prove
by induction that the counting game as described is determined for any positive integer
N ; the winner may differ for different given integers. (Hint: think about the remainder of
the number N divided by 3.)

Solution. We first prove the following claim:

When N = 3k + 1 for some k ≥ 0, player B can always win the game.

The proof is by induction on k.

Base case (k = 0, i.e., N = 1): player A has no other choice but say 1 and hence player
B wins.

Inductive step (k ≥ 1, i.e., N = 3k + 1 ≥ 4): player A starts either by “1” or “1, 2”. In
both cases, player B can always count to 3. At this point we have the situation analogous
to where the two players are to play a game with N = 3(k− 1)+1, in which player B can
always win from the induction hypothesis.

We next prove a second claim:

When N = 3k+2 or N = 3(k+1) for some k ≥ 0, player A can always win the
game.

In the case when N = 3k + 2, player A starts by saying “1”, while in the case when
N = 3(k + 1), he starts by “1, 2”. After player A’s first turn, we have the situation
analogous to that player B is to start a game with N = 3k + 1, playing the role of player
A (to start first in the remaining game). From the first claim, player A (playing the role
of player B in the remaining game) will win the game.

With the two proven claims put together, we have shown that, for every positive integer N ,
there is always a player that can win the counting game and hence the game is determined.
2

2. We sometimes would use a diagram like the following to distribute n gifts (or assign n
tasks) to n people. With the main part of the diagram covered, each person pi (1 ≤ i ≤ n),
without seeing the horizontal line segments, is asked to choose one of the vertical lines.
After everyone has made a choice, the whole diagram is revealed. Following the vertical
line chosen by pi, go down along the line and, whenever hitting an intersection, make a
turn and switch to a neighboring vertical line (to the left or right). The traced path will
eventually reach a gift at the end and the gift is given to pi.

1

p3 p2 p1 p5 p4

g1 g2 g3 g4 g5

s s
s s

s s
s s

s s

Prove by induction that such a diagram (with arbitrary numbers of vertical and horizontal
line segments) always produces a one-to-one mapping between the people and the gifts
(whose number equals that of the vertical lines). Assume that the horizontal line segments
do not intersect with one another.

Solution. The proof is by induction on the number m of horizontal line segments. Note
that, as stated in the problem, the horizontal line segments do not intersect with one an-
other; in particular, no two horizontal line segments share an intersection. For simplicity,
but without loss of generality, we assume that the pi’s select the vertical lines in the order
of their indices.

Base case (m = 0): Since there is no horizontal line segment, p1 is mapped to g1, p2 to g2,
. . ., and pn to gn, which is a one-to-one mapping between the n people and the n gifts.

Inductive step (m ≥ 1): Given an arbitrary setting of m horizontal line segments, we
remove the line segment that is highest in position; if there are several such line segments,
remove one of them. From the induction hypothesis, the new setting of m− 1 horizontal
line segments defines a one-to-one mapping between the people and the gifts. Let us refer
to the mapping as f , which maps pi to gf(i). Suppose the removed line segment originally
connected vertical lines i and i+1. We claim that, with the removed line segment restored,
the original setting also defines a one-to-one mapping; call it f ′. Clearly, f ′(i) = f(i+1),
f ′(i + 1) = f(i), and f ′(j) = f(j) for any other j. It follows that, given f is one-to-one,
f ′ is also one-to-one. 2

3. In a homework problem, to determine whether f(n) = O(g(n)) and/or f(n) = Ω(g(n)),
for a given pair of monotonically growing functions f and g that map natural numbers to
non-negative real numbers, you may have claimed and used the following:

If f(n) = o(g(n)), then f(n) = O(g(n)) and f(n) ̸= Ω(g(n)).

Prove that the claim is indeed true.

Solution. When f(n) = o(g(n)), i.e., lim
n→∞

f(n)

g(n)
= 0, it means that, for every real ε > 0,

there exists a natural number N such that, for every natural number n > N , |f(n)g(n) −0| < ε

or f(n) < εg(n) (since both f(n) and g(n) are non-negative). It follows that there exist a
real constant c (by taking one of the ε values) and a natural constant N ′ (by taking N +1
where N is suited for the particular ε value taken) such that, for all n ≥ N ′, f(n) ≤ cg(n),
and hence f(n) = O(g(n)).

We next show that, given the same condition of f(n) = o(g(n)), f(n) ̸= Ω(g(n)), i.e., it
is not the case that there exist constants c and N (both greater than 0) such that, for all
n ≥ N , f(n) ≥ cg(n), which is equivalent to the following statement: for every constant
c > 0, we have “for every constant N > 0, there exists some n ≥ N and f(n) < cg(n).”
(Note: ¬∃c∃N(P (c,N)) ≡ ∀c¬(∃N(P (c,N))) ≡ ∀c(∀N(¬P (c,N))).) The definition of
f(n) = o(g(n)) implies that, for every constant c > 0, there exists a constant N > 0 such

2

that, for every n > N , f(n) < cg(n) and therefore, for every constant c > 0, we have
“for every constant N ′ > 0, there exists some n ≥ N ′ and f(n) < cg(n),” which is the
preceding statement that is equivalent to f(n) ̸= Ω(g(n)). 2

4. The Knapsack Problem that we discussed in class is defined as follows. Given a set S of
n items, where the i-th item has an integer size S[i], and an integer K, find a subset of
the items whose sizes sum to exactly K or determine that no such subset exists.

We have described in class an algorithm to solve the problem. Modify the algorithm
to solve a variation of the Knapsack problem where the i-th item has additionally an
associated value vi. Find a way or determine it is impossible to pack the knapsack (of
size K) fully, such that the items in it have the maximal total value among all possible
ways to pack the knapsack. Give an analysis of its time complexity. The more efficient
your algorithm is, the more points you will be credited for this problem. (Hint: both the
values of P (i− 1, k) and P (i− 1, k − S[i]) should be considered.)

Solution.

Algorithm Knapsack Valued (S, v,K);
begin

P [0, 0].exist := true;
P [0, 0].belong := 0;
P [0, 0].value := 0;
for k := 1 to K do

P [0, k].exist := false
end for
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
P [i, k].value := 0;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := 0;
P [i, k].value := P [i− 1, k].value

end if
if k − S[i] ≥ 0 then

if P [i− 1, k − S[i]].exist then
P [i, k].exist := true;
if P [i− 1, k − S[i]].value+ v[i] > P [i, k].value then

P [i, k].belong := 1;
P [i, k].value := P [i− 1, k − S[i]].value+ v[i]

end if
end if

end if
end for

end for
end

From the main nested for-loops, we see that the time complexity is O(nK). (Note: the
bound should be understood as O(n2logK), where logK represents the input size of the
number K.) 2

3

5. Show all intermediate and the final AVL trees formed by inserting the numbers 7, 6, 5, 2,
1, 3, and 4 (in this order) into an empty tree. Please use the following ordering convention:
the key of an internal node is larger than that of its left child and smaller than that of
its right child. If re-balancing operations are performed, please also show the tree before
re-balancing and indicate what type of rotation is used in the re-balancing.

Solution.

Insert 7:
7

Insert 6:

7

6
Insert 5:

7

6

5

Single rotation at 7:

6

75
Insert 2:

6

75

2

Insert 1:

6

75

2

1
Single rotation at 5:

6

72

51

Insert 3:

6

72

5

3

1

Double rotation at 6:

5

6

7

2

31

4

Insert 4:

5

6

7

2

3

4

1

2

6. When analyzing the average-case time complexity of the Quicksort algorithm, we started
with the following equation:

T (n) = n+ 1 + T (i− 1) + T (n− i), where n ≥ 2,

assuming the i-th smallest element of the input array is selected as the pivot.

What does the term n + 1 account for? Please explain why it is n + 1 (not any other
value).

Solution. The term n+1 accounts for the total number of comparisons between two input
numbers performed during the partition procedure, given an input array of size n (≥ 2).
In some special cases, only n comparisons are needed.

For an array X of n numbers, entries indexed from 1 through n, the first number X[1]
is selected as the pivot, which is assumed to be the i-th smallest among the n numbers.
Suppose n ≥ 3, 2 ≤ i < n, and the numbers are all distinct so that both pointers L and R
will stay within the range [2..n]; the extreme cases (such as i = 1 or n) may be reasoned
in an analogous way just with a bit more care on the boundaries. The left pointer L
goes from 2 towards the right (the larger indices), while the right pointer R goes from n
towards the left (the smaller indices).

The two pointers will eventually cross each other, i.e., when L ≤ R becomes false (L > R
becomes true), and the main while loop terminates. At that moment, L = R+1 (= i+1)
or R = L− 1 (= i). This is the case, as X[L− 1] ≤ pivot and X[L] > pivot , after the last
iteration (if any) of the while loop for advancing L, and the last iteration (if any) of the
while loop for advancing R brings R to its current value (which becomes less than L for
the first time), with X[R+ 1 = L] > pivot and X[R = L− 1] ≤ pivot .

The input number in X[j], for 2 ≤ j ≤ L and also for R ≤ j ≤ n or L − 1 ≤ j ≤ n, is
compared (before it has possibly been swapped with another number) against the pivot
(which is an input number). In total, (L− 2+ 1)+ (n− (L− 1)+ 1) = n+1 comparisons
between two input numbers are performed. 2

7. Consider rearranging the following array into a max heap using the bottom-up approach.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 2 8 4 1 15 7 6 3 11 10 12 13 14 9

Please show the result (i.e., the contents of the array) after a new element is added to the
current collection of heaps (at the bottom) until the entire array has become a heap.

5

Solution.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 2 8 4 1 15 7 6 3 11 10 12 13 14 9

5 2 8 4 1 15 14 6 3 11 10 12 13 7 9

5 2 8 4 1 15 14 6 3 11 10 12 13 7 9

5 2 8 4 11 15 14 6 3 1 10 12 13 7 9

5 2 8 6 11 15 14 4 3 1 10 12 13 7 9

5 2 15 6 11 13 14 4 3 1 10 12 8 7 9

5 11 15 6 10 13 14 4 3 1 2 12 8 7 9

15 11 14 6 10 13 9 4 3 1 2 12 8 7 5

2

8. Draw a decision tree of the Heapsort algorithm (in increasing order) for the case of A[1..3],
i.e., n = 3. In the decision tree, you must indicate (1) which two elements of the original
input array are compared in each internal node and (2) the sorting result in each leaf.
Please use X1, X2, X3 (not A[1], A[2], A[3]) to refer to the elements (in this order) of the
original input array A.

Solution. The Heapsort algorithm starts by building a (max) heap. For an input array of
size 3, no matter the top-down or bottom-up approach is used, X2 and X3 are compared
first and the larger will be compared against X1. After two comparisons, the heap is built.
Subsequently, the top element is swapped with the last (third) element and then the third
(last) comparison is performed between the current top and its left child to turn the array
into a heap (of 2 elements). The remaining steps do not need any comparison between
input numbers.

X2 : X3

X1 : X2

X3 : X2

[X2X3X1][X3X2X1]

X3 : X1

[X1X3X2][X3X1X2]

[X2X1X3]
[X3X1X2]

[X1X2X3]
[X3X2X1]

X1 : X3

X3 : X2

[X2X3X1]N/A

X1 : X2

[X2X1X3][X1X2X3]

[X3X2X1]
[X1X2X3]

[X1X2X3]
[X3X2X1]

< ≥

Note: two or more of X1, X2, and X3 may be equal. 2

9. Design an algorithm that, given a set of integers S = {x1, x2, . . . , xn}, finds a nonempty
subset R ⊆ S, such that ∑

xi∈R
xi ≡ 0 (mod n).

Please present your algorithm in adequate pseudocode and make assumptions wherever
necessary. Give also an analysis of its time complexity. The more efficient your algorithm
is, the more points you will be credited for this problem.

Before presenting your algorithm, please argue why such a nonempty subset must exist.
(Hint: think about the sums x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · · + xn−1, and
x1 + x2 + · · ·+ xn−1 + xn; the difference between any two of these is also a sum.)

6

Solution. Consider the n sums: x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · ·+ xn−1, and
x1 + x2 + · · · + xn−1 + xn. If one of them is divisible by n, i.e.,

∑i=j
i=1 xi ≡ 0 (mod n)

for some j, 1 ≤ j ≤ n, then we have the nonempty subset we look for. Otherwise, two of
these sums must have the same remainder when divided by n, as there are n sums and
only n − 1 possible nonzero remainders. The difference of the two sums, in the form of
xj+1 + xj+2 + · · ·+ xk for some j and k, 1 ≤ j < k ≤ n, will be the sum of the subset we
look for. So, the existence of the nonempty subset is guaranteed and, from the argument,
we also have the algorithm to find it.

In the following pseudocode, R[m] records the right-most index (namely j) of the sum
x1 + x2 + · · · + xj first encountered whose remainder is m when divided by n. Upon
seeing a second sum x1 + x2 + · · · + xk ≡ m (mod n), the algorithm prints two index
values R[m] + 1 and k, 1 ≤ R[m] < k ≤ n, indicating that xR[m] + xR[m]+1 + · · ·+ xk = 0
(mod n).

Algorithm FindSubset (S, n);
begin

for m := 1 to n− 1 do
R[m] := 0

end for;
Sum := 0;
for k := 1 to n do

Sum := Sum + S[k];
m := Sum % n;
if m = 0 then

Print 1, k;
Halt

end if ;
if R[m] ̸= 0 then

Print R[m] + 1, k;
Halt

else
R[m] := k

end if ;
end for;

end

The main for-loop determines the time complexity, which is clearly O(n). 2

10. Consider the next table as in the KMP algorithm (the version presented in class) for string
B[1..9] = abaababaa.

1 2 3 4 5 6 7 8 9

a b a a b a b a a

−1 0 0 1 1 2 3 2 3

Suppose that, during an execution of the KMP algorithm, B[6] (which is an a) is being
compared with a letter in A, say A[i], which is not an a and so the matching fails. The
algorithm will next try to compare B[next [6] + 1], i.e., B[3] which is also an a, with A[i].
The matching is bound to fail for the same reason. This comparison could have been
avoided, as we know from B itself that B[6] equals B[3] and, if B[6] does not match A[i],

7

then B[3] certainly will not, either. B[5], B[8], and B[9] all have the same problem, but
B[7] does not.

Please adapt the computation of the next table so that such wasted comparisons can be
avoided. Also, please give, for a new string B[1..9] = bbbabbbaa, the values of the original
next table and those of the new next table according to the adaptation.

Solution.

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] ̸= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j;

// Add the following lines for optimization.
for i := 2 to m do

j := next[i] + 1;
if j > 0 and B[i] = B[j] then

next[i] := next[j];
/* Alternatively, perhaps clearer but less efficient
for i := m down to 2 do

j := next[i] + 1;
while j > 0 and B[i] = B[j] do

j := next[j] + 1;
next[i] := j − 1;

*/
end

For B[1..9] = bbbabbbaa, the original next :

1 2 3 4 5 6 7 8 9

b b b a b b b a a

−1 0 1 2 0 1 2 3 4

The new next :
1 2 3 4 5 6 7 8 9

b b b a b b b a a

−1 −1 −1 2 −1 −1 −1 2 4

2

Appendix

• The notions of O, Ω, and o are defined as follows.

– A function f(n) is O(g(n)) for another function g(n) if there exist constants c and
N such that, for all n ≥ N , f(n) ≤ cg(n).

– A function f(n) is Ω(g(n)) if there exist constants c and N such that, for all n ≥ N ,
f(n) ≥ cg(n).

8

– A function f(n) is o(g(n)) if lim
n→∞

f(n)

g(n)
= 0.

• Below is the algorithm discussed in class for determining whether a solution to the (orig-
inal) Knapsack Problem exists:

Algorithm Knapsack (S,K);
begin

P [0, 0].exist := true;
for k := 1 to K do

P [0, k].exist := false;
for i := 1 to n do

for k := 0 to K do
P [i, k].exist := false;
if P [i− 1, k].exist then

P [i, k].exist := true;
P [i, k].belong := false

else if k − S[i] ≥ 0 then
if P [i− 1, k − S[i]].exist then

P [i, k].exist := true;
P [i, k].belong := true

end

• Below is the Partition procedure we studied for the Quicksort algorithm:

Algorithm Partition(X,Left ,Right);
begin

pivot := X[Left];
L := Left + 1; R := Right ;
while L ≤ R do

while L ≤ Right and X[L] ≤ pivot do L := L+ 1;
while R ≥ Left and X[R] > pivot do R := R− 1;
if L < R then

swap(X[L], X[R]);
L := L+ 1;
R := R− 1;

Middle := R;
swap(X[Left], X[Middle])

end

• The algorithm for computing the next table in the KMP algorithm:

Algorithm Compute Next (B,m);
begin

next[1] := −1; next[2] := 0;
for i := 3 to m do

j := next[i− 1] + 1;
while B[i− 1] ̸= B[j] and j > 0 do

j := next[j] + 1;
next[i] := j

end

9

