
Algorithms 2024: Analysis of Algorithms

(Based on [Manber 1989])

Yih-Kuen Tsay

October 15, 2024

1 Introduction

Introduction

• The purpose of algorithm analysis is to predict the behavior (running time, space requirement, etc.)
of an algorithm without implementing it on a specific computer. (Why?)

• As the exact behavior of an algorithm is hard to predict, the analysis is usually an approximation:

– Relative to the input size (usually denoted by n): input possibilities too enormous to elaborate

– Asymptotic: should care more about larger inputs

– Worst-Case: easier to do, often representative (Why not average-case?)

• Such an approximation is usually good enough for comparing different algorithms for the same problem.

Complexity

• Theoretically, “complexity of an algorithm” is a more precise term for “approximate behavior of an
algorithm”.

• Two most important measures of complexity:

– Time Complexity an upper bound on the number of steps that the algorithm performs.

– Space Complexity an upper bound on the amount of temporary storage required for running the
algorithm (excluding the input, the output, and the program itself).

• We will focus on time complexity.

Comparing Running Times

• How do we compare the following running times?

1. 100n

2. 2n2 + 50

3. 100n1.8

• We will study an approach (the O notation) that allows us to ignore constant factors and concentrate
on the behavior as n goes to infinity.

• For most algorithms, the constants in the expressions of their running times tend to be small.

1

2 The O Notation

The O Notation

• A function g(n) is O(f(n)) for another function f(n) if there exist constants c and N such that, for all
n ≥ N , g(n) ≤ cf(n).

• The function g(n) may be substantially less than cf(n); the O notation bounds it only from above.

• The O notation allows us to ignore constants conveniently.

• Examples:

– 5n2 + 15 = O(n2). (cf. 5n2 + 15 ≤ O(n2) or 5n2 + 15 ∈ O(n2))

– 5n2 + 15 = O(n3). (cf. 5n2 + 15 ≤ O(n3) or 5n2 + 15 ∈ O(n3))

– As part of an expression like T (n) = 3n2 +O(n).

The O Notation (cont.)

• No need to specify the base of a logarithm.

– log2 n = log10 n
log10 2 = 1

log10 2 log10 n.

– For example, we can just write O(log n).

• O(1) denotes a constant.

Properties of O

• We can add and multiply with O.

Lemma 1 (3.2). 1. If f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) + g(n) = O(s(n) + r(n)). 2. If
f(n) = O(s(n)) and g(n) = O(r(n)), then f(n) · g(n) = O(s(n) · r(n)).

/* There exist constants c1, N1, c2, and N2 such that, for all n ≥ N1, f(n) ≤ c1s(n) and, for all n ≥ N2,
g(n) ≤ c2r(n). Assume without loss of generality that c1 ≥ c2 and N1 ≥ N2. Then, for all n ≥ N1,
f(n) + g(n) ≤ c1s(n) + c2r(n) ≤ c1s(n) + c1r(n) = c1(s(n) + r(n)), i.e., f(n) + g(n) = O(s(n) + r(n)).
Also, for all n ≥ N1, f(n) · g(n) ≤ c1s(n) · c2r(n) = c1c2(s(n) · r(n)), which implies that there exist
constants c and N such that, for all n ≥ N , f(n) ·g(n) ≤ c(s(n) ·r(n)), i.e., f(n) ·g(n) = O(s(n) ·r(n)).
*/

• However, we cannot subtract or divide with O.

– 2n = O(n), n = O(n), and 2n− n = n ̸= O(n− n).

– n2 = O(n2), n = O(n2), and n2/n = n ̸= O(n2/n2).

3 Speed of Growth

Polynomial vs. Exponential

• A function f(n) is monotonically growing (or monotonically increasing) if n1 ≥ n2 implies that f(n1) ≥
f(n2).

• An exponential function grows at least as fast as a polynomial function does.

2

Theorem 2 (3.1). For all constants c > 0 and a > 1, and for all monotonically growing functions
f(n), (f(n))c = O(af(n)).

• Examples:

– Take n as f(n), nc = O(an).

– Take loga n as f(n), (loga n)
c = O(aloga n) = O(n).

Speed of Growth

logn n n logn n2 n3 2n

0 1 0 1 1 2
1 2 2 4 8 4
2 4 8 16 64 16
3 8 24 64 512 256
4 16 64 256 4,096 65,536
5 32 160 1,024 32,768 4,294,967,296

Table: Function values.

Source: redrawn from [E. Horowitz et al. 1998, Table 1.7].

Speed of Growth (cont.)

time1 time2 time3 time4
running times 1000 steps/sec 2000 steps/sec 4000 steps/sec 8000 steps/sec
logn 0.010 0.005 0.003 0.001
n 1 0.5 0.25 0.125
n logn 10 5 2.5 1.25
n1.5 32 16 8 4
n2 1000 500 250 125
n3 1,000,000 500,000 250,000 125,000
1.1n 1039 1039 1038 1038

Table: Running times (in seconds) under different assumptions (n = 1000).

Source: redrawn from [Manber 1989, Table 3.1].

O, o, Ω, and Θ

• Let T (n) be the number of steps required to solve a given problem for input size n.

• We say that T (n) = Ω(g(n)) or the problem has a lower bound of Ω(g(n)) if there exist constants c
and N such that, for all n ≥ N , T (n) ≥ cg(n).

• If a certain function f(n) satisfies both f(n) = O(g(n)) and f(n) = Ω(g(n)), then we say that f(n) =
Θ(g(n)).

• We say that f(n) = o(g(n)) if lim
n→∞

f(n)

g(n)
= 0.

Polynomial vs. Exponential (cont.)

• An exponential function grows faster than a polynomial function does.

Theorem 3 (3.3). For all constants c > 0 and a > 1, and for all monotonically growing functions
f(n), we have

(f(n))c = o(af(n)).

• Consider a previous example again: Take loga n as f(n). For all c > 0 and a > 1,

(loga n)
c = o(aloga n) = o(n).

3

4 Sums

Sums

• Techniques for summing expressions are essential for complexity analysis.

• For example, given that we know

S0(n) =

n∑
i=1

1 = n

and

S1(n) =

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
,

we want to compute the sum

S2(n) =

n∑
i=1

i2 = 12 + 22 + 32 + · · ·+ n2.

Sums (cont.)
From

(i+ 1)3 = i3 + 3i2 + 3i+ 1,

we have
(i+ 1)3 − i3 = 3i2 + 3i+ 1.

23 − 13 = 3× 12 + 3× 1 + 1
33 − 23 = 3× 22 + 3× 2 + 1
43 − 33 = 3× 32 + 3× 3 + 1

· · · · · · · · ·
(n+ 1)3 − n3 = 3× n2 + 3× n+ 1
(n+ 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n)

(S3(n+ 1)− S3(1))− S3(n) = 3× S2(n) + 3× S1(n) + S0(n)

Sums (cont.)

• So, we have
(n+ 1)3 − 1 = 3× S2(n) + 3× S1(n) + S0(n).

• Given S0(n) and S1(n), the sum S2(n) can be computed by straightforward algebra.

• Recall that the left-hand side (n+ 1)3 − 1 equals (S3(n+ 1)− S3(1))− S3(n), a result from “shifting
and canceling” terms of two sums.

• This generalizes to Sk(n), for k > 2.

• Similar shifting and canceling techniques apply to other kinds of sums.

/* We actually will need to obtain an upper bound for the sum of n upper bounds. For instance,
∑n

i=1 O(1) =

O(
∑n

i=1 1) = O(n),
∑n

i=1 O(i) = O(
∑n

i=1 i) = O(n(n+1)
2) = O(n2), etc. */

4

5 Recurrence Relations

Recurrence Relations

• A recurrence relation is a way to define a function by an expression involving the same function.

• The Fibonacci numbers, for example, can be defined as follows: F (1) = 1
F (2) = 1
F (n) = F (n− 2) + F (n− 1)

We would need k − 2 steps to compute F (k).

• It is more convenient to have an explicit (or closed-form) expression.

• To obtain the explicit expression is called solving the recurrence relation.

Guessing and Proving an Upper Bound

• Recurrence relation:

{
T (2) = 1
T (2n) ≤ 2T (n) + 2n− 1

• Guess: T (n) = O(n log n).

/* It suffices to show that T (n) ≤ n log n, for every n ≥ 2 (that is a power of 2), i.e., let c be 1 and N
be 2 in the definition of O.*/

• Proof:

1. Base case: T (2) ≤ 2 log 2.

2. Inductive step:
T (2n) ≤ 2T (n) + 2n− 1

≤ 2(n log n) + 2n− 1
= 2n log n+ 2n log 2− 1
≤ 2n(log n+ log 2)
= 2n log 2n

Solving the Fibonacci Relation

• We will study two techniques for solving the Fibonacci relation.

1. One uses the characteristic equation

2. The other uses generating functions

• These techniques may be generalized to handle recurrence relations of the form

F (n) = b1F (n− 1) + b2F (n− 2) + · · ·+ bkF (n− k)

for a constant k.

5

Using the Characteristic Equation

• F (n) nearly doubles every time and should be an exponential function.

• But what is the base of the exponential function?

• The base a should satisfy an = an−1 + an−2, which implies a2 = a + 1 (called the characteristic
equation).

• There are two solutions to the characteristic equation: a1 = 1+
√
5

2 and a2 = 1−
√
5

2 .

• Any linear combination of an1 and an2 solves the recurrence relation.

Using the Characteristic Equation (cont.)

• So, the general solution is

c1(
1 +

√
5

2
)n + c2(

1−
√
5

2
)n.

• To fit the values of F (1) and F (2), c1 and c2 must satisfy

c1(
1+

√
5

2) + c2(
1−

√
5

2) = 1

c1(
1+

√
5

2)2 + c2(
1−

√
5

2)2 = 1

• Therefore, c1 = 1√
5
and c2 = − 1√

5
, and the exact solution to the Fibonacci relation is

F (n) =
1√
5
(
1 +

√
5

2
)n − 1√

5
(
1−

√
5

2
)n.

Using Generating Functions

• Generating functions provide a systematic, effective means for representing and manipulating infinite
sequences (of numbers).

• We use them here to derive a closed-form representation of the Fibonacci numbers.

• Below are a few basic generating functions:

gen. power series generated sequence

func.

1
1−z

1 + z + z2 + · · ·+ zn + · · · 1, 1, 1, · · · , 1, · · ·
c

1−az
c+ caz + ca2z2 + · · ·+ canzn + · · · c, ca, ca2, · · · , can, · · ·

1
1+z

1− z + z2 + · · ·+ (−1)nzn + · · · 1,−1, 1, · · · , (−1)n, · · ·

The fraction 1
1+z can be seen as 1

1−(−z) .

• The second one is a generalization of the first and will be used in our solution.

6

Using Generating Functions (cont.)
Let G(z) = 0 + F1z + F2z

2 + F3z
3 + · · ·+ Fnz

n + · · · (a generating function for the Fibonacci numbers;
F (n) is written as Fn here).

G(z) = F1z + F2z
2 + F3z

3 + · · ·+ Fnz
n + Fn+1z

n+1 + · · ·
zG(z) = F1z

2 + F2z
3 + · · ·+ Fn−1z

n + Fnz
n+1 + · · ·

z2G(z) = F1z
3 + F2z

4 + · · ·+ Fn−2z
n + Fn−1z

n+1 + · · ·
(1− z − z2)G(z) = z

G(z) = z
1−z−z2 (= z

(1− 1+
√

5
2 z)(1− 1−

√
5

2 z)
)

=
1√
5

1− 1+
√

5
2 z

+
− 1√

5

1− 1−
√

5
2 z

/*

G(z) =
1√
5

1− 1+
√

5
2 z

+
− 1√

5

1− 1−
√

5
2 z

= (1√
5
+ 1√

5
1+

√
5

2 z + 1√
5
(1+

√
5

2)2z2 + · · ·+ 1√
5
(1+

√
5

2)nzn + · · ·)+

(− 1√
5
+ (− 1√

5
) 1−

√
5

2 z + (− 1√
5
)(1−

√
5

2)2z2 + · · ·+ (− 1√
5
)(1−

√
5

2)nzn + · · ·)

= z + z2 + · · ·+ (1√
5
(1+

√
5

2)n − 1√
5
(1−

√
5

2)n)zn + · · ·

*/

Therefore, Fn = 1√
5
(1+

√
5

2)n − 1√
5
(1−

√
5

2)n.

6 Divide and Conquer Relations

Divide and Conquer Relations

• The running time T (n) of a divide-and-conquer algorithm satisfies

T (n) = aT (n/b) +O(nk)

where

– a is the number of subproblems,

– n/b is the size of each subproblem, and

– O(nk) is the time spent on dividing the problem and combining the solutions.

Divide and Conquer Relations (cont.)
Assume, for simplicity, n = bm (n

bm = 1, n
bm−1 = b, etc.).

T (n) = aT (nb) +O(nk)
= a(aT (n

b2) +O((nb)
k)) +O(nk)

= a(a(aT (n
b3) +O((n

b2)
k)) +O((nb)

k)) +O(nk)
· · ·
= a(a(· · · (aT (n

bm) +O((n
bm−1)

k)) + · · ·) +O((nb)
k)) +O(nk)

Assuming T (1) = O(1) (and recalling n = bm, i.e., m = logb n),

T (n) = am ×O(1) +

m∑
i=1

am−iO(bik) = O(am) + am
m∑
i=1

O((
bk

a
)i).

7

Divide and Conquer Relations (cont.)
As m = logb n and am = alogb n = nlogb a,

T (n) = O(nlogb a) +O(nlogb a)×O(

logb n∑
i=1

(
bk

a
)i).

• O(nlogb a) is the accumulative time for computing all the subproblems.

• O(nlogb a)×O(
∑logb n

i=1 (b
k

a)i) is the accumulative time for dividing problems and combining solutions.

• Three cases to consider: bk

a < 1, bk

a = 1, and bk

a > 1.

/* Case 1: bk

a < 1. The geometric series
∑logb n

i=1 (b
k

a)i converges to some constant. So, T (n) = O(nlogb a) +
O(nlogb a)×O(1) = O(nlogb a).

Case 2: bk

a = 1, i.e., logb a = k. O(
∑logb n

i=1 (b
k

a)i) = O(logb n) = O(log n). So, T (n) = O(nlogb a) +
O(nlogb a)×O(log n) = O(nk log n).

Case 3: bk

a > 1. O(
∑logb n

i=1 (b
k

a)i) = O(b
k

a

(bk

a)logb n−1
bk

a −1
) = O((b

k

a)logb n) = O((b
k)logb n

alogb n) = O((b
logb n)k

nlogb a) =

O(nk

nlogb a). T (n) = O(nlogb a) + O(nlogb a) × O(nk

nlogb a) = O(nlogb a) + O(nk) = O(nk), since bk

a > 1 implies
k > logb a. */

Divide and Conquer Relations (cont.)

Theorem 4 (3.4). The solution of the recurrence relation T (n) = aT (n/b) + O(nk), where a and b are
integer constants, a ≥ 1, b ≥ 2, and k is a non-negative real constant, is

T (n) =

 O(nlogb a) if a > bk

O(nk log n) if a = bk

O(nk) if a < bk

This theorem may be slightly generalized by replacing O(nk) with some f(n), but the current form is
sufficient for the cases we will encounter. Due to its generality and usefulness, the theorem has conventionally
been referred to as “the master theorem”.

/* Example 1: Suppose T (n) = T (n/2) +O(1) (arising from, e.g., binary search). In this case, a = 1, b = 2,
and k = 0. We have a = bk and the second case of the theorem applies. Therefore, T (n) = O(n0 log n) =
O(log n).

Example 2: Suppose T (n) = 2T (n/2) +O(n) (arising from, e.g., merge sort). In this case, a = 2, b = 2,
and k = 1. We have a = bk and again the second case of the theorem applies. Therefore, T (n) = O(n log n).
*/

Recurrent Relations with Full History

• Example One:

T (n) = c+

n−1∑
i=1

T (i),

where c is a constant and T (1) is given separately.

• T (n) − T (n − 1) = (c +
∑n−1

i=1 T (i)) − (c +
∑n−2

i=1 T (i)) = T (n − 1); hence, T (n) = 2T (n − 1). (This
holds only for n ≥ 3.) /* The relation T (n) = 2T (n− 1) does not hold for n = 2, as T (2)− T (1) = c

(not T (1)). */

8

• So, we get {
T (2) = c+ T (1)

T (n) = 2T (n− 1) if n ≥ 3

which is easier to solve.

• T (n+ 1) = (c+ T (1))2n−1, for n ≥ 2.

Recurrent Relations with Full History (cont.)

• Example Two:

T (n) = n+ 1 +
2

n

n−1∑
i=1

T (i), for n ≥ 2. T (1) = 0.

• Multiply both sides of the equation with n for T (n) and (n+ 1) for T (n+ 1).

nT (n) = n(n+ 1) + 2
∑n−1

i=1 T (i)

(n+ 1)T (n+ 1) = (n+ 1)(n+ 2) + 2
∑n

i=1 T (i)

• Take the difference.
(n+ 1)T (n+ 1)− nT (n) = 2n+ 2 + 2T (n)

which implies

T (n+ 1) =
n+ 2

n+ 1
T (n) + 2

Recurrent Relations with Full History (cont.)

• So, we have

T (n+ 1) =
n+ 2

n+ 1
T (n) + 2, for n ≥ 2.

• Expanding and canceling.

T (n)

= 2 + n+1
n (2 + n

n−1 (2 +
n−1
n−2 (· · · (2 +

4
3T (2)) · · ·)))

= 2(1 + n+1
n + n+1

n
n

n−1 + n+1
n

n
n−1

n−1
n−2 + · · ·+ (n+1

n
n

n−1 · · ·
4
3
3
2))

= 2(n+ 1)(1
n+1 + 1

n + 1
n−1 + · · ·+ 1

3 + 1
2)

≤ 2 + 2(n+ 1)(1n + 1
n−1 + · · ·+ 1)

= O(n log n)

(Note: T (1) = 0 and T (2) = (2 + 1) + 2
2T (1) = 3)

7 Useful Facts

Useful Facts

• Bounding a summation by an integral:

If f(x) is monotonically increasing, then

n∑
i=1

f(i) ≤
∫ n+1

1

f(x)dx.

9

If f(x) is monotonically decreasing, then

n∑
i=1

f(i) ≤ f(1) +

∫ n

1

f(x)dx.

• Stirling’s approximation

n! =
√
2πn

(n
e

)n

(1 +O(1/n)).

Bounding a Summation by an Integral

x

f(x)

0 1 2 3 n−1 n n+1

...

n∑
i=1

f(i) ≤
∫ n+1

1

f(x)dx.

/* This technique can be used to show that
∫ n

0
f(x)dx ≤

∑n
i=1 f(i), by shifting the n vertical bars (which

represent
∑n

i=1 f(i)) in the diagram to the left by one unit.
When f(x) is monotonically decreasing, we state that

∑n
i=1 f(i) ≤ f(1) +

∫ n

1
f(x)dx, rather than∑n

i=1 f(i) ≤
∫ n

0
f(x)dx, as the part

∫ 1

0
f(x)dx might go to infinity and would not be a good upper bound.

Isolating the first term of the sum, we have
∑n

i=1 f(i) = f(1) +
∑n

i=2 f(i) ≤ f(1) +
∫ n

1
f(x)dx. It can also

be shown that
∫ n+1

1
f(x)dx ≤

∑n
i=1 f(i). */

Useful Facts (cont.)

• Harmonic series

Hn =

n∑
k=1

1

k
= lnn+ γ +O(1/n),

where γ = 0.577 . . . is Euler’s constant. So, Hn = O(log n).

/* The upper bound may also be obtained using an integral.
∑n

k=1
1
k ≤ 1

1 +
∫ n

1
1
xdx = 1 + lnn =

O(lnn) = O(log n). */

• Sum of logarithms ∑n
i=1⌊log2 i⌋ = (n+ 1)⌊log2 n⌋ − 2⌊log2 n⌋+1 + 2

= Θ(n log n).

10

/* The value of ⌊x⌋ (the floor of x) is the largest integer that is less than or equal to x; or equivalently,
⌊x⌋ = m if and only if m ≤ x < m+ 1 for some integer m. */

/*
∑n

i=1⌊log2 i⌋ ≤
∑n

i=1 log2 i = log2(n!) = log2(
√
2πn(ne)

n(1 + O(1/n))) = O(log2(
√
2πn(ne)

n)) =

O(log2
√
2πn+log2(

n
e)

n) = O(log2
√
2πn+n log2(

n
e)) = O(n log n). The other direction

∑n
i=1⌊log2 i⌋ ≥

(
∑n

i=1 log2 i)− n. */

11

