
Algorithms 2024: Searching and Sorting

(Based on [Manber 1989])

Yih-Kuen Tsay

October 25, 2024

1 Binary Search

Searching a Sorted Sequence

Problem 1. Let x1, x2, · · · , xn be a sequence of real numbers such that x1 ≤ x2 ≤ · · · ≤ xn. Given a real
number z, we want to find whether z appears in the sequence, and, if it does, to find an index i such that
xi = z.

Idea: cut the search space in half by asking only one question.{
T (1) = O(1)

T (n) = T (n
2
) +O(1), n ≥ 2

Time complexity: O(log n) (applying the master theorem with a = 1, b = 2, k = 0, and bk = 1 = a).

Binary Search

function Find (z,Left ,Right) : integer ;
begin

if Left = Right then
if X[Left] = z then Find := Left
else Find := 0

else

Middle := ⌈Left+Right
2 ⌉;

if z < X[Middle] then
Find := Find(z,Left ,Middle − 1)

else
Find := Find(z,Middle,Right)

end

Algorithm Binary Search (X,n, z);
begin

Position := Find(z, 1, n);
end

Binary Search: Alternative

1

function Find (z,Left ,Right) : integer ;
begin

if Left > Right then
Find := 0

else

Middle := ⌈Left+Right
2 ⌉;

if z = X[Middle] then
Find := Middle

else if z < X[Middle] then
Find := Find(z,Left ,Middle − 1)

else
Find := Find(z,Middle + 1,Right)

end

How do the two algorithms compare?

/* The alternative (which is the usual binary search algorithm taught) may stop early once the target is
found at Middle; otherwise, it spends another comparison to divide the search space. If by experience you
expect to find the target almost all of the time, then consider using the alternative algorithm. */

1.1 Cyclically Sorted Sequence

Searching a Cyclically Sorted Sequence

Problem 2. Given a cyclically sorted list, find the position of the minimal element in the list (we assume,
for simplicity, that this position is unique).

• Example 1:

–
1 2 3 4 5 6 7 8

[5 6 7 0 1 2 3 4]

– The 4th is the minimal element.

• Example 2:

–
1 2 3 4 5 6 7 8

[0 1 2 3 4 5 6 7]

– The 1st is the minimal element.

• To cut the search space in half, what question should we ask?

/* If X[Middle] < X[Right], then the minimal is in the left half (including X[Middle]); otherwise, it
is in the right half (excluding X[Middle]). */

Cyclic Binary Search

Algorithm Cyclic Binary Search (X,n);
begin

Position := Cyclic F ind(1, n);
end

function Cyclic Find (Left ,Right) : integer ;
begin

if Left = Right then Cyclic Find := Left

2

else

Middle := ⌊Left+Right
2 ⌋;

if X[Middle] < X[Right] then
Cyclic Find := Cyclic Find(Left ,Middle)

else
Cyclic Find := Cyclic Find(Middle + 1,Right)

end

1.2 “Fixpoints”

“Fixpoints”

Problem 3. Given a sorted sequence of distinct integers a1, a2, · · · , an, determine whether there exists an
index i such that ai = i.

• Example 1:

–
1 2 3 4 5 6 7 8

[−1 1 2 4 5 6 8 9]

– a4 = 4 (there are more ...).

• Example 2:

–
1 2 3 4 5 6 7 8

[−1 1 2 5 6 8 9 10]

– There is no i such that ai = i.

• Again, can we cut the search space in half by asking only one question?

/* As the numbers are distinct, they increase or decrease at least as fast as the indices (which always
increase or decrease by one). If X[Middle] < Middle, then the fixpoint (if it exists) must be in the
right half (excluding X[Middle]); otherwise, it must be in the left half (including X[Middle]). */

A Special Binary Search

function Special Find (Left ,Right) : integer ;
begin

if Left = Right then
if A[Left] = Left then Special Find := Left
else Special Find := 0

else

Middle := ⌊Left+Right
2 ⌋;

if A[Middle] < Middle then
Special Find := Special Find(Middle + 1,Right)

else
Special Find := Special Find(Left ,Middle)

end

A Special Binary Search (cont.)

Algorithm Special Binary Search (A,n);
begin

Position := Special Find(1, n);
end

3

1.3 Stuttering Subsequence

Stuttering Subsequence

Problem 4. Given two sequences A (= a1a2 · · · an) and B (= b1b2 · · · bm), find the maximal value of i such
that Bi is a subsequence of A.

• If B = xyzzx, then B2 = xxyyzzzzxx, B3 = xxxyyyzzzzzzxxx, etc.

• B is a subsequence of A if we can embed B inside A in the same order but with possible holes.

• For example, B2 = xxyyzzzzxx is a subsequence of xxzzyyyyxxzzzzzxxx.

• If Bj is a subsequence of A, then Bi is a subsequence of A, for 1 ≤ i ≤ j.

• The maximum value of i cannot exceed ⌊ n
m⌋ (or Bi would be longer than A).

Stuttering Subsequence (cont.)
Two ways to find the maximum i:

• Sequential search: try 1, 2, 3, etc. sequentially.

Time complexity: O(nj), where j is the maximum value of i.

• Binary search between 1 and ⌊ n
m⌋.

Time complexity: O(n log n
m).

Can binary search be applied, if the bound ⌊ n
m⌋ is unknown?

Think of the base case in a reversed induction.

/* Try 20, 21, 22, · · · , 2k−1, and 2k sequentially. If the target falls between 2k−1 and 2k, apply binary
search within that region. */

2 Interpolation Search

Interpolation Search

/* Interpolation search is a refined version of binary search. The basic idea is that, if the target value is
closer to the value of the left (right) element, then one should divide the array at a point closer to the left
(right) boundary. */

z

i

X[i]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure: Interpolation search.
Source: redrawn from [Manber 1989, Figure 6.4].

4

Interpolation Search (cont.)

z

A

L RM

C

F
E

B
D

LM

LR
=

AD

AB
=

AE

AC
=

BF

BC
, so |LM | = |BF |

|BC|
× |LR|

Interpolation Search (cont.)

function Int Find (z,Left ,Right) : integer;
begin

if X[Left] = z then Int Find := Left
else if Left = Right or X[Left] = X[Right] then

Int Find := 0
else

Next Guess := ⌈Left + (z−X[Left])(Right−Left)
X[Right]−X[Left] ⌉;

if z < X[Next Guess] then
Int Find := Int Find(z,Left ,Next Guess − 1)

else
Int Find := Int Find(z,Next Guess,Right)

end

/* Next Guess − Left = |LM | = |BF |
|BC| × |LR| ≈ ⌈ (z−X[Left])(Right−Left)

X[Right]−X[Left] ⌉ */

Interpolation Search (cont.)

Algorithm Interpolation Search (X,n, z);
begin

if z < X[1] or z > X[n] then Position := 0
else Position := Int Find(z, 1, n);

end

3 Sorting

Sorting

5

Problem 5. Given n numbers x1, x2, · · · , xn, arrange them in increasing order. In other words, find a
sequence of distinct indices 1 ≤ i1, i2, · · · , in ≤ n, such that xi1 ≤ xi2 ≤ · · · ≤ xin .

A sorting algorithm is called in-place if no additional work space is used besides the initial array that
holds the elements.

3.1 Using Balanced Search Trees

Using Balanced Search Trees

• Balanced search trees, such as AVL trees, may be used for sorting:

1. Create an empty tree.

2. Insert the numbers one by one to the tree.

3. Traverse the tree and output the numbers.

• What’s the time complexity? Suppose we use an AVL tree.

/* The time complexity is O(n log n), as there are n elements to insert and each insertion takes O(log n)
time. Traversal of the tree can be done efficiently in O(n) time. */

3.2 Radix Sort

Radix Sort

/* Radix Sort algorithms assume that a number is composed of digits, each of which may be examined
separately, unlike most other sorting algorithms where numbers are only compared to determine their relative
order. */

Algorithm Straight Radix (X,n, k);
begin

put all elements of X in a queue GQ;
for i := 1 to d do /* A digit may be 1, 2, ..., or d. */

initialize queue Q[i] to be empty
for i := k downto 1 do

while GQ is not empty do
pop x from GQ;
c := the i-th digit of x;
insert x into Q[c];

for t := 1 to d do
insert Q[t] into GQ;

for i := 1 to n do
pop X[i] from GQ

end

Time complexity: O(nk).

/* The inductive thinking of Straight Radix Sort goes as follows: to sort the numbers according to the
j-th through the k-th digits, supposing we have sorted the numbers according to the (j + 1)-th through the
k-th digits, we just need to sort the numbers according to the j-th digit while preserving the original order
for the numbers with the same j-th digit.

Unfold the induction/recursion and present the algorithm in an iterative form, we get the pseudocode as
above where the numbers are sorted one digit at a time, from the k-th digit back to the 1-st digit (which is
the most significant digit). */

6

3.3 Merge Sort

Merge Sort

Algorithm Mergesort (X,n);
begin M Sort(1, n) end

procedure M Sort (Left ,Right);
begin

if Right − Left = 1 then
if X[Left] > X[Right] then swap(X[Left], X[Right])

else if Left ̸= Right then
Middle := ⌈ 1

2 (Left + Right)⌉;
M Sort(Left ,Middle − 1);
M Sort(Middle,Right);

Merge Sort (cont.)

i := Left ; j := Middle; k := 0;
while (i ≤ Middle − 1) and (j ≤ Right) do

k := k + 1;
if X[i] ≤ X[j] then

TEMP [k] := X[i]; i := i+ 1
else TEMP [k] := X[j]; j := j + 1;

if j > Right then
for t := 0 to Middle − 1− i do

X[Right − t] := X[Middle − 1− t]
for t := 0 to k − 1 do

X[Left + t] := TEMP [1 + t]
end

/* In the merging stage, the while loop terminates when one of the two halves is exhausted. If the left half is
exhausted (j ≤ Right), the remaining elements in the right half are already in the correct positions in Array
X and so nothing needs to be done. */

Time complexity: O(n log n).

/* {
T (1) = O(1)

T (n) = 2T (n
2
) +O(n), n ≥ 2

Apply the master theorem with a = 2, b = 2, k = 1, and bk = 2 = a). */

Merge Sort (cont.)

7

6 2 8 5 10 9 12 1 15 7 3 13 4 11 16 14

2 6 8 5 10 9 12 1 15 7 3 13 4 11 16 14

2 6 5 8 10 9 12 1 15 7 3 13 4 11 16 14

2 5 6 8 10 9 12 1 15 7 3 13 4 11 16 14

2 5 6 8 9 10 12 1 15 7 3 13 4 11 16 14

2 5 6 8 9 10 1 12 15 7 3 13 4 11 16 14

2 5 6 8 1 9 10 12 15 7 3 13 4 11 16 14

1 2 5 6 8 9 10 12 15 7 3 13 4 11 16 14

1 2 5 6 8 9 10 12 7 15 3 13 4 11 16 14

1 2 5 6 8 9 10 12 7 15 3 13 4 11 16 14

1 2 5 6 8 9 10 12 3 7 13 15 4 11 16 14

1 2 5 6 8 9 10 12 3 7 13 15 4 11 16 14

1 2 5 6 8 9 10 12 3 7 13 15 4 11 14 16

1 2 5 6 8 9 10 12 3 7 13 15 4 11 14 16

1 2 5 6 8 9 10 12 3 4 7 11 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure: An example of mergesort.
Source: redrawn from [Manber 1989, Figure 6.8].

/* The table shows the order in which all the merges occur. However, it does not show the movements
of the elements from the array to the temporary array and back. */

3.4 Quick Sort

Quick Sort

Algorithm Quicksort (X,n);
begin

Q Sort(1, n)
end

procedure Q Sort (Left ,Right);
begin

if Left < Right then
Partition(X,Left ,Right);
Q Sort(Left ,Middle − 1);
Q Sort(Middle + 1,Right)

end

Time complexity: O(n2), but O(n log n) in average

/* The worst-case time complexity O(n2) occurs when the input array is already sorted or nearly sorted,
as each partition (which is of time O(n)) will successively divide the array into two parts of sizes 1 and n−2,
1 and n− 4, 1 and n− 6, etc. This may be avoided by choosing the pivot more “wisely”. */

Quick Sort (cont.)

Algorithm Partition(X,Left ,Right);
begin

pivot := X[Left];

8

L := Left + 1; R := Right ;
while L ≤ R do

while L ≤ Right and X[L] ≤ pivot do L := L+ 1;
while R ≥ Left and X[R] > pivot do R := R− 1;
if L < R then

swap(X[L], X[R]);
L := L+ 1;
R := R− 1;

Middle := R;
swap(X[Left], X[Middle])

end

Quick Sort (cont.)

6 2 8 5 10 9 12 1 15 7 3 13 4 11 16 14

6 2 4 5 10 9 12 1 15 7 3 13 8 11 16 14

6 2 4 5 3 9 12 1 15 7 10 13 8 11 16 14

6 2 4 5 3 1 12 9 15 7 10 13 8 11 16 14

1 2 4 5 3 6 12 9 15 7 10 13 8 11 16 14

Figure: Partition of an array around the pivot 6.
Source: redrawn from [Manber 1989, Figure 6.10].

Quick Sort (cont.)

6 2 8 5 10 9 12 1 15 7 3 13 4 11 16 14

1 2 4 5 3 6 12 9 15 7 10 13 8 11 16 14

1 2 4 5 3 6 12 9 15 7 10 13 8 11 16 14

1 2 4 5 3 6 12 9 15 7 10 13 8 11 16 14

1 2 3 4 5 6 12 9 15 7 10 13 8 11 16 14

1 2 3 4 5 6 8 9 11 7 10 12 13 15 16 14

1 2 3 4 5 6 7 8 11 9 10 12 13 15 16 14

1 2 3 4 5 6 7 8 10 9 11 12 13 15 16 14

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 14

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure: An example of quicksort.
Source: redrawn from [Manber 1989, Figure 6.12].

Average-Case Complexity of Quick Sort

• When X[i] is selected (at random) as the pivot,

T (n) = n+ 1 + T (i− 1) + T (n− i), where n ≥ 2.

(T (0) = 0 and T (1) = 0.)

/* The Partition procedure requires n+ 1 comparisons. */

9

The average running time will then be

T (n) = n+ 1 + 1
n

∑n
i=1(T (i− 1) + T (n− i))

= n+ 1 + 1
n

∑n
i=1 T (i− 1) + 1

n

∑n
i=1 T (n− i)

= n+ 1 + 1
n

∑n−1
j=0 T (j) + 1

n

∑n−1
j=0 T (j)

= n+ 1 + 2
n

∑n−1
i=0 T (i)

= n+ 1 + 2
n

∑n−1
i=1 T (i)

• Solving this recurrence relation with full history, T (n) = O(n log n).

/* See the notes/slides for Analysis of Algorithms. */

3.5 Heap Sort

Heap Sort

Algorithm Heapsort (A,n);
begin

Build Heap(A);
for i := n downto 2 do

swap(A[1], A[i]);
Rearrange Heap(i− 1)

end

Time complexity: O(n log n)

/* The complexity is so, mainly thanks to the efficiency of Rearrange Heap, which is O(log n). */

Heap Sort (cont.)

procedure Rearrange Heap (k);
begin

parent := 1;
child := 2;
while child ≤ k do

if child + 1 ≤ k and A[child] < A[child+ 1] then
child := child + 1;

if A[child] > A[parent] then
swap(A[parent], A[child]);
parent := child ;
child := 2 ∗ child

else child := k + 1
end

Heap Sort (cont.)

10

Figure: Top down and bottom up heap construction.
Source: redrawn from [Manber 1989, Figure 6.14].

How do the two approaches compare?

/* Top down: O(n log n).
Bottom up: O(sum of the heights of all nodes) = O(n). Consider a full binary tree of height h. From an

excercise problem in HW#2, we know that “sum of the heights of all nodes” of the tree equals 2h+1−(h+2) ≤
2h+1 − 1 = n. */

Building a Heap Bottom Up

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 2 8 5 10 9 12 1 15 7 3 13 4 11 16 14

6 2 8 5 10 9 12 14 15 7 3 13 4 11 16 1

6 2 8 5 10 9 16 14 15 7 3 13 4 11 12 1

6 2 8 5 10 13 16 14 15 7 3 9 4 11 12 1

6 2 8 5 10 13 16 14 15 7 3 9 4 11 12 1

6 2 8 15 10 13 16 14 5 7 3 9 4 11 12 1

6 2 16 15 10 13 12 14 5 7 3 9 4 11 8 1

6 15 16 14 10 13 12 2 5 7 3 9 4 11 8 1

16 15 13 14 10 9 12 2 5 7 3 6 4 11 8 1

Figure: An example of building a heap bottom up.
Source: adapted from [Manber 1989, Figure 6.15].

A Lower Bound for Sorting

• A lower bound for a particular problem is a proof that no algorithm can solve the problem better.

• We typically define a computation model and consider only those algorithms that fit in the model.

• Decision trees model computations performed by comparison-based algorithms.

Theorem 6 (Theorem 6.1). Every decision-tree algorithm for sorting has height Ω(n log n).

Proof idea: there must be at least n! leaves in the decision tree, one for each possible outcome.

/* Recall Stirling’s approximation: n! =
√
2πn

(
n
e

)n
(1 + O(1/n)). The height of the decision tree must

be at least log(n!), i.e., Ω(n log n). */

Is the lower bound contradictory to the time complexity of radix sort?

11

A Lower Bound for Sorting (cont.)
A decision tree (partly shown) for the merge sort with X1X2X3X4 as input:

X1 : X2

X3 : X4

X2 : X4

· · ·· · ·

X2 : X3

· · ·· · ·

X3 : X4

X1 : X4

· · ·· · ·

X1 : X3

X1 : X4

X3X4X1X2X2 : X4

X3X1X4X2X3X1X2X4

X2 : X3

X2 : X4

X1X3X4X2X1X3X2X4

X1X2X3X4

≤ >

Note: in total, there should be 4! = 24 leaves, only six of which are shown.

4 Order Statistics

Order Statistics: Minimum and Maximum

Problem 7. Find the maximum and minimum elements in a given sequence.

• The obvious solution requires (n− 1) + (n− 2) (= 2n− 3) comparisons between elements.

• Can we do better? (Which comparisons could have been avoided?)

/* A better algorithm: compare x1 and x2. Set min to be the smaller of the two and max the larger.
Compare x3 and x4 and then compare the smaller with min and the larger with max ; these take three
comparisons. Update min and max accordingly. Continue until we have exhausted the sequence of

numbers. Assuming n is even, the total number of comparisons = 1 + 3× (n−2)
2 = 3

2n− 2.

Suppose x1 < x2 < x3 < x4. Using the obvious solution to find the minimum and then the maximum,
we would make the following five comparisons: x1 : x2, x1 : x3, and x1 : x4 and then x2 : x3 and
x3 : x4. With the above algorithm, we will make just four comparisons: x1 : x2, and then x3 : x4,
x1 : x3, and x2 : x4. In particular, the comparison x1 : x4 (whose result may be inferred from x1 : x3

and x3 : x4) in the obvious solution has been avoided. */

Order Statistics: Kth-Smallest

Problem 8. Given a sequence S = x1, x2, · · · , xn of elements, and an integer k such that 1 ≤ k ≤ n, find
the kth-smallest element in S.

Order Statistics: Kth-Smallest (cont.)

procedure Select (Left ,Right , k);
begin

if Left = Right then
Select := Left

else Partition(X,Left ,Right);
let Middle be the output of Partition;

12

if Middle − Left + 1 ≥ k then
Select(Left ,Middle, k)

else
Select(Middle + 1,Right , k − (Middle − Left + 1))

end

Algorithm Selection (X,n, k);
begin

if (k < 1) or (k > n) then print “error”
else S := Select(1, n, k)

end

/* Here the formal parameter k (for rank) is made to be relative to the left bound of array indices, while
Left , Middle, and Right are absolute index values. */

Order Statistics: Kth-Smallest (cont.)
The nested “if” statement may be simplified:

procedure Select (Left ,Right , k);
begin

if Left = Right then
Select := Left

else Partition(X,Left ,Right);
let Middle be the output of Partition;
if Middle ≥ k then

Select(Left ,Middle, k)
else

Select(Middle + 1,Right , k)
end

5 Finding a Majority

Finding a Majority

Problem 9. Given a sequence of numbers, find the majority in the sequence or determine that none exists.

A number is a majority in a sequence if it occurs more than n
2 times in the sequence.

Caution: maintaining a counter for each possible number requires O(log n) time for each access to a
particular counter, which means O(n log n) time in total. Sorting the sequence to find a probable candidate
also requires O(n log n) time.

Idea: compare any two numbers in the sequence. What can we conclude if they are not equal?

/* If there is a majority, it is also a majority of the other n− 2 numbers. However, the reverse may not
be true. */

What if they are equal?

/* Keep the first number as a candidate at hand and repeat the following:
If the next number equals the candidate, we increment the count of its occurrences; otherwise, we have

a pair of unequal numbers to eliminate (by decrementing the count for the candidate). When the count
becomes 0 (due to elimination), we take the next number as a new candidate. */

13

Finding a Majority (cont.)

Algorithm Majority (X,n);
begin

C := X[1]; M := 1;
for i := 2 to n do

if M = 0 then
C := X[i]; M := 1

else
if C = X[i] then M := M + 1
else M := M − 1;

Finding a Majority (cont.)

if M = 0 then Majority := −1
else

Count := 0;
for i := 1 to n do

if X[i] = C then Count := Count + 1;
if Count > n/2 then Majority := C
else Majority := −1

end

Time complexity: O(n).

14

