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Introduction: The Need to Abstract

Abstraction is perhaps the most important technique for
alleviating the state-explosion problem.

Traditionally, finite-state verification methods are geared
towards control-oriented systems.

When nontrivial data manipulations are involved, the
complexity of verification is often very high.

Fortunately, many verification tasks do not require
complete information about the system (e.g., whether
the value of a variable is odd or even).

The main idea is to map the set of actual data values to
a small set of abstract values.

An abstract version of the actual system thus obtained
is smaller and easier to verify.
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Bisimulation Relation

Let M = 〈AP, S, S0, R, L〉 and M ′ = 〈AP, S′, S′

0, R
′, L′〉 be

two Kripke structures with the same set AP of atomic
propositions.

A relation B ⊆ S × S′ is a bisimulation relation between
M and M ′ iff, for all s and s′, if B(s, s′) then the following
conditions hold:

L(s) = L′(s′).
For every state s1 satisfying R(s, s1), there is s′1 such
that R′(s′, s′1) and B(s1, s

′

1).
For every state s′1 satisfying R(s′, s′1), there is s1 such
that R′(s, s1) and B(s1, s

′

1).
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Bisimulation Equivalence

Two structures M and M ′ are bisimulation equivalent,
denoted M ≡ M ′, if there exists a bisimulation relation B

between M and M ′ such that:
for every s0 ∈ S0 there is an s′0 ∈ S′

0 such that
B(S0, S

′

0), and
for every s′0 ∈ S′

0 there is an s0 ∈ S0 such that
B(S0, S

′

0).

Unwinding preserves bisimulation.

a b

b

a a

b
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Bisimulation Equivalence (cont.)

Duplication preserves bisimulation.

a

b b

c c d

a

b b

c d d

Two states related by a bisimulation relation is said to
be bisimular.
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Bisimulation Equivalence (cont.)

These two structures are not bisimulation equivalent:

a

b b

c d

a

b

c d
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Relating CTL* and Bisimulation

Theorem : If M ≡ M ′ then, for every CTL* formula f ,
M � f ⇔ M ′

� f .

This can be proven with the following two lemmas.

We say that two paths π = s0s1 . . . in M and π′ = s′0s
′

1 . . .

in M ′ correspond iff, for every i ≥ 0, B(si, s
′

i).

Lemma : Let s and s′ be two states such that B(s, s′).
Then for every path starting from s there is a
corresponding path starting from s′ and vice versa.

Lemma : Let f be either a state formula or a path
formula. Assume that s and s′ are bisimilar states and
that π and π′ are corresponding paths. Then,
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Relating CTL* and Bisimulation (cont.)

Lemma : Let f be either a state formula or a path
formula. Assume that s and s′ are bisimilar states and
that π and π′ are corresponding paths. Then,

if f is a state formula, then s � f ⇔ s′ � f , and
if f is a path formula, then π � f ⇔ π′

� f .

Base: f = p ∈ AP . Since B(s, s′), L(s) = L′(s′). Thus,
s � p ⇔ s′ � p.

Induction (partial): f = Ef1, a state formula.
If s � f then there is a path π from s s.t. π � f1.
From the previous lemma, there is a corresponding
path π′ starting from s′.
From the induction hypothesis, π � f1 ⇔ π′

� f1.
Therefore, s′ � Ef1.
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Simulation Relation

Let M = 〈AP, S, S0, R, L〉 and M ′ = 〈AP ′, S′, S′

0, R
′, L′〉 be

two structures with AP ⊇ AP ′.

A relation H ⊆ S × S′ is a simulation relation between M

and M ′ iff, for all s and s′, if H(s, s′) then the following
conditions hold:

L(s) ∩ AP ′ = L′(s′).
For every state s1 satisfying R(s, s1) there is s′1 such
that R′(s′, s′1) and H(s1, s

′

1).

We say that M ′ simulates M or M is simulated by M ′,
denoted M � M ′, if there exists a simulation relation H

such that for every s0 ∈ S there is an s′0 ∈ M ′ for which
H(s0, s

′

0) holds.
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Relating ACTL* and Simulation

Theorem : Suppose M � M ′. Then for every ACTL*
formula f (with atomic propositions in AP ′),
M ′

� f ⇒ M � f .
Formulae in ACTL* describe properties that are
quantified over all possible behaviors of a structure.
Because every behavior of M is a behavior of M ′,
every formula of ACTL* that is true in M ′ must also
be true in M .

The theorem does not hold for CTL* formulae.

In the example on the next slide, M simulates M ′;
however, AG(b → EX c) is true in M but false in M ′.
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Compare Bisimulation and Simulation

Consider these two structures:

M M ′

a

b b

c d c

1 2
a

b b

c d d

3 4

M and M ′ are not bisimulation equivalent, but each
simulates the other.

AG(b → EX c) is true in M , but false in M ′.
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Cone of Influence Reduction

The cone of influence reduction attempts to decrease
the size of a state transition graph by focusing on the
variables of the system that are referred to in the
desired property specification.

The reduction is obtained by eliminating variables that
do not influence the variables in the specification.

In this way, the checked properties are preserved, but
the size of the model that needs to be verified is smaller.
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Cone of Influence Reduction (cont.)

Let V = {v1, . . . , vn} be the set of Boolean variables of a
given structure M = (S,R, S0, L).

The transition relation R is specified by
∧n

i=1
[v′i = fi(V )].

Suppose we are given a set of variables V ′ ⊆ V that are
of interest w.r.t. the property specification.

The cone of influence C of V ′ is the minimal set of
variables such that

V ′ ⊆ C

if for some vl ∈ C its fl depends on vj, then vj ∈ C.

We construct a new (reduced) structure by removing all
the clauses in R whose left hand side variables do not
appear in C and using C to construct states.
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An Example

Let V = {v0, v1, v2} and M = (S,R, S0, L) a structure over
V , where R = (v′0 = ¬v0) ∧ (v′1 = v0 ⊕ v1) ∧ (v′2 = v1 ⊕ v2).

If V ′ = {v0} then C = {v0}, since f0 = ¬v0 does not
depend on any variable other than v0.
If V ′ = {v1} then C = {v0, v1}, since f1 = v0 ⊕ v1

depends on both variables.
If V ′ = {v2} then C = {v0, v1, v2}, since f2 = v1 ⊕ v2

depends on v1, v2 and f1 = v0 ⊕ v1 depends on v0, v1

(because v1 is in C).
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The Reduced Model

Let V = {v1, . . . , vn}.

M = (S,R, S0, L) is a structure over V :
S = {0, 1}n is the set of all valuations of V .
R =

∧n
i=1

[v′i = fi(V )].
L(s) = {vi | s(vi) = 1 for 1 ≤ i ≤ n}.
S0 ⊆ S.

Automatic Verification 2009: Equivalence, Simulation, and Abstraction – 16/36



IM NTU

The Reduced Model (cont.)

The reduced model M̂ = (Ŝ, R̂, Ŝ0, L̂) w.r.t.
C = {v1, . . . , vk} for some k ≤ n:

Ŝ = {0, 1}k is the set of all valuations of C.

R̂ =
∧k

i=1
[v′i = fi(V )].

L̂(ŝ) = {vi | ŝ(vi) = 1 for 1 ≤ i ≤ k}.

Ŝ0 = {(d̂1, . . . , d̂k) | there is a state (d1, . . . , dn) ∈ S0 s.t.
d̂1 = d1 ∧ · · · ∧ d̂k = dk}.
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Bisimulation Equivalence Between Models

Let B ⊆ S × Ŝ be the relation defined as follows:
((d1, . . . , dn), (d̂1, . . . , d̂k)) ∈ B ⇔ di = d̂i for all 1 ≤ i ≤ k.

We show that B is a bisimulation relation between M

and M̂ (M ≡ M̂ ).

For every s0 ∈ S there is a corresponding ŝ0 ∈ Ŝ and
vice versa.
Let s = (d1, . . . , dn) and ŝ = (d̂1, . . . , d̂k) s.t. (s, ŝ) ∈ B.

L(s) ∩ C = L̂(ŝ).
If s → t is a transition in M , then there is a transition
ŝ → t̂ in M̂ s.t. (t, t̂) ∈ B.

If ŝ → t̂ is a transition in M̂ , then there is a transition
s → t in M s.t. (t, t̂) ∈ B.
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Bisimulation Equiv. Between Models (cont.)

Let s → t be a transition in M .

There is a transition ŝ → t̂ in M̂ s.t. (t, t̂) ∈ B.
1. For 1 ≤ i ≤ n, v′i = fi(V ). (Transition relation)
2. For 1 ≤ i ≤ k, vi depends only on variables in C,

hence v′i = fi(C). (Definition of C)

3. (s, ŝ) ∈ B implies
∧k

i=1
(di = d̂i). (Bisimilar states)

4. Let t = (e1, . . . , ek). For every 1 ≤ i ≤ k,
ei = fi(d1, . . . , dk) = fi(d̂1, . . . , d̂k). (From 2,3)

5. If we choose t̂ = (e1, . . . , ek), then ŝ → t̂ and (t, t̂) ∈ B

as required.

Theorem : Let f be a CTL* formula with atomic
propositions in C. Then M � f ⇔ M̂ � f .
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Data Abstraction

Data abstraction involves finding a mapping between
the actual data values in the system and a small set of
abstract data values.

By extending this mapping to states and transitions, it is
possible to obtain an abstract system that simulates the
original system and is usually much smaller.

Example: Assume we are interested in expressing a
property involving the sign of x. We create a domain Ax

of abstract values for x, with {a0, a+, a−}, and define a
mapping hx from Dx to Ax as follows:

hx(d) =






a0 if d = 0

a+ if d > 0

a− if d < 0
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Data Abstraction (cont.)

The abstract value of x can be expressed by three APs:
“x̂ = a0”, “x̂ = a+”, and “x̂ = a−”.

All states labelled with “x̂ = a+” will be collapsed into
one state, that is, all states where x > 0 are merged into
one.

If there is a transition between, e.g., states
corresponding to x = 0 and x = 5, there must be a
transition between states labelled x̂ = a0 and x̂ = a+.
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The Reduced Model

Let h be a mapping form D to an abstract domain A.

The mapping determines a set of abstract atomic
propositions AP .

We now obtain a new structure M = (S,R, S0, L) that is
identical to the original one expect that L labels each
state with a subset of AP .

The structure M can be collapsed into a reduced
structure Mr over AP defined as follows:

Sr = {L(s) | s ∈ S}.
Rr(sr, tr) iff there exist s and t s.t. sr = L(s), tr = L(t),
and R(s, t).
sr ∈ Sr

0 iff there exists an s s.t. sr = L(s) and s ∈ S0.
Lr(sr) = sr (each sr is a set of atomic propositions).
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The Reduced Model (cont.)

Mr simulates the structure M .

Every path that can be generated by M can also be
generated by Mr.

Whatever ACTL* properties we can prove about Mr will
be also hold in M .

Note that using this technique it is only possible to
determine whether formulae over AP are true in M .
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The Reduced Model (cont.)

green

red yellow

h(red) = stop; h(yellow) = stop; h(green) = go.

go

stop stop

go

stop
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Approximation

In many cases, Mr may still be too large to construct
exactly.

To further reduce the state space, an approximation Ma

that simulates Mr is constructed.

The goal here is to have Ma sufficiently close to Mr so
that it is still possible to verify interesting properties.
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The Model in FOL

We use the first order formulae S0 and R to define the
Kripke structure M = (S,R, S0, L) with state set
S = D × · · · × D.

S0 is the set of valuations satisfying S0.

Similarly, R is derived from R.

L is defined over abstract atomic propositions, e.g.,
{“x̂1 = a1”, “x̂2 = a2”, . . . , “x̂n = an”}.
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The Reduced Model in FOL

To produce Mr over the abstract state set A× · · · ×A, we
construct formulae over x̂1, . . . , x̂n and x̂1

′, . . . , x̂n
′ that will

represent the initial states and transition relation of Mr.

Ŝ0 = ∃x1 · · · ∃xn(h(x1) = x̂1∧· · ·∧h(xn) = x̂n∧S0(x1, . . . , xn)).

R̂ = ∃x1 · · · ∃xn∃x′

1 · · · ∃x′

n(h(x1) = x̂1 ∧ · · · ∧ h(xn) = x̂n∧

h(x′

1) = x̂1
′ ∧ · · · ∧ h(x′

n) = x̂n
′ ∧R(x1, . . . , xn, x′

1, . . . , x
′

n)).
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The Reduced Model in FOL (cont.)

For conciseness, this existential abstraction operation is
denoted by [·].

If φ depends on the free variables x1, . . . , xm, then define
[φ](x̂1, . . . , x̂m) =
∃x1 · · · ∃xm(h(x1) = x̂1 ∧ · · · ∧ h(xm) = x̂m ∧ φ(x1, . . . , xm))

So, Ŝ0 = [S0] and R̂ = [R].
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Computing Approximation

Ideally, we would like to extract Sr
0 and Rr from [S0] and

[R]. However, this is often computationally expensive.

To circumvent this difficulty, we define a transformation
A on formula φ.

The idea is to simplify the formulae to which [·] is
applied (“pushing the abstractions inward”).

This will make it easier to extract the Kripke structure
from the formulae.

Example: consider [φ](x̂1, . . . , x̂m) =
∃x1 · · · ∃xm(h(x1) = x̂1 ∧ · · · ∧ h(xm) = x̂m ∧ φ(x1, . . . , xm)).
If [φ](x̂1, . . . , x̂m) = false, we have to evaluate φ(x1, . . . , xm)
with all possible valuations of x1, . . . , xm.
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Computing Approximation (cont.)

Assume φ is given in the negation normal form.

A(P (x1, . . . , xm)) = [P ](x̂1, . . . , x̂m) if P is a primitive
relation.

Similarly, A(¬P (x1, . . . , xm)) = [¬P ](x̂1, . . . , x̂m).

A(φ1 ∧ φ2) = A(φ1) ∧ A(φ2).

A(φ1 ∨ φ2) = A(φ1) ∨ A(φ2).

A(∃xφ) = ∃x̂A(φ).

A(∀xφ) = ∀x̂A(φ).
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Computing Approximation (cont.)

The approximation Kripke structure Ma = (Sa, s
a
0, Ra, La)

can be derived from A(S0) and A(R).

Let sa = (a1, . . . , an) ∈ Sa. Then
La(sa) = {“x̂1 = a1”, “x̂2 = a2”, . . . , “x̂n = an”}.

Note that s = (d1, . . . , dn) ∈ S and sa will be labeled
identically if for all i, h(di) = ai.
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Computing Approximation (cont.)

The price for the approximation is that it may be
necessary to add extra initial states and transitions to
the corresponding structure.

This is because [φ] implies A(φ), but the converse may
not be true.

In particular, [S0] → A(S0) and [R] → A(R).

Theorem : [φ] implies A(φ).
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Computing Approximation (cont.)

The proof is by induction on the structure of φ.

We show the case φ(x1, . . . , xm) = ∀xφ1 only.

[∀xφ1]

= ∃x1 · · · ∃xm(
∧

h(xi) = x̂i ∧ ∀xφ1(x, x1, . . . , xm))

= ∃x1 · · · ∃xm∀x(
∧

h(xi) = x̂i ∧ φ1(x, x1, . . . , xm))

→ ∀x∃x1 · · · ∃xm(
∧

h(xi) = x̂i ∧ φ1(x, x1, . . . , xm))

→ ∀x̂∃x[∃x1 · · · ∃xm(h(x) = x̂ ∧
∧

h(xi) = x̂i ∧ φ1(x, x1, . . . , xm))

= ∀x̂[φ1]

→ ∀x̂A(φ1)

= A(∀xφ1)
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Computing Approximation (cont.)

Theorem : M � Ma.

Proof :
1. Because the approximation Ma only adds extra initial

states and transitions to the reduced model Mr, all
paths in the Mr are reserved. So, Mr � Ma.

2. Since M � Mr and � is transitive, M � Ma.

Corollary : Every ACTL* formula that holds in Ma also
holds in M .
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Exact Approximation

We consider some additional conditions that allow us to
show that M is bisimulation equivalent to Ma.

Each abstraction mapping hx for variable x induces an
equivalence relation ∼x:

Let d1 and d2 be in Dx.
d1 ∼x d2 iff hx(d1) = hx(d2).

The equivalence relation ∼xi
is a congruence with

respect to a primitive relation P iff

∀d1 · · · ∀dm∀e1 · · · ∀em

(
∧m

i=1
di ∼xi

ei → (P (d1, . . . , dm) ⇔ P (e1, . . . , em)))
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Exact Approximation (cont.)

Theorem: If the ∼xi
are congruences with respect to

the primitive relations and φ is a formula defined over
these relations, then [φ] ⇔ A(φ), i.e., Ma ≡ Mr.

Theorem: If ∼xi
are congruences with respect to the

primitive relations, then M ≡ Ma.
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