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Boolean Functions

Boolean functions are widely used in
digital logic design,
testing,
artificial intelligence, and
model checking.

Boolean operators
And: z-y (z Avy)
Oriz+y (zVy)
Not: z (—x)

If and only Iif: <

Example: f(x1,x2,23,24) = (21 < 22) - (23 < x4)
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Representations of Boolean Functions

A variety of methods have been developed for

representing and manipulating Boolean functions such
as.:

Karnaugh map
Sum-of-products form
Truth table
Binary decision tree
But these representations are quite impractical,

because every function of n arguments has a
representation of size 2" or more.
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Karnaugh Map

A Karnaugh table for f(x1,zo,x3,24) = (21 < 22) - (23 < 24).
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00 1 O 1 0
01 O 0 O O
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ruth Table

A truth table for f(z1, 29,23, 14) = (x1 < x2) - (x3 < x4).

r1 T2 x3 T4 f r1 T2 x3 x4 f
o O 0 0 1 1 O O O O
O 0 O 1 O 1 O O 1 O
O O 1 0 O 1 0) 1 O O
0) 0) 1 1 1 1 0) 1 1 O
0 1 0 0 O 1 1 O 0 1
0) 1 0) 1 O 1 1 0) 1 O
0) 1 1 O O 1 1 1 O O
0) 1 1 1 O 1 1 1 1 1
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Binary Decision Tree

A binary decision tree for
f(x1, 2,23, 74) = (21 ¢ T2) - (73 < 74).
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Representations of Boolean Functions (cont.)

More practical approaches utilize representations that,
at least for many functions, are not of exponential size.

reduced sum of products

factored into unate functions
But these representations still suffer from several
drawbacks:

Certain common functions require representations of
exponential size.

Performing a simple operation could yield a function
with an exponential representation.

None of these representations are canonical forms.
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Binary Decision Diagrams

A ( ) represents a Boolean
function as a rooted, directed acyclic graph (function
graph).

We use r(G) to denote the root of a function graph G.

The vertex set V of a function graph G contains two
types of vertices.

A vertex v has

@ an argument index index(v) € {1,...,n} and
@ two children low(v), high(v) € V.

A vertex v has a value value(v) € {0, 1}
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Ordered Binary Decision Diagrams

An ( ) Is defined
by imposing a total ordering over the nonterminal
vertices.

For any nonterminal vertex v,
@ If low(v) IS nonterminal, then we must have

index(v) < index(low(v));
@ If high(v) 1S nonterminal, then we must have
index(v) < index(high(v)).
Further minimality conditions will be introduced later.

OBDDs are representations of Boolean functions with
and

The size of the graph is highly sensitive to arguments
ordering.

IM N NTU Automatic Verification 2009: Binary Decision Diagrams — 9/54

gy
et



Ordering

Two OBDDs for f(x1, 2, x3,x4) = (x1 <> x2) - (23 <> x4) WIth
different orderings.
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Notations

All functions have the same »n arguments: z1,---, x,.
A of f Is denoted f|,,—, where b IS a constant.

f

A of f and ¢ Is denoted f|,,—, where g Is a
Boolean function.

f

vi=b (T1,. . ) = f(x1, ., %i—1,0,Ti41,. .., Tp)

ri=g (T1,-..,Zn) = f(x1,. .., i—1,9(T1, .-, Tn), Tig1,- .-, Tp)
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Notations (cont.)

The
IS given by:

The

The

Sy =

i
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of a function around variable z;

f=zi flo=1+ Zi [lz.=0
of a function f Is denoted I;.
]f — {7’ ’ f 33i=07é f 337;21}

of a function f Is denoted S;.

{(x1,...,2n) | flz1,...,2n) =1}
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Correspondence

A function graph (OBDD) G having root vertex v
denotes a function f, defined recursively as follows:

If v IS a terminal vertex:

¢ Ifvalue(v) =1, then f, = 1.

¢ Ifvalue(v) =0, then f, = 0.

If v IS a nonterminal vertex with index(v) = i, then f,
IS the function

fv(ajla e 737?1) — fi'flow(v)(xla e 7xn)+xi'fhigh(v)(x17 e 73771)'
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Correspondence (cont.)

A path in the graph starting from the root is defined by a
set of argument values.

The value of the function for these arguments equals
the value of the terminal vertex at the end of the path.

Every vertex in the graph is contained in at least one
path.
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Correspondence (cont.)

fos
Jor
Jos
Jos

fos

Jor

_p—
Faivan ,_'a..'.
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T4 - fvs + X4 - f’U7
Xy

T4 - fv7 + X4 - f’US
X4

f3°f05_|_x3'f?)6
X3 - T4+ X324

()
0 1
V3
1
0

V4 1
1 0

0

V5 V6
1

0 3 0

\74 V8
1 0

(fl-f2—|—$1-$2)-(573-5744—5173-1'4)
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Subgraph
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For any vertex » in a function graph G, the
rooted at v, denoted by sub(G,v) Is defined as the graph
consisting of v and all its descendants.
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Subgraph

For any vertex » in a function graph G, the
rooted at v, denoted by sub(G, v) Is defined as the graph
consisting of v and all its descendants.
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Isomorphism

Function graphs G and G’ are , denoted by
If there exists a function o from
vertices of ¢ the vertices of G such that for any

vertex v if o(v) =/, then either
both v and +’" are terminal vertices with
value(v) = value(v'), OF
both v and +" are nonterminal vertices with
index(v) = index(v"), o(low(v)) = low(v"), and
o(high(v)) = high(v')
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Isomorphism (cont.)

Is this an isomorphic mapping? (parts of it are)

Y
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Isomorphism (cont.)

The isomorphic mapping o Is quite constrained:

r(G) must map to the »(G’),

low(r(G)) must map to low(r(G")),

and so on all the way down to the terminal vertices.
Lemma 1: If G Is Isomorphic to G’ by mapping o,

denoted by G ~, G’, then for any vertex v in G,
sub(G,v) ~ sub(G',o(v)).
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Reduced Function Graph

A function graph G Is If
It contains no vertex v with low(v) = high(v),

nor does it contain distinct vertices v and +' such that
the subgraphs rooted by v and +' are iIsomorphic.

A reduced function graph is now commonly called
(Reduced) OBDD.

Lemma 2: For every vertex v in a reduced function
graph G, sub(G,v) Is itself a reduced function graph.
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Reduced Function Graph (cont.)
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Canonical Form

Theorem: For any Boolean function f, there is a unique
(up to isomorphism) reduced function graph denoting f

and any other function graph denoting f contains more
vertices.
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Basic Operations

Procedure Result Time Complexity
Reduce G reduced to canonical form  O(|G| - log |G|)
Apply f1(op) I O(|G1] - |G2)
Restrict flei=b O(|G] - log |G|)
Compose 1 = £, O(|G1]* - |G3))
Satisfy-one ~ some element of S; O(n)

Satisfy-all St O(n - |S¢|)
Satisfy-count |Sy| O(|G])

s/“
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Reduction

The reduction algorithm transforms an arbitrary function
graph into a reduced graph denoting the same function.

The algorithm works from the terminal vertices up to the
root:

Remove duplicate terminals (terminal vertices v and
u such that value(v) = value(u)).

Remove duplicate nonterminals (nonterminal
vertices v and « such that index(v) = index(u),
id(low(v)) = id(low(w)), and id(high(v)) = id(high(u))).
Remove duplicate tests (a nonterminal vertex v such
that low(v) = high(v)).

IM\M’NTU

= Automatic Verification 2009: Binary Decision Diagrams — 24/54



A Reduction Example
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A Reduction Example
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A Reduction Example

lote: not strictly bottom to top (for better layouts).
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A Reduction Example

Automatic Verification 2009: Binary Decision Diagrams — 25/54



A Reduction Example
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A Reduction Example

0/ \1 —1
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A Reduction Example
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A Reduction Example
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Apply

The procedure Apply takes graphs representing
functions f; and f,, a binary operator (op) and produces
a reduced graph representing the function f;{op) fo
defined as:

filop) fol(x1, ... xpn) = fi(xe, ...y xn){(op) fa(x1, ..., xn).

Derive a recursive expansion from the Shannon
expansion:

filop) fa = Z; - (f1

;=0 <0p>f2 $i=0> T X (fl ri=1 <0p>f2 337;:1)
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Apply (cont.)

function Apply (v1, v2: vertex (op). operator): vertex
{var T: array[l..|G1|, 1..|G2|] of vertex;}
begin

Initialize all elements of 7" to nul;

u = Apply-step(vl, v2);

return( Reduce(u));

end:;
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Apply (cont.)
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function Apply-step(v1, v2: vertex): vertex;
begin
w.=T[vl.ed, v2.id];
if u # null then return(u); {have already evaluated}
u:= new vertex record; u.mark = false;
T[vl.id, v2.id] ;= u; {add vertex to table}
u.value = vl.walue (op) v2.value;
if u.value # X
then u.index :=n + 1; u.low = null; u.high = null,
else {create nonterminal and evaluate further down}
w.index = Min(vl.index, v2.index);
if vl.index = u.index
then begin viowl = vl.low; vhighl = v1.high end
else begin viowl := v1; vhighl := vl end,;
if v2.index = u.index
then begin vlow?2 = v2.low; vhigh?2 = v2.high end
else begin viow?2 = v2; vhigh?2 = v2 end,
u.low = Apply-step(ulowl, viow?2);
u.high := Apply-step(vhighl, vhigh?2);
return(u);

end; _ o . o
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An Apply Example

X1-X3 + X2 - X3 = X1 X2 - X3
()"
07\ 1
by
& 0~ b
() [ o)
E B
1 0 0 1
B ay b3 y
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An Apply Example

X1+ X3 + X2 - X3 - X1 X2 - X3
o) -
0 1 0 1
b1
1 ap bt
2 0 p ah
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L E
1 0 0 1
83 &Y b3 y
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An Apply Example

X1- X3 + X2 - X3 = X1 X2 - X3
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An Apply Example

X1 - X3 + X2 - X3 = X1 X2 - X3
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An Apply Example
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An Apply Example

X1 - X3 + X2 - X3 = X1+ X2 - X3
()"

0 1 1 0

b1
1
2 0 1 p 0
(D) [ ) :
E !
1 0 0 1 0 1
B &4 b3 g
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Complementation

To complement an OBDD, simply complement its
terminal vertices.

X1 - X3 X1 - X3
OO,
0 1 0 1
Q Q
JIONNSIO
! !
1 0 0 1
3 . 3 A
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Restriction

The procedure Restrict transforms the graph
representing a function f into one representing the

function f|,.—.

Steps of Restrict:
Look for a vertex v with index(v) = 1.
Change it to point either to low(v) (for b = 0) or to
high(v) (for b = 1).
After changing every vertex v with index(v) = ¢, run
the reduction procedure.
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A Restriction Example

X1 X2 'X3‘x2:o = X1-X3
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A Restriction Example
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Composition

The procedure Compose constructs the graph for the
function obtained by composing two functions.

Composition can be expressed in terms of restriction

and Boolean operations according to the following
expansion:

filzi=f,= fo - filz=1 +(=f2) - fu

It is sufficient to use Restrict and Apply to implement
Compose.

IZ‘:O
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Satisfy-one

The Satisfy-one procedure utilizes a classic depth-first
search with backtracking.

function Satisfy-one(v: vertex; x: array[1..n] of integer): boolean
begin

If value(v) = 0 then return false;

If value(v) = 1 then return true;

X[i] .= 0;

If Satisfy-one(low(v), x) then return true;

X[1] .= 1,

return Satisfy-one(high(v), x);

Wy
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A Satisfy-one Example

X1 X2 - X3
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A Satisfy-one Example

X1 X2 - X3

o | Fail!
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A Satisfy-one Example

X1 X2 - X3

Xl—
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A Satisfy-one Example

X1 X2 - X3

Automatic Verification 2009: Binary Decision Diagrams — 35/54



A Satisfy-one Example

X1 X2 - X3
Xq= 1
1 0 Xo= G
A 1 Xxgq= C
0
1 o | Fail!
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A Satisfy-one Example

X1 X2 - X3
X1:1
1 0 X,= C
Xa= 1
0 1 3
0

1 | Succeed!
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Satisfy-all
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procedure Satisfy-all(i: integer; v: vertex; x: array[1

begin

if value(v) = O then return;

ifi=n+1andvalue(v) =1

then begin
Print element x[1],. . .,x[n];
return;

end,;

if index(v) > i

then begin
X[i] := 0; Satisfy-all(i + 1, v, X);
X[i] .= 1; Satisfy-all(i + 1, v, X);

end
else begin
X[i] := 0; Satisfy-all(i + 1, low(Vv), X);
X[i] := 1; Satisfy-all(i + 1, high(v), x);
end
end;
e NTU

..n] of integer):
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Satisfy-count

The procedure Satisfy-count computes a value «, to
each vertex v in the graph according to the following
recursive formula:

If v IS a terminal vertex: a, = value(v).
If v 1S a nonterminal vertex:

. Zindex(low(v))—indeac(v) _ zindea:(high(v))—indeac(v)

Qy = Uow(v) +ahigh(v)

Once we have computed these values for a graph with
root v, we compute the size of the satisfying set as

|Sf| — Q- Qindex(v)—l

Agaiwan ¢
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Kripke Structures

Given a set of atomic propositions AP, a Kripke
structure M Is a four tuple (S, Sy, R, L):

S 1S a finite set of states.
So C S Is the set of initial states.
R C S x S Is a transition relation that must be total.

L : S — 247 is a function that labels each state with
the set of atomic propositions true in that state.

RN (>
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First Order Representations

The initial states can be represented by the formula:
(a A b)

The transitions can be represented by the formula:

(anbANd AN=Y) vV
(aN—-bANd AN=b) V
(aN=bANa ANV)

.
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OBDD Representations

Use z1, 29, 23, 24 tO represent a, b, a’, v’ respectively.
The characteristic function of initial states:

(a A\ b)

becomes

(z1 - 22)

.
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OBDD Representations (cont.)

The characteristic function of transitions:

(anbANd AN=Y) vV
(aN—-bANd AN=b) V
(aN—-bANa NV

becomes
(5171-5132-5133-52’4) -+
(xl-fg-l'g'le) +

(21 - %o - x3 - 14)
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OBDD Representations (cont.)

O\l

Initial states: x1 - 29
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OBDD Representations (cont.)

Transitions:

0
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Summary

OBDDs are representations of Boolean functions with
canonical forms, and
reasonable size.

Transition systems can be encoded in Boolean
functions and thus representable in OBDDs.

Symbolic model checking becomes possible with
OBDDs.

Agaiwan ¢
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Constant Functions

Lemma 3: The reduced function graph G denoting the
constant function 0/1 must consist of a single terminal
vertex with value 0/1.

,
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Constant Functions (cont.)

Let G be a reduced graph denoting the constant
function 0.

G cannot contain terminal vertices having value 1.

Suppose G contains at least one nonterminal vertices.

There must be a nonterminal vertex v where both
low(v) and high(v) are terminal vertices. Thus we
have value(low(v)) = value(high(v)).

Either (1) low(v) and high(v) are distinct, in which
case sub(Gy, low(v)) ~ sub(Gy, high(v)) or (2) they are
Identical, in which case low(v) = high(v).

In either case, Gy would not be a reduced function
graph.

~© 5o, G consists of a single terminal vertex with value 0.

Wl
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Recall: Canonical Form

Theorem: For any Boolean function f, there is a unique
(up to isomorphism) reduced function graph denoting f

and any other function graph denoting f contains more
vertices.

e,
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Proof of Canonical Form

The proof proceeds by induction on the size of I
Case 1: |I;| =0
The proof comes directly from Lemma 3.
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Proof of Canonical Form (cont.)

Suppose that the theorem holds for any function ¢
having |/,| < k.

Consider an arbitrary function f such that |I¢| = &,
where k > 0.

_et i be the minimum value in I,.
Define fo and f; as f

I+,| < kand |Iy,| < k and hence f; and f; are
represented by unique reduced function graphs G4, and
G, respectively.

+—0 and f|,.—1 respectively.
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Proof of Canonical Form (cont.)

Let Gy and G, be reduced function graphs for f.

Let v € Vi, and o’ € Vi, be nonterminal vertices such
that index(v) = index(v") = i.
sub(Gy,v) and sub(G';,v") both denote f.

sub(Gy,low(v)) and sub(G';, low(v")) both denote f, and
hence sub(G,low(v)) ~q, sub(G's, low(v')) for some
mapping oo.

Similarly, sub(Gy, high(v)) and sub(G",, high(v')) both
denote f; and hence

sub(Gy, high(v)) ~o, sub(G's, high(v')) for some mapping

1.

.ﬂf
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Proof of Canonical Form (cont.)

We define a mapping ¢ as

v, U=,

U(U) — (To(u), U < ‘/ZSUb(Gf,lO'lU('U))
o1(w), U € Viun(Gy high(v))

Claim 1: o i1s well-defined.
This comes from Claim 2 and Claim 3.

il
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Proof of Canonical Form (cont.)

Claim 2: There is no conflict in o.
If u € Viupa ;s ioww)) @Nd v € Viupa, high(v)), then
sub(G', o9(u)) ~ sub(G'y, o1(u)).
Since G, contains no isomorphic subgraphs, this can

only hold if o¢(u) = o1(u), and hence there is no
conflict in the definition of .

Claim 3: ¢ must be one-to-one.

If there are distinct vertices «; and us In Gy having
o(ur) = o(ug), then sub(G s, u1) ~ sub(G¢,uz) and
hence G Is not reduced.

.ﬂf
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Proof of Canonical Form (cont.)

Claim 4: sub(G,v) ~¢ sub(G,v'"), r(Gy) = v, and
r(Gh) =
We have shown ¢ Is a well-defined mapping.

Suppose there is some vertex u With index(u) = j < i
such that there is no other vertex w having

J < index(w) < 1.

f does not depend on z; and hence sub(G, low(u))
and sub(G, high(u)) both define f.

The above implies low(u) = high(u) = v, 1.e., G IS hot
reduced.

Hence r(G) = v.
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Proof of Canonical Form (cont.)

Claim 5: Of all the graphs denoting a particular function,
only the reduced graph has a minimum number of
vertices.
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