Binary Decision Diagrams (Based on [Clarke *et al.* 1999] and [Bryant 1986])

Yih-Kuen Tsay
(original created by Ming-Hsien Tsai)

Department of Information Management
National Taiwan University

Boolean Functions

- Boolean functions are widely used in
 - digital logic design,
 - testing,
 - artificial intelligence, and
 - model checking.
- Boolean operators
 - \clubsuit And: $x \cdot y \ (x \wedge y)$
 - \bullet Or: x + y $(x \lor y)$
 - \bullet Not: \bar{x} $(\neg x)$
 - ₱ If and only if: ←→
- Example: $f(x_1, x_2, x_3, x_4) = (x_1 \leftrightarrow x_2) \cdot (x_3 \leftrightarrow x_4)$

Representations of Boolean Functions

- A variety of methods have been developed for representing and manipulating Boolean functions such as:
 - Karnaugh map
 - Sum-of-products form
 - Truth table
 - Binary decision tree
- igoplus But these representations are quite impractical, because every function of n arguments has a representation of size 2^n or more.

Karnaugh Map

A Karnaugh table for $f(x_1, x_2, x_3, x_4) = (x_1 \leftrightarrow x_2) \cdot (x_3 \leftrightarrow x_4)$.

x_3x_4 x_1x_2	00	01	11	10
00	1	0	1	0
01	0	0	0	0
11	1	0	1	0
10	0	0	0	0

Truth Table

A truth table for $f(x_1, x_2, x_3, x_4) = (x_1 \leftrightarrow x_2) \cdot (x_3 \leftrightarrow x_4)$.

x_1	x_2	x_3	x_4	f	x_1	x_2	x_3	x_4	f
0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	1	0	0	1	0
0	0	1	0	0	1	0	1	0	0
0	0	1	1	1	1	0	1	1	0
0	1	0	0	0	1	1	0	0	1
0	1	0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	1	0	0
0	1	1	1	0	1	1	1	1	1

Binary Decision Tree

A binary decision tree for

$$f(x_1, x_2, x_3, x_4) = (x_1 \leftrightarrow x_2) \cdot (x_3 \leftrightarrow x_4).$$

Representations of Boolean Functions (cont.)

- More practical approaches utilize representations that, at least for many functions, are not of exponential size.
 - reduced sum of products
 - factored into unate functions
- But these representations still suffer from several drawbacks:
 - Certain common functions require representations of exponential size.
 - Performing a simple operation could yield a function with an exponential representation.
 - None of these representations are canonical forms.

Binary Decision Diagrams

- A binary decision diagram (BDD) represents a Boolean function as a rooted, directed acyclic graph (function graph).
- \bullet We use r(G) to denote the root of a function graph G.
- The vertex set V of a function graph G contains two types of vertices.
 - A nonterminal vertex v has
 - an argument index $index(v) \in \{1, ..., n\}$ and
 - two children $low(v), high(v) \in V$.
 - \clubsuit A terminal vertex v has a value $value(v) \in \{0,1\}$

Ordered Binary Decision Diagrams

- An ordered binary decision diagram (ODBB) is defined by imposing a total ordering over the nonterminal vertices.
 - * For any nonterminal vertex v,
 - if low(v) is nonterminal, then we must have index(v) < index(low(v));
 - if high(v) is nonterminal, then we must have index(v) < index(high(v)).
- Further minimality conditions will be introduced later.
- OBDDs are representations of Boolean functions with canonical forms and reasonable size.
- The size of the graph is highly sensitive to arguments ordering.

Ordering

Two OBDDs for $f(x_1, x_2, x_3, x_4) = (x_1 \leftrightarrow x_2) \cdot (x_3 \leftrightarrow x_4)$ with different orderings.

Notations

- igoplus All functions have the same n arguments: x_1,\cdots,x_n .
- \bullet A restriction of f is denoted $f|_{x_i=b}$ where b is a constant.

$$f|_{x_i=b}(x_1,\ldots,x_n)=f(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n)$$

 \bullet A composition of f and g is denoted $f|_{x_i=g}$ where g is a Boolean function.

$$f|_{x_i=g}(x_1,\ldots,x_n)=f(x_1,\ldots,x_{i-1},g(x_1,\ldots,x_n),x_{i+1},\ldots,x_n)$$

Notations (cont.)

The Shannon expansion of a function around variable x_i is given by:

$$f = x_i \cdot f|_{x_i=1} + \bar{x}_i \cdot f|_{x_i=0}$$

 \bullet The dependency set of a function f is denoted I_f .

$$I_f = \{i \mid f | x_{i=0} \neq f | x_{i=1} \}$$

 \bullet The satisfying set of a function f is denoted S_f .

$$S_f = \{(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = 1\}$$

Correspondence

- A function graph (OBDD) G having root vertex v denotes a function f_v defined recursively as follows:
 - \clubsuit If v is a terminal vertex:
 - If value(v) = 1, then $f_v = 1$.
 - If value(v) = 0, then $f_v = 0$.
 - # If v is a nonterminal vertex with index(v) = i, then f_v is the function

$$f_v(x_1,\ldots,x_n)=\bar{x}_i\cdot f_{low(v)}(x_1,\ldots,x_n)+x_i\cdot f_{high(v)}(x_1,\ldots,x_n).$$

Correspondence (cont.)

- A path in the graph starting from the root is defined by a set of argument values.
- The value of the function for these arguments equals the value of the terminal vertex at the end of the path.
- Every vertex in the graph is contained in at least one path.

Correspondence (cont.)

$$f_{v_1} = (\bar{x}_1 \cdot \bar{x}_2 + x_1 \cdot x_2) \cdot (\bar{x}_3 \cdot \bar{x}_4 + x_3 \cdot x_4)$$

Subgraph

For any vertex v in a function graph G, the subgraph rooted at v, denoted by sub(G,v) is defined as the graph consisting of v and all its descendants.

Subgraph

For any vertex v in a function graph G, the subgraph rooted at v, denoted by sub(G,v) is defined as the graph consisting of v and all its descendants.

Isomorphism

- Function graphs G and G' are isomorphic, denoted by $G \sim G'$, if there exists a one-to-one function σ from vertices of G onto the vertices of G' such that for any vertex v if $\sigma(v) = v'$, then either
 - # both v and v' are terminal vertices with value(v) = value(v'), or
 - * both v and v' are nonterminal vertices with index(v) = index(v'), $\sigma(low(v)) = low(v')$, and $\sigma(high(v)) = high(v')$

Isomorphism (cont.)

Is this an isomorphic mapping? (parts of it are)

Isomorphism (cont.)

- \bullet The isomorphic mapping σ is quite constrained:
 - prices r(G) must map to the r(G'),
 - # low(r(G)) must map to low(r(G')),
 - and so on all the way down to the terminal vertices.
- Lemma 1: If G is isomorphic to G' by mapping σ , denoted by $G \sim_{\sigma} G'$, then for any vertex v in G, $sub(G, v) \sim sub(G', \sigma(v))$.

Reduced Function Graph

- A function graph G is reduced if
 - \red it contains no vertex v with low(v) = high(v),
 - * nor does it contain distinct vertices v and v' such that the subgraphs rooted by v and v' are isomorphic.
- A reduced function graph is now commonly called (Reduced) OBDD.
- Lemma 2: For every vertex v in a reduced function graph G, sub(G, v) is itself a reduced function graph.

Reduced Function Graph (cont.)

Canonical Form

Theorem: For any Boolean function f, there is a unique (up to isomorphism) reduced function graph denoting f and any other function graph denoting f contains more vertices.

Basic Operations

Procedure	Result	Time Complexity
Reduce	${\cal G}$ reduced to canonical form	$O(G \cdot \log G)$
Apply	$f_1\langle op\rangle f_2$	$O(G_1 \cdot G_2)$
Restrict	$f _{x_i=b}$	$O(G \cdot \log G)$
Compose	$f_1 _{x_i=f_2}$	$O(G_1 ^2 \cdot G_2)$
Satisfy-one	some element of S_f	O(n)
Satisfy-all	S_f	$O(n \cdot S_f)$
Satisfy-count	$ S_f $	O(G)

Reduction

- The reduction algorithm transforms an arbitrary function graph into a reduced graph denoting the same function.
- The algorithm works from the terminal vertices up to the root:
 - ** Remove duplicate terminals (terminal vertices v and u such that value(v) = value(u)).
 - ** Remove duplicate nonterminals (nonterminal vertices v and u such that index(v) = index(u), id(low(v)) = id(low(u)), and id(high(v)) = id(high(u))).
 - ** Remove duplicate tests (a nonterminal vertex v such that low(v) = high(v)).

Note: not strictly bottom to top (for better layouts).

Note: not strictly bottom to top (for better layouts).

Note: not strictly bottom to top (for better layouts).

Apply

The procedure *Apply* takes graphs representing functions f_1 and f_2 , a binary operator $\langle op \rangle$ and produces a reduced graph representing the function $f_1 \langle op \rangle f_2$ defined as:

$$[f_1\langle op\rangle f_2](x_1,\ldots,x_n)=f_1(x_1,\ldots,x_n)\langle op\rangle f_2(x_1,\ldots,x_n).$$

Derive a recursive expansion from the Shannon expansion:

$$f_1 \langle op \rangle f_2 = \bar{x}_i \cdot (f_1|_{x_i=0} \langle op \rangle f_2|_{x_i=0}) + x_i \cdot (f_1|_{x_i=1} \langle op \rangle f_2|_{x_i=1})$$

Apply (cont.)

```
function Apply(v1, v2: vertex \langle op \rangle): operator): vertex \{var\ T: array[1..|G_1|, 1..|G_2|] \text{ of vertex;} \} begin

Initialize all elements of T to null;

u := Apply\text{-step}(v1, v2);

return(Reduce(u));
end;
```


Apply (cont.)

```
function Apply-step(v1, v2: vertex): vertex;
begin
     u := T[v1.id, v2.id];
     if u \neq null then return(u); {have already evaluated}
     u:= new vertex record; u.mark := false;
     T[v1.id, v2.id] := u; {add vertex to table}
     u.value := v1.value \langle op \rangle v2.value;
     if u.value \neq X
          then u.index := n + 1; u.low := null; u.high := null;
     else {create nonterminal and evaluate further down}
          u.index := Min(v1.index, v2.index);
          if v1.index = u.index
                then begin vlow1 := v1.low; vhigh1 := v1.high end
                else begin vlow1 := v1; vhigh1 := v1 end;
          if v2.index = u.index
                then begin vlow2 := v2.low; vhigh2 := v2.high end
                else begin vlow2 := v2; vhigh2 := v2 end;
          u.low := Apply-step(ulow1, vlow2);
          u.high := Apply-step(vhigh1, vhigh2):
     return(u);
```


end:

Automatic Verification 2009: Binary Decision Diagrams - 28/54

Complementation

To complement an OBDD, simply complement its terminal vertices.

Restriction

- The procedure Restrict transforms the graph representing a function f into one representing the function $f|_{x_i=b}$.
- Steps of Restrict:
 - \clubsuit Look for a vertex v with index(v) = i.
 - * Change it to point either to low(v) (for b=0) or to high(v) (for b=1).
 - * After changing every vertex v with index(v) = i, run the reduction procedure.

Composition

- The procedure Compose constructs the graph for the function obtained by composing two functions.
- Composition can be expressed in terms of restriction and Boolean operations according to the following expansion:

$$f_1|_{x_i=f_2} = f_2 \cdot f_1|_{x_i=1} + (\neg f_2) \cdot f_1|_{x_i=0}$$

It is sufficient to use Restrict and Apply to implement Compose.

Satisfy-one

The Satisfy-one procedure utilizes a classic depth-first search with backtracking.

```
function Satisfy-one(v: vertex; x: array[1..n] of integer): boolean
begin
    if value(v) = 0 then return false;
    if value(v) = 1 then return true;
    x[i] := 0;
    if Satisfy-one(low(v), x) then return true;
    x[i] := 1;
    return Satisfy-one(high(v), x);
end;
```


Satisfy-all

```
procedure Satisfy-all(i: integer; v: vertex; x: array[1..n] of integer):
begin
      if value(v) = 0 then return;
      if i = n + 1 and value(v) = 1
      then begin
                  Print element x[1],...,x[n];
                  return;
      end;
      if index(v) > i
      then begin
                 x[i] := 0; Satisfy-all(i + 1, v, x);
                 x[i] := 1; Satisfy-all(i + 1, v, x);
      end
      else begin
                 x[i] := 0; Satisfy-all(i + 1, low(v), x);
                 x[i] := 1; Satisfy-all(i + 1, high(v), x);
      end
end;
```


Satisfy-count

- The procedure Satisfy-count computes a value α_v to each vertex v in the graph according to the following recursive formula:
 - \clubsuit If v is a terminal vertex: $\alpha_v = value(v)$.
 - If v is a nonterminal vertex:

$$\alpha_v = \alpha_{low(v)} \cdot 2^{index(low(v)) - index(v)} + \alpha_{high(v)} \cdot 2^{index(high(v)) - index(v)}$$

Once we have computed these values for a graph with root v, we compute the size of the satisfying set as

$$|S_f| = \alpha_v \cdot 2^{index(v) - 1}$$

Kripke Structures

- Given a set of atomic propositions AP, a Kripke structure M is a four tuple (S, S_0, R, L) :
 - \clubsuit S is a finite set of states.
 - $S_0 \subseteq S$ is the set of initial states.
 - $R \subseteq S \times S$ is a transition relation that must be total.
 - * $L: S \rightarrow 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state.

First Order Representations

The initial states can be represented by the formula:

$$(a \wedge b)$$

The transitions can be represented by the formula:

$$(a \wedge b \wedge a' \wedge \neg b') \vee (a \wedge \neg b \wedge a' \wedge \neg b') \vee (a \wedge \neg b \wedge a' \wedge b') \vee (a \wedge \neg b \wedge a' \wedge b')$$

OBDD Representations

- Use x_1, x_2, x_3, x_4 to represent a, b, a', b' respectively.
- The characteristic function of initial states:

$$(a \wedge b)$$

becomes

$$(x_1 \cdot x_2)$$

OBDD Representations (cont.)

The characteristic function of transitions:

$$(a \wedge b \wedge a' \wedge \neg b') \vee (a \wedge \neg b \wedge a' \wedge \neg b') \vee (a \wedge \neg b \wedge a' \wedge b')$$

$$(a \wedge \neg b \wedge a' \wedge b')$$

becomes

$$(x_1 \cdot x_2 \cdot x_3 \cdot \bar{x}_4) + (x_1 \cdot \bar{x}_2 \cdot x_3 \cdot \bar{x}_4) + (x_1 \cdot \bar{x}_2 \cdot x_3 \cdot x_4)$$

OBDD Representations (cont.)

Initial states: $x_1 \cdot x_2$

OBDD Representations (cont.)

Transitions:

$$(x_1 \cdot x_2 \cdot x_3 \cdot \bar{x}_4) + (x_1 \cdot \bar{x}_2 \cdot x_3 \cdot \bar{x}_4) + (x_1 \cdot \bar{x}_2 \cdot x_3 \cdot x_4)$$

Summary

- OBDDs are representations of Boolean functions with
 - canonical forms, and
 - reasonable size.
- Transition systems can be encoded in Boolean functions and thus representable in OBDDs.
- Symbolic model checking becomes possible with OBDDs.

Constant Functions

 \bullet Lemma 3: The reduced function graph G denoting the constant function 0/1 must consist of a single terminal vertex with value 0/1.

Constant Functions (cont.)

- Let G be a reduced graph denoting the constant function 0.
- G cannot contain terminal vertices having value 1.
- Suppose G contains at least one nonterminal vertices.
 - * There must be a nonterminal vertex v where both low(v) and high(v) are terminal vertices. Thus we have value(low(v)) = value(high(v)).
 - Either (1) low(v) and high(v) are distinct, in which case $sub(G_f, low(v)) \sim sub(G_f, high(v))$ or (2) they are identical, in which case low(v) = high(v).
 - * In either case, G_f would not be a reduced function graph.
- \odot So, G consists of a single terminal vertex with value 0.

Recall: Canonical Form

Theorem: For any Boolean function f, there is a unique (up to isomorphism) reduced function graph denoting f and any other function graph denoting f contains more vertices.

Proof of Canonical Form

- igoplus The proof proceeds by induction on the size of I_f
- Case 1: $|I_f| = 0$
 - The proof comes directly from Lemma 3.

- Suppose that the theorem holds for any function g having $|I_g| < k$.
- Consider an arbitrary function f such that $|I_f| = k$, where k > 0.
- \bullet Let i be the minimum value in I_f ,.
- Define f_0 and f_1 as $f|_{x_i=0}$ and $f|_{x_i=1}$ respectively.
- •• $|I_{f_0}| < k$ and $|I_{f_1}| < k$ and hence f_0 and f_1 are represented by unique reduced function graphs G_{f_0} and G_{f_1} respectively.

- Let G_f and G'_f be reduced function graphs for f.
- Let $v \in V_{G_f}$ and $v' \in V_{G'_f}$ be nonterminal vertices such that index(v) = index(v') = i.
- $sub(G_f, v)$ and $sub(G'_f, v')$ both denote f.
- $sub(G_f, low(v))$ and $sub(G'_f, low(v'))$ both denote f_0 and hence $sub(G_f, low(v)) \sim_{\sigma_0} sub(G'_f, low(v'))$ for some mapping σ_0 .
- Similarly, $sub(G_f, high(v))$ and $sub(G'_f, high(v'))$ both denote f_1 and hence $sub(G_f, high(v)) \sim_{\sigma_1} sub(G'_f, high(v'))$ for some mapping σ_1 .

 \bullet We define a mapping σ as

$$\sigma(u) = \begin{cases} v', & u = v, \\ \sigma(u) = \sigma_0(u), & u \in V_{sub(G_f, low(v))} \\ \sigma_1(u), & u \in V_{sub(G_f, high(v))} \end{cases}$$

- \bullet Claim 1: σ is well-defined.
 - This comes from Claim 2 and Claim 3.

- Claim 2: There is no conflict in σ .
 - * If $u \in V_{sub(G_f,low(v))}$ and $u \in V_{sub(G_f,high(v))}$, then $sub(G'_f,\sigma_0(u)) \sim sub(G'_f,\sigma_1(u))$.
 - * Since G'_f contains no isomorphic subgraphs, this can only hold if $\sigma_0(u) = \sigma_1(u)$, and hence there is no conflict in the definition of σ .
- \bullet Claim 3: σ must be one-to-one.
 - * If there are distinct vertices u_1 and u_2 in G_f having $\sigma(u_1) = \sigma(u_2)$, then $sub(G_f, u_1) \sim sub(G_f, u_2)$ and hence G is not reduced.

- ightharpoonup Claim 4: $sub(G_f,v)\sim_{\sigma} sub(G_f',v')$, $r(G_f)=v$, and $r(G_f')=v'$.
 - * We have shown σ is a well-defined mapping.
 - ** Suppose there is some vertex u with index(u) = j < i such that there is no other vertex w having j < index(w) < i.
 - # f does not depend on x_j and hence sub(G, low(u)) and sub(G, high(u)) both define f.
 - * The above implies low(u) = high(u) = v, i.e., G is not reduced.
 - # Hence r(G) = v.

Claim 5: Of all the graphs denoting a particular function, only the reduced graph has a minimum number of vertices.

