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Introduction

In symbolic model checking, BDDs had traditionally
been used for boolean encodings.

Drawbacks of BDDs:
For large systems (with over a few hundred boolean
variables), they can be prohibitively large.
Selecting the right variable ordering is often
time-consuming or needs manual intervention.

Propositional decision procedures, or SAT solvers, also
operate on boolean expressions, but do not use
canonical forms.

SAT solvers can handle thousands of variables or even
more.
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Introduction (cont.)

Basic ideas of bounded model checking (BMC):
Consider counterexamples of a particular length k.
Generate a propositional formula that is satisfiable iff
such a counterexample exists.
The propositional formula can be tested for
satisfiability by a SAT solver.

Advantages of BMC:
It finds counterexamples very fast.
It finds counterexamples of minimal length.
It uses much less space than BDD-based
approaches.
It does not need a manually selected variable
ordering or time-consuming dynamic reordering.
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An Example

Consider a three-bit shift register.

Let M = 〈X, I, T 〉 be its state machine:

X , {x[0], x[1], x[2]} contains the three bits.

I(X) , true, posing no restriction on the initial states.

T (X,X ′) , (x′[0] ⇔ x[1]) ∧ (x′[1] ⇔ x[2]) ∧ x′[2].

Suppose we want to check if eventually all three bits are
set to 0, i.e., if LTL formula p , 3(¬x[0] ∧ ¬x[1] ∧ ¬x[2])
holds on all paths in M .

To do so, we search for a path in M such that
¬p , 2(x[0] ∨ x[1] ∨ x[2]) on the path.

If we succeed, then p does not hold on all paths;
otherwise, it does.
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An Example (cont.)

We look for (looping) paths with at most k + 1 states, for
instance k = 2.

Let Xi denote the set {xi[0], xi[1], xi[2]}.

The first 3 states of such a path can be characterized by
the following boolean formula:

fM , I(X0) ∧ T (X0, X1) ∧ T (X1, X2)

A witness for ¬p must contain a loop from X2 back to
X0, X1, or X2:

Li , T (X2, Xi)

The path must fulfill the constraints imposed by ¬p:

Si , xi[0] ∨ xi[1] ∨ xi[2]
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An Example (cont.)

The following formula is satisfiable iff there is a
counterexample of length 2 for p.

fM ∧
2

∨

i=0

Li ∧
2

∧

i=0

Si

Here is a satisfying assignment:

x0[0] = x0[1] = x0[2]

= x1[0] = x1[1] = x1[2]

= x2[0] = x2[1] = x2[2]

= 1.
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Part I:

Bounded Model Checking for LTL
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Kripke Structures

A Kripke structure is a tuple M = (S, I, T, L) with
a finite set of states S,
the set of initial states I ⊆ S,
a transition relation between states T ⊆ S × S, and
the labeling of the states L : S → P(A) with atomic
propositions A.

Every state of M is required to have a successor.

We write s → t for (s, t) ∈ T .

For an infinite sequence π of states s0, s1, . . ., we define
π(i) = si

πi = si, si+1, . . ..

An infinite sequence π is a path if π(i) → π(i + 1) for all
i ∈ N.
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Linear Temporal Logic (LTL)

Let M be a Kripke structure, π be a path in M , and f be
an LTL formula (in negation normal form).

π |= f (f is valid along π) is defined as follows:

π |= p iff p ∈ L(π(0))

π |= ¬p iff p 6∈ L(π(0))

π |= f ∧ g iff π |= f and π |= g

π |= f ∨ g iff π |= f or π |= g

π |= 2f iff ∀j ∈ [0,∞).πj |= f

π |= 3f iff ∃j ∈ [0,∞).πj |= f

π |= ©f iff π1 |= f

π |= f U g iff ∃j ∈ [0,∞).(πj |= g and ∀k ∈ [0, j).πk |= f)

π |= f R g iff ∀j ∈ [0,∞).(πj |= g or ∃k ∈ [0, j).πk |= f)
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Model Checking

An LTL formula f is valid in a Kripke structure M ,
denoted as M |= A f , iff π |= f for all paths π in M with
π(0) ∈ I.

An LTL formula f is satisfiable in a Kripke structure M ,
denoted as M |= E f , iff there is a path π in M such that
π |= f and π(0) ∈ I.

Given a Kripke structure M and an LTL formula f , the
model checking problem is to determine whether
M |= A f , which is equivalent to determine whether
M 6|= E ¬f .

In the following, the problem is restricted to find a
witness for formulae of the form E f .
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Bounded Model Checking

Consider only a finite prefix of a path that may be a
witness of E f .

We restrict the length of the prefix to a certain bound k.

Generate a propositional formula that is satisfiable iff
there is a witness within the bound k.

The propositional formula can be solved by a SAT
solver.

If there is no witness within bound k, we increase the
bound and look for longer and longer possible
witnesses.
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Infinite Paths from the Prefix

Though the prefix of a path is finite, it still might
represent an infinite path if there is a back loop from the
last state of the prefix to any of the previous states.

If there is no such back loop, then the prefix does not
say anything about the infinite behavior of the path.

Only a prefix with a back loop can represent a witness
for 2f .
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Loops

A path π is a (k, l)-loop for l ≤ k if
π(k) → π(l) and
π = u · vω with

u = π(0), . . . , π(l − 1) and
v = π(l), . . . , π(k)

t - t - t - t - t

� �

?

sl = sk+1 si sk

A path π is a k-loop if there is an l ∈ N with l ≤ k for
which π is a (k, l)-loop.
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Bounded Semantics

In bounded semantics, we only consider a finite prefix
of a path which may or may not be a loop.

In particular, we only use the first k + 1 states of a path
to determine the validity of a formula along that path.

The bounded semantics π |=k f states that the LTL
formula f is valid along the path π with bound k.
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Bounded Semantics for a Loop

Let k ∈ N and π be a k-loop.

π |=k f iff π |= f .

This is so, because all information about π is contained
in the prefix of length k.
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Bounded Semantics without a Loop

Let k ∈ N and π be a path that is not a k-loop.

π |=k f iff (π, 0) |=k f where

(π, i) |=k p iff p ∈ L(π(i))

(π, i) |=k ¬p iff p 6∈ L(π(i))

(π, i) |=k f ∧ g iff (π, i) |=k f and (π, i) |=k g

(π, i) |=k f ∨ g iff (π, i) |=k f or (π, i) |=k g

(π, i) |=k 2f iff false

(π, i) |=k 3f iff ∃j ∈ [i, k].(π, j) |=k f

(π, i) |=k ©f iff i < k and (π, i + 1) |=k f

(π, i) |=k f U g iff ∃j ∈ [i, k].((π, j) |=k g and ∀n ∈ [i, j).(π, n) |=k f)

(π, i) |=k f R g iff ∃j ∈ [i, k].((π, j) |=k f and ∀n ∈ [i, j].(π, n) |=k g)

Note: (π, i) |=k f is written as π |=i
k f in the paper.

Automatic Verification 2009: Bounded Model Checking – 17/49



IM NTU

Bounded Semantics without a Loop (cont.)

Note that the bounded semantics without a loop imply
that the following two dualities no longer hold:

the duality of 2 and 3 (¬2f = 3¬f), and
the duality of U and R (¬(f U g) = (¬f) R (¬g)).
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Reduce to Bounded Model Checking

Lemma 1 Let h be an LTL formula and π a path, then
π |=k h ⇒ π |= h.

Lemma 2 Let f be an LTL formula and M a Kripke
structure. If M |= E f then there exists k ∈ N with
M |=k E f .

Theorem 3 Let f be an LTL formula and M a Kripke
structure. Then M |= E f iff there exists k ∈ N with
M |=k E f .
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Proof of Lemma 1

Let h be an LTL formula and π a path, then π |=k h ⇒ π |= h.

Case 1: π is a k-loop.
The conclusion follows by the definition.

Case 2: π is not a loop.
Prove by induction over the structure of f and i ≤ k

the stronger property π |=i
k h ⇒ πi |= h.
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Proof of Lemma 1 (cont.)

π |=i
k f R g

⇔ ∃j ∈ [i, k].(π |=j
k f and ∀n ∈ [i, j].π |=n

k g)

⇒ ∃j ∈ [i, k].(πj |= f and ∀n ∈ [i, j].πn |= g)

⇒ ∃j ∈ [i,∞].(πj |= f and ∀n ∈ [i, j].πn |= g)

⇒ ∃j′ ∈ [0,∞).(πi+j′ |= f and ∀n′ ∈ [0, j′].πi+n′

|= g)

(with j′ = j − i and n′ = n − i)

⇒ ∃j ∈ [0,∞).[(πi)j |= f and ∀n ∈ [0, j].(πi)n |= g]

⇒ ∀n ∈ [0,∞).[(πi)n |= g or ∃j ∈ [0, n).(πi)j |= f ]

(see next slide)

⇒ πi |= f R g
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Proof of Lemma 1 (cont.)

∃m[πm |= f and ∀l, l ≤ m.πl |= g] ⇒ ∀n[πn |= g or ∃j, j < n.πj |= f ]

Assume that m is the smallest number such that πm |= f

and πl |= g for all l with l ≤ m.

Case 1: n > m.
Based on the assumption, there exists j < n such
that πj |= f (choose j = m).

Case 2: n ≤ m.
Because πl |= g for all l ≤ m we have πn |= g for all
n ≤ m.
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Proof of Lemma 2

Let f be an LTL formula and M a Kripke structure. If
M |= E f then there exists k ∈ N with M |=k E f .

If f is satisfiable in M , then there exists a path in the
product structure of M and the tableau of f that starts
with an initial state and ends with a cycle in the strongly
connected component of fair states.

This path can be chosen to be a k-loop with k bounded
by |S| · 2|f | which is the size of the product structure.

If we project this path onto its first component, the
original Kripke structure, then we get a path π that is a
k-loop and in addition fulfills π |= f .

By definition of the bounded semantics this also implies
π |=k f .
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From BMC to SAT

Given a Kripke structure M , an LTL formula f , and a
bound k, we will construct a propositional formula
[[M,f ]]k.

The bounded model checking problem can be reduced
in polynomial time to propositional satisfiability.

The size of [[M,f ]]k is polynomial in the size of f if
common sub-formulae are shared.
It is quadratic in k and linear in the size of the
propositional formulae for T , I, and the p ∈ A.
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Unfolding the Transition Relation

For a Kripke structure M and k ∈ N,

[[M ]]k , I(s0) ∧
k−1
∧

i=0

T (si, si+1)
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Trans. of an LTL formula without a Loop

For an LTL formula f and k, i ∈ N, with i ≤ k,

[[p]]ik , p(si)

[[¬p]]ik , ¬p(si)

[[f ∧ g]]ik , [[f ]]ik ∧ [[g]]ik

[[f ∨ g]]ik , [[f ]]ik ∨ [[g]]ik

[[2f ]]ik , false

[[3f ]]ik ,
∨k

j=i [[f ]]jk

[[©f ]]ik , if i < k then [[f ]]i+1

k else false

[[f U g]]ik ,
∨k

j=i([[g]]jk ∧
∧j−1

n=i [[f ]]nk)

[[f R g]]ik ,
∨k

j=i([[f ]]jk ∧
∧j

n=i [[g]]nk)
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Trans. of an LTL formula for a Loop

For an LTL formula f and k, l, i ∈ N, with l, i ≤ k,

l[[p]]ik , p(si)

l[[¬p]]ik , ¬p(si)

l[[f ∧ g]]ik , l[[f ]]ik ∧ l[[g]]ik

l[[f ∨ g]]ik , l[[f ]]ik ∨ l[[g]]ik
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Trans. of an LTL formula for a Loop

l[[2f ]]ik ,
∧k

j=min(i,l) l[[f ]]jk

l[[3f ]]ik ,
∨k

j=min(i,l) l[[f ]]jk

l[[©f ]]ik , l[[f ]]
succ(i)
k

t - t - t - t - t

� �

?

sl = sk+1si sk

t - t - t - t - t

� �

?

sl = sk+1 si sk

Let k, l, i ∈ N, with l, i ≤ k.

succ(i) ,

{

i + 1 for i < k

l for i = k
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Trans. of an LTL formula for a Loop (cont.)

l[[f U g]]ik ,
∨k

j=i(l[[g]]jk ∧
∧j−1

n=i l[[f ]]nk)∨
∨i−1

j=l(l[[g]]jk ∧
∧k

n=i l[[f ]]nk ∧
∧j−1

n=l l[[f ]]nk)

l[[f R g]]ik ,
∧k

j=min(i,l) l[[g]]jk∨
∨k

j=i(l[[f ]]jk ∧
∧j

n=i l[[g]]nk)∨
∨i−1

j=l(l[[f ]]jk ∧
∧k

n=i l[[g]]nk ∧
∧j

n=l l[[g]]nk)

t - t - t - t - t

� �

?

sl = sk+1si sk

t - t - t - t - t

� �

?

sl = sk+1 si sk
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Loop Condition

The loop condition Lk is used to distinguish paths with
bound k which are loops or not loops.

For k, l ∈ N, let

lLk , T (sk, sl)

Lk ,

k
∨

l=0

lLk.

Automatic Verification 2009: Bounded Model Checking – 30/49



IM NTU

General Translation

Let f be an LTL formula, M a Kripke structure, and
k ∈ N.

[[M,f ]]k , [[M ]]k ∧ ((¬Lk ∧ [[f ]]0k) ∨ (
k

∨

l=0

(lLk ∧ l[[f ]]0k)))

Note: is the term ¬Lk redundant?

Theorem 4 [[M,f ]]k is satisfiable iff M |=k E f .

Corollary 5 M |= A ¬f iff [[M,f ]]k is unsatisfiable for all
k ∈ N.
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Bounds for LTL

LTL model checking is known to be PSPACE-complete.

A polynomial bound on k with respect to the size of M

and f for which M |=k E f ⇔ M |= E f is unlikely to be
found.

Theorem 6 Given an LTL formula f and a Kripke
structure M , let |M | be the number of states in M , then
M |= E f iff there exists k ≤ |M | × 2|f | with M |=k E f .

For the subset of LTL formulae that involves only
temporal operators 3 and 2, LTL model checking is
NP-complete.

For this subset of LTL formulae, there exists a bound on
k linear in the number of states and the size of the
formula.
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Bounds for LTL (cont.)

Definition 7 (Loop Diameter) A Kripke structure is
lasso shaped if every path p starting from an initial state
is of the form upv

ω
p , where up and vp are finite sequences

of length less or equal to u and v, respectively. The loop
diameter of M is defined as (u, v).

Theorem 8 Given an LTL formula f and a lasso-shaped
Kripke structure M , let the loop diameter of M be (u, v),
then M |= E f iff there exists k ≤ u + v with M |=k E f .
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Part II:

Bounded Model Checking for LTL
with Past

Note: (k, l)-loop here corresponds to (k − 1, l)-loop in Part I.
For easy cross-referencing with the original paper, we have
not attempted to unify the notion.
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Propositional Temporal Logic

The full propositional temporal logic (PTL) is LTL with
past operators.

(π, i) |= −©f iff i > 0 and (π, i − 1) |= f

(π, i) |= ∼©f iff i = 0 or (π, i − 1) |= f

(π, i) |= −3f iff ∃j, j ≤ i.(π, j) |= f

(π, i) |= −2f iff ∀j, j ≤ i.(π, j) |= f

(π, i) |= f S g iff ∃j, j ≤ i.((π, j) |= g and ∀k, j < k ≤ i.(π, k) |= f)

(π, i) |= f T g iff ∀j, j ≤ i.((π, j) |= g or ∃k, j < k ≤ i.(π, k) |= f)

Every PTL formula can be converted into the negation
normal form.
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Extend the Translation without Loops

Let k, i ∈ N with i ≤ k.

[[ −©f ]]ik ,

{

false i = 0

[[f ]]i−1
k i > 0

[[ ∼©f ]]ik ,

{

true i = 0

[[f ]]i−1
k i > 0

[[ −3f ]]ik ,
∨i

j=0 [[f ]]jk
[[ −2f ]]ik ,

∧i
j=0 [[f ]]jk

[[f S g]]ik ,
∨i

j=0([[g]]jk ∧
∧i

n=j+1 [[f ]]nk)

[[f T g]]ik ,
∧i

j=0([[g]]jk ∨
∨i

n=j+1 [[f ]]nk)

Automatic Verification 2009: Bounded Model Checking – 36/49



IM NTU

Extend the Translation with Loops

The extension is not straightforward.

For example, consider the path 01(2345)ω which can be
seen as a (6, 2)-loop.

In the future case, the encoding of a specification is
based on the idea that, for every time in the
encoding, exactly one successor time exists.
Past formulae do not enjoy the above property.

The predecessor of 2 may be 1 or 5.

x =

time

0 1 2 3 4 5 2 3 4 5 2 3 4 5 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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The Solution: Intuition

The formula 3(x = 2 ∧ −3(x = 3 ∧ −3(x = 4 ∧ ( −3(x = 5)))))
is true in all the occurrences of x = 2 after the fourth.

The key idea is that every formula has a finite
discriminating power for events in the past.

When evaluated sufficiently far from the origin of time, a
formula becomes unable to distinguish its past
sequence from infinitely many other past sequences
with a "similar" behavior.

The idea is then to collapse the undistinguishable
versions of the past together into the same equivalence
class.
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Past Temporal Horizon

The past temporal horizon (PTH) τπ(f) of a PTL formula
f with respect to a (k, l)-loop π (with period p = k − l) is
the smallest value n ∈ N such that

∀i, l ≤ i < k.((π, i + np) |= f iff (∀n′ > n.(π, i + n′p) |= f)).
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PTH of a PTL Formula

The PTH τ(f) of a PTL formula f is defined as
τ(f) , maxτ∈Π τπ(f) where Π is the set of all the paths
which are (k, l)-loops for some k > l ≥ 0.

Theorem 9 Let f and g be PTL formulae. Then, it holds
that:

τ(p) = 0, when p ∈ A and τ(f) = τ(¬f);
τ(◦f) ≤ τ(f), when ◦ ∈ {©,3,2};
τ(◦f) ≤ τ(f) + 1, when ◦ ∈ { −©, ∼©, −3, −2};
τ(f ◦ g) ≤ max(τ(f), τ(g)), when ◦ ∈ {∧,∨,U ,R};
τ(f ◦ g) ≤ max(τ(f), τ(g)) + 1, when ◦ ∈ {S, T };

The PTH of a PTL formula is bounded by its structure
regardless of the particular path π.
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Borders and Intervals

We call
LB (n) , l + np the n-th left border of π,

RB(n) , k + np the n-th right border of π, and

the interval M(n) , [0, RB(n)) the n-th main domain of
a (k, l)-loop.

We call
LB (f) , LB (τ(f)) the left border of f ,

RB(f) , RB(τ(f)) the right border of f , and

M(f) , M(τ(f)) the main domain of f .
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Borders and Intervals (cont.)

x =

time

0 1 2 3 4 5 2 3 4 5 2 3 4 5 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LB (0) = 2

RB(0) = 6

LB (1) = 6

RB(1) = 10
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Projection of Points

Let i ∈ N.

The projection of the point i in the n-th main domain of a
(k, l)-loop is ρn(i), defined as

ρn(i) ,

{

i i < RB(n)

ρn(i − p) otherwise

The projection of the point i onto the main domain of f

is defined as ρf (i) , ρτ(f)(i).
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Projection of Intervals

The projection of the interval [a, b) onto the main domain
of f is defined as ρf ([a, b)) , ρτ(f)([a, b)).

Lemma 10 For an open interval [a, b),

ρn([a, b)) =







































∅ if a = b, else

[a, b) if b < RB(n), else

[min(a, LB(n)) , RB(n)) if b − a ≥ p, else

[ρn(a), ρn(b)) if ρn(a) < ρn(b), else

[ρn(a), RB(n)) ∪ [LB(n), ρn(b))
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Extended Projection of Intervals

An extended intervals is of the form [a, b) where b is
possibly less than a (or even it is equal to ∞).

Let [a, b) be an extended interval.

The extended projection of [a, b) onto the n-th main
domain of a (k, l)-loop is defined as follows

ρ∗n([a, b)) ,











ρ∗n([a,max(a, RB(n)) + p)) b = ∞

ρ∗n([a, b + p)) b < a

ρ∗n([a, b)) otherwise

As before, ρ∗f ([a, b)) , ρ∗
τ(f)([a, b)).
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Equivalent Counterparts

Theorem 11 For
any PTL formula f ,
any (k, l)-loop π, and
any extended interval [a, b),

a point i ∈ [a, b) such that (π, i) |= f exists iff a point
i′ ∈ ρ∗f ([a, b)) exists such that (π, i′) |= f .
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Extend the Translation with Loops

The translation of a PTL formula on a (k, l)-loop π at
time point i (with k, l, i ∈ N and 0 ≤ l < k) is a
propositional formula inductively defined as follows.

l[[p]]ik , pρ0(i)

l[[6= p]]ik , 6= pρ0(i)

l[[f ∧ g]]ik , l[[f ]]
ρf (i)
k ∧ l[[g]]

ρg(i)
k

l[[f ∨ g]]ik , l[[f ]]
ρf (i)
k ∨ l[[g]]

ρg(i)
k
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Extend the Translation with Loops (cont.)

l[[3f ]]ik ,
∨

j∈ρ∗

f ([i,∞)) l[[f ]]jk

l[[2f ]]ik ,
∧

j∈ρ∗

f ([i,∞)) l[[f ]]jk

l[[f U g]]ik ,
∨

j∈ρ∗
g([i,∞))(l[[g]]jk ∧

∧

n∈ρ∗

f ([i,j)) l[[f ]]nk)

l[[f R g]]ik ,
∧

j∈ρ∗
g([i,∞))(l[[g]]jk ∨

∨

n∈ρ∗

f ([i,j)) l[[f ]]nk)

l[[ −©f ]]ik , i > 0 ∧ l[[f ]]
ρf (i−1)
k

l[[ ∼©f ]]ik , i = 0 ∨ l[[f ]]
ρf (i−1)
k

l[[ −3f ]]ik ,
∨

j∈ρ∗

f ([0,i]) l[[f ]]jk

l[[ −2f ]]ik ,
∧

j∈ρ∗

f ([0,i]) l[[f ]]jk

l[[f S g]]ik ,
∨

j∈ρ∗
g([0,i])(l[[g]]jk ∧

∧

n∈ρ∗

f ((j,i]) l[[f ]]nk)

l[[f T g]]ik ,
∧

j∈ρ∗
g([0,i])(l[[g]]jk ∨

∨

n∈ρ∗

f ((j,i]) l[[f ]]nk)
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Correctness of the Translation

Theorem 12 For any PTL formula f , a (k, l)-loop path π

in M such that π |= f exists iff [[M ]]k ∧ lLk ∧ l[[f ]]0k is
satisfiable.
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