Systems Modeling
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Systems Modeling — 1/23

Introduction

First two steps in correctness verification:
1. Specify the desired

2. Construct a (with the desired
properties in mind)
Capture the necessary properties and leave out
the irrelevant
Example: gates and boolean values vs. voltage
levels

Example: exchange of messages vs. contents of
messages

Description of a formal model

IM\@%NTU

gy
et

Automatic Verification 2009: Systems Modeling — 2/23

Concurrent Reactive Systems

Interact frequently with the environment and

(not just input-output) behaviors are most
Important

Modeling elements:
. a snapshot of the system at a particular
Instance

» how the system changes its state as a result of

some action
» described by a pair of the state before and the

state after the action
. an infinite sequence of states resulted
#w, from transitions

Wzl
IM N’ NTU Automatic Verification 2009: Systems Modeling — 3/23

Kripke Structures

Kripke structures are one of the most popular types of
formal models for concurrent systems.

Let AP be a set of (representing
things you want to observe).
A M over AP Is atuple (S, Sy, R, L):

S 1S a finite set of states,
So C S Is the set of initial states,
R C S x SIs atotal transition relation, and

L : S — 247 is a function labeling each state with a
subset of propositions (which are true In that state).

A or of M from a state s Is an infinite
sequence of states o = s, s1, s2, - - - such that s = s and
(8i,8i11) € R, forall i > 0.

Wl
IM ﬁ Z NTU Automatic Verification 2009: Systems Modeling — 4/23

M

First-Order Representations

First-order formulae serve as a unifying formalism for
describing concurrent systems.

Elements of first-order logic:

Logical connectives (A, Vv, -, —, etc.) and quantifiers
(Vv and 3)

Predicate and function symbols (with predefined
meanings)

Variables range over a finite domain D.

A for a set V of variables is a map from the
variables in V' to the values in the domain D.

A of a system is a valuation for the system
variables.
s A can be described by a

W El
IM mf NTU Automatic Verification 2009: Systems Modeling — 5/23

First-Order Representations (cont.)

The set of initial states of a system will typically be
described by Sy(V).

To describe transitions by logic formulae, we create a
second copy of variables V.

Each variables v In V' has a corresponding primed
version v/ in V.

The variables in |/ are variables, while the
variables in V' are variables.

A valuation for V and V'’ can be seen as designating a
pair of states or a transition.

A or R can then be
described by a R(V, V.

Agaiwan ¢
Fs =%

WNEl
IM mf NTU Automatic Verification 2009: Systems Modeling — 6/23

From Formulae to Kripke Structures

Given Sy(V) and R(V, V') that represent a concurrent
system, a Kripke structure M = (S, Sy, R, L) may be
derived:

S 1s the set of all valuations for V.

The set of initial states 5 Is the set of all valuations
for V' satisfying Sy.

R(s,s’) holds if R evaluates to true when each v € V
IS assigned the value s(v) and each v € V' is
assigned the value s'(v).

L i1s defined such that L(s) Is the set of atomic
propositions true In s.

To make R total, for every state s that does not have a
successor, (s, s) Is added into R.

|ME‘%§~@W$’NTU

gy
et

Automatic Verification 2009: Systems Modeling — 7/23

Varieties of Concurrent Systems

A concurrent system consists of a set of components
that execute together.

Modes of execution:
Asynchronous
Synchronous

Modes of communication:
Shared variables
Message-passing
Handshaking (or joint events)

)

7y
IM N NTU Automatic Verification 2009: Systems Modeling — 8/23

A Synchronous Modulo 8 Counter

— £{>~—

Source: redrawn from [Clarke et al. 1999, Fig 2.1]

Wy
IM 5% NTU Automatic Verification 2009: Systems Modeling — 9/23

A Synchronous Modulo 8 Counter (cont.)

1 0
—> v2=0 DJ —> V2 DJ 1

— v1=1 —> vl 0

Wzl
IM N NTU Automatic Verification 2009: Systems Modeling — 10/23

First-Order Representations (Circuit)

pE

Let V' be {wvg,v1,v2}.
The transitions of the modulo 8 counter are
vy = T
V] = vg P vy
vy = (vg A vy) D U2
In terms of formulae, they are
Ro(V, V') & vy
RV, V') & v esvg @ vy
Ra(V, V') 2 vh<(vg A v1) B Vo
the formulae, we obtain

RV, V') 2 Ro(V, V') ARL(V, V') A Ra(V, V')

2 NTU Automatic Verification 2009: Systems Modeling — 11/23

Programs

programs are composed of
programs/statements.

A seqguential program consists of statements
sequentially composed with each other.

We assume that all statements of a program have a

unique and a unigue (they are
structured).

To obtain a first-order representation of a program, it is
convenient to each statement of the program.

¥l
IM ﬁf NTU Automatic Verification 2009: Systems Modeling — 12/23

Labeling a Sequential Statement

Given a sequential statement P, the labeled statement
P! is defined as follows, assuming all labels are unique:

f P is not composite, then P = P.
f P=P; P, then PL =Pl . P}
f P=if b then P; else P, fi, then
PY = if bthen Iy : Pl else I : P fi.
If P = while b do P; od, then

P! = while b do I; : P od.

The above labeling procedure may be extended to treat
other statement types.

i
1= Nay
- N\,
5
\
1 |
3 |

II\/I“’ NTU Automatic Verification 2009: Systems Modeling — 13/23

First-Order Representations (Sequential)

Consider a labeled program P, with the entry labeled m
and exit labeled m/'.

Let IV denote the set of program variables.

We postulate a special variable pc called the
that ranges over the set of program labels plus
the undefined value L (bottom).

Let same(Y') abbreviate A (v =y).
yey

Given some condition pre(V') on the initial values, the
set of initial states is

So(V, pe) 2 pre(V') A pc = m.

Automatic Verification 2009: Systems Modeling — 14/23

First-Order Representations (cont.)

The transition relation C(i, P,!") for a statement P with entry
[and exit I’ is defined recursively as follows:

Assignment:
C(l,v:=el) S pc=1Apd =UAV =eA same(V \ {v}).
SKip:

C(l, skip, ") = pc=1Apc =1 Asame(V).
Sequential Composition:
C(l,P; I": P, IY 2 C(, P, 1" v O(", Py, 1),

\
1 |
i
H
X/

II\/I NTU Automatic Verification 2009: Systems Modeling — 15/23

First-Order Representations (cont.)

Conditional:
C(l,if b then [y : P; else [y : P, fi, 1) IS the disjunction of
the following:

pc=1NApcd =11 ANbA same(V)

pc=1NApcd =Ily A=bA same(V)

C(ly, P,)

C(ly, Pa, 1)
While:
C(I,while b do I; : P, od, ") Is the disjunction of the
following:

pc=1Apcd =11 NbA same(V)

pc=1Apc =1"N-bA same(V)

C(ly, P, 1)

it
A - Nay oy
- NN
“A
=%
|
) 4 ;

IM # NTU Automatic Verification 2009: Systems Modeling — 16/23

Concurrent Programs

Concurrent programs are composed of sequential
processes (programs/statements).

We consider only concurrent programs,
where exactly one process can make a transition at any
time.

A concurrent program P has the following form:
cobegin P, | P» ||--- || P, coend

where P,’s are processes.

Let VV be the set of all program variables and V; the set
of variables that can be changed by B,.

Let pc be the program counter of P and p¢; that of P;; let
. PC be the set of all program counters.

.

s Automatic Verification 2009: Systems Modeling — 17/23

Labeling Concurrent Programs

Given P = cobegin P, || P ||--- || P, coend, then
Pl =cobeginly : PL U || lo: Py 1y ||--- ||n: PX 1 coend.

Note that each process P; has a unique exit label [.

il
oy * \'.,‘:-“
- NN
A
1 |
H |

IM “‘ NTU Automatic Verification 2009: Systems Modeling — 18/23

First-Order Representations (Concurrent)

Assume the entry is labeled m and exit labeled /.

Given some condition pre(V') on the Initial values, the
set of initial states Is

So(V, PC) = pfr’e(V) A pc=mN /n\(pci = 1)
i=1

where pc; = L Indicates that P; IS not active.

C(l,cobeginly : PL I} || l1: P l5 |-+ ||ln: Py, coend,)
IS the disjunction of the following:

pc=I1Apcy =0 N---ANpc, =1, Npcd = L (Initialization)

pc=LApcr =N Apep =1, Npd =1 N_{(pc, = 1)
(termination)

P (O, B 1) A same(V A\ Vi) A same(PC \ {pc; })
. (mterleavmg)

IM Automatic Verification 2009: Systems Modeling — 19/23

Synchronization Statements

Assume the statement belongs to F,.

Wait (or await):

C'(I,wait(b), ') Is the disjunction of the following:
pc; = LA pc, =1 N —bA same(V;)
pc; =LA pc, =1 Nb A same(V;)

Lock (or test-and-set):

C(I,lock(v),!") Is the disjunction of the following:
pe; =LA pc, =1Nv=1A same(V;)
pe; =1lNApd,=U'ANv=0A0V =1Asame(V;\ {v})

Unlock:

C(l, unlock(v),!") 2 pe; = IApc, = U AV = 0Asame(V;\ {v}).

iy,
oL " Vs,
e)
‘A
1 |
i

IM S’ NTU Automatic Verification 2009: Systems Modeling — 20/23

A Mutual Exclusion Program

Pyrx = m : cobegin Py || P; coend m/

Py = P =

o : while true do [1 : while true do
NCy :wait T = 0; NCq :wait T = 1;
CRy:T :=1; CRy:T:=0;
od; od;

o 1

V=W=WV={T};, PC ={pc,pco,pc1}.
The pc of Py;x may take m, L, or m/.
nNe pcy of Pyt L, Iy, NCy, CRy, Or [,

The pc; of Pi: L, 1, NC1, CRy, Or [j.

NEl
s NTU Automatic Verification 2009: Systems Modeling — 21/23

First-Order Representation of Py x

Initial states Sy(V, PC): pc =m A pcy = L A pep = L.
Transition relation R(V, PC, V', PC") Is the disjunction of

pc=mApcy=IlgApdy =11 ANpd =1

pco =1y Apcr =1 Apd =m/' ANpcy = L Apdy =L

C(lo, Po,1j) A same(V \ Vi) A same(PC \ {pco})

C(ly, P, 1}) A same(V \ V1) A same(PC \ {pc1})
For each P;, C(l;, B, 1)) Is the disjunction of

pc; = l; N pc, = NC; A true A same(T)

pc; = NCy Apc, = CR; NT =i A same(T)

pC; :CR@'/\pC,/L- =L NT = (1—2')

pc; = NC; Apc, = NC; AT # 1 A same(T)

pc; = l; N pc, =10 A false N\ same(T)

i
v "w,,".
- NN
A
1 |
=

IM # NTU Automatic Verification 2009: Systems Modeling — 22/23

A Kripke Structure for Py x

Source: redrawn from [Clarke et al. 1999, Fig 2.2]

«,“‘ Automatic Verification 2009: Systems Modeling — 23/23

	Introduction
	Concurrent Reactive Systems
	Kripke Structures
	First-Order Representations
	First-Order Representations (cont.)
	From Formulae to Kripke Structures
	Varieties of Concurrent Systems
	A Synchronous Modulo 8 Counter
	A Synchronous Modulo 8 Counter (cont.)
	First-Order Representations (Circuit)
	Programs
	Labeling a Sequential Statement
	First-Order Representations (Sequential)
	First-Order Representations (cont.)
	First-Order Representations (cont.)
	Concurrent Programs
	Labeling Concurrent Programs
	First-Order Representations (Concurrent)
	Synchronization Statements
	A Mutual Exclusion Program
	First-Order Representation of P_{MX}
	A Kripke Structure for P_{MX}

