
IM NTU

Systems Modeling
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Systems Modeling – 1/23

IM NTU

Introduction

First two steps in correctness verification:
1. Specify the desired properties
2. Construct a formal model (with the desired

properties in mind)
Capture the necessary properties and leave out
the irrelevant
Example: gates and boolean values vs. voltage
levels
Example: exchange of messages vs. contents of
messages

Description of a formal model
Graphs
Logic formulae

Automatic Verification 2009: Systems Modeling – 2/23

IM NTU

Concurrent Reactive Systems

Interact frequently with the environment and may not
terminate

Temporal (not just input-output) behaviors are most
important

Modeling elements:
State: a snapshot of the system at a particular
instance
Transition:

how the system changes its state as a result of
some action
described by a pair of the state before and the
state after the action

Computation: an infinite sequence of states resulted
from transitions

Automatic Verification 2009: Systems Modeling – 3/23

IM NTU

Kripke Structures

Kripke structures are one of the most popular types of
formal models for concurrent systems.

Let AP be a set of atomic propositions (representing
things you want to observe).

A Kripke structure M over AP is a tuple 〈S, S0, R, L〉:
S is a finite set of states,
S0 ⊆ S is the set of initial states,
R ⊆ S × S is a total transition relation, and
L : S → 2AP is a function labeling each state with a
subset of propositions (which are true in that state).

A computation or path of M from a state s is an infinite
sequence of states σ = s0, s1, s2, · · · such that s0 = s and
(si, si+1) ∈ R, for all i ≥ 0.

Automatic Verification 2009: Systems Modeling – 4/23

IM NTU

First-Order Representations

First-order formulae serve as a unifying formalism for
describing concurrent systems.

Elements of first-order logic:
Logical connectives (∧, ∨, ¬, →, etc.) and quantifiers
(∀ and ∃)
Predicate and function symbols (with predefined
meanings)

Variables range over a finite domain D.

A valuation for a set V of variables is a map from the
variables in V to the values in the domain D.

A state of a system is a valuation for the system
variables.

A set of states can be described by a first-order formula.
Automatic Verification 2009: Systems Modeling – 5/23

IM NTU

First-Order Representations (cont.)

The set of initial states of a system will typically be
described by S0(V).

To describe transitions by logic formulae, we create a
second copy of variables V ′.

Each variables v in V has a corresponding primed
version v′ in V ′.

The variables in V are present state variables, while the
variables in V ′ are next state variables.

A valuation for V and V ′ can be seen as designating a
pair of states or a transition.

A set of transitions or transition relation R can then be
described by a first-order formula R(V, V ′).

Automatic Verification 2009: Systems Modeling – 6/23

IM NTU

From Formulae to Kripke Structures

Given S0(V) and R(V, V ′) that represent a concurrent
system, a Kripke structure M = 〈S, S0, R, L〉 may be
derived:

S is the set of all valuations for V .
The set of initial states S0 is the set of all valuations
for V satisfying S0.
R(s, s′) holds if R evaluates to true when each v ∈ V

is assigned the value s(v) and each v′ ∈ V ′ is
assigned the value s′(v).
L is defined such that L(s) is the set of atomic
propositions true in s.

To make R total, for every state s that does not have a
successor, (s, s) is added into R.

Automatic Verification 2009: Systems Modeling – 7/23

IM NTU

Varieties of Concurrent Systems

A concurrent system consists of a set of components
that execute together.

Modes of execution:
Asynchronous
Synchronous

Modes of communication:
Shared variables
Message-passing
Handshaking (or joint events)

Automatic Verification 2009: Systems Modeling – 8/23

IM NTU

A Synchronous Modulo 8 Counter

v2

v1

v0

Source: redrawn from [Clarke et al. 1999, Fig 2.1]

Automatic Verification 2009: Systems Modeling – 9/23

IM NTU

A Synchronous Modulo 8 Counter (cont.)

v2=0

v1=1

v0=1

⇒

v2

v1

v0

0

1

1

1

1

1

0

0
 0

0

1

Automatic Verification 2009: Systems Modeling – 10/23

IM NTU

First-Order Representations (Circuit)

Let V be {v0, v1, v2}.

The transitions of the modulo 8 counter are
v′0 = ¬v0

v′1 = v0 ⊕ v1

v′2 = (v0 ∧ v1) ⊕ v2

In terms of formulae, they are

R0(V, V ′)
∆
= v′0⇔¬v0

R1(V, V ′)
∆
= v′1⇔v0 ⊕ v1

R2(V, V ′)
∆
= v′2⇔(v0 ∧ v1) ⊕ v2

Conjoining the formulae, we obtain

R(V, V ′)
∆
= R0(V, V ′) ∧R1(V, V ′) ∧R2(V, V ′)

Automatic Verification 2009: Systems Modeling – 11/23

IM NTU

Programs

Concurrent programs are composed of sequential
programs/statements.

A sequential program consists of statements
sequentially composed with each other.

We assume that all statements of a program have a
unique entry point and a unique exit point (they are
structured).

To obtain a first-order representation of a program, it is
convenient to label each statement of the program.

Automatic Verification 2009: Systems Modeling – 12/23

IM NTU

Labeling a Sequential Statement

Given a sequential statement P , the labeled statement
PL is defined as follows, assuming all labels are unique:

If P is not composite, then PL = P .
If P = P1;P2, then PL = PL

1 ; l : PL
2 .

If P = if b then P1 else P2 fi, then
PL = if b then l1 : PL

1 else l2 : PL
2 fi.

If P = while b do P1 od, then
PL = while b do l1 : PL

1 od.

The above labeling procedure may be extended to treat
other statement types.

Automatic Verification 2009: Systems Modeling – 13/23

IM NTU

First-Order Representations (Sequential)

Consider a labeled program P , with the entry labeled m

and exit labeled m′.

Let V denote the set of program variables.

We postulate a special variable pc called the program
counter that ranges over the set of program labels plus
the undefined value ⊥ (bottom).

Let same(Y) abbreviate
∧

y∈Y

(y′ = y).

Given some condition pre(V) on the initial values, the
set of initial states is

S0(V, pc)
∆
= pre(V) ∧ pc = m.

Automatic Verification 2009: Systems Modeling – 14/23

IM NTU

First-Order Representations (cont.)

The transition relation C(l, P, l′) for a statement P with entry
l and exit l′ is defined recursively as follows:

Assignment:

C(l, v := e, l′)
∆
= pc = l ∧ pc′ = l′ ∧ v′ = e ∧ same(V \ {v}).

Skip:
C(l, skip, l′)

∆
= pc = l ∧ pc′ = l′ ∧ same(V).

Sequential Composition:
C(l, P1; l′′ : P2, l

′)
∆
= C(l, P1, l

′′) ∨ C(l′′, P2, l
′).

Automatic Verification 2009: Systems Modeling – 15/23

IM NTU

First-Order Representations (cont.)

Conditional:
C(l, if b then l1 : P1 else l2 : P2 fi, l′) is the disjunction of
the following:

pc = l ∧ pc′ = l1 ∧ b ∧ same(V)

pc = l ∧ pc′ = l2 ∧ ¬b ∧ same(V)

C(l1, P1, l
′)

C(l2, P2, l
′)

While:
C(l,while b do l1 : P1 od, l′) is the disjunction of the
following:

pc = l ∧ pc′ = l1 ∧ b ∧ same(V)

pc = l ∧ pc′ = l′ ∧ ¬b ∧ same(V)

C(l1, P1, l)

Automatic Verification 2009: Systems Modeling – 16/23

IM NTU

Concurrent Programs

Concurrent programs are composed of sequential
processes (programs/statements).

We consider only asynchronous concurrent programs,
where exactly one process can make a transition at any
time.

A concurrent program P has the following form:

cobegin P1 ‖P2 ‖ · · · ‖Pn coend

where Pi’s are processes.

Let V be the set of all program variables and Vi the set
of variables that can be changed by Pi.

Let pc be the program counter of P and pci that of Pi; let
PC be the set of all program counters.

Automatic Verification 2009: Systems Modeling – 17/23

IM NTU

Labeling Concurrent Programs

Given P = cobegin P1 ‖P2 ‖ · · · ‖Pn coend, then

PL = cobegin l1 : PL
1 l′1 ‖ l2 : PL

2 l′2 ‖ · · · ‖ ln : PL
n l′n coend.

Note that each process Pi has a unique exit label l′i.

Automatic Verification 2009: Systems Modeling – 18/23

IM NTU

First-Order Representations (Concurrent)

Assume the entry is labeled m and exit labeled m′.

Given some condition pre(V) on the initial values, the
set of initial states is

S0(V, PC)
∆
= pre(V) ∧ pc = m ∧

n∧

i=1

(pci = ⊥)

where pci = ⊥ indicates that Pi is not active.

C(l, cobegin l1 : P1 l′1 ‖ l1 : P2 l′2 ‖ · · · ‖ ln : Pn l′n coend, l′)
is the disjunction of the following:

pc = l ∧ pc′1 = l1 ∧ · · · ∧ pc′n = ln ∧ pc′ = ⊥ (initialization)
pc = ⊥ ∧ pc1 = l′1 ∧ · · · ∧ pcn = l′n ∧ pc′ = l′

∧n
i=1(pc

′

i = ⊥)

(termination)
∨n

i=1(C(li, Pi, l
′

i) ∧ same(V \ Vi) ∧ same(PC \ {pci})

(interleaving)
Automatic Verification 2009: Systems Modeling – 19/23

IM NTU

Synchronization Statements

Assume the statement belongs to Pi.

Wait (or await):
C(l,wait(b), l′) is the disjunction of the following:

pci = l ∧ pc′i = l ∧ ¬b ∧ same(Vi)

pci = l ∧ pc′i = l′ ∧ b ∧ same(Vi)

Lock (or test-and-set):
C(l, lock(v), l′) is the disjunction of the following:

pci = l ∧ pc′i = l ∧ v = 1 ∧ same(Vi)

pci = l ∧ pc′i = l′ ∧ v = 0 ∧ v′ = 1 ∧ same(Vi \ {v})

Unlock:
C(l,unlock(v), l′)

∆
= pci = l∧pc′i = l′∧v′ = 0∧same(Vi \{v}).

Automatic Verification 2009: Systems Modeling – 20/23

IM NTU

A Mutual Exclusion Program

PMX = m : cobegin P0 ‖P1 coend m′

P0 =
l0 : while true do

NC0 : wait T = 0;
CR0 : T := 1;
od;

l′0

P1 =
l1 : while true do

NC1 : wait T = 1;
CR1 : T := 0;
od;

l′1

V = V0 = V1 = {T}; PC = {pc, pc0, pc1}.

The pc of PMX may take m, ⊥, or m′.

The pc0 of P0: ⊥, l0, NC0, CR0, or l′0.

The pc1 of P1: ⊥, l1, NC1, CR1, or l′1.
Automatic Verification 2009: Systems Modeling – 21/23

IM NTU

First-Order Representation of PMX

Initial states S0(V, PC): pc = m ∧ pc0 = ⊥ ∧ pc1 = ⊥.

Transition relation R(V, PC, V ′, PC ′) is the disjunction of
pc = m ∧ pc′0 = l0 ∧ pc′1 = l1 ∧ pc′ = ⊥

pc0 = l′0 ∧ pc1 = l′1 ∧ pc′ = m′ ∧ pc′0 = ⊥ ∧ pc′1 = ⊥

C(l0, P0, l
′

0) ∧ same(V \ V0) ∧ same(PC \ {pc0})

C(l1, P1, l
′

1) ∧ same(V \ V1) ∧ same(PC \ {pc1})

For each Pi, C(li, Pi, l
′

i) is the disjunction of
pci = li ∧ pc′i = NCi ∧ true ∧ same(T)

pci = NCi ∧ pc′i = CRi ∧ T = i ∧ same(T)

pci = CRi ∧ pc′i = li ∧ T = (1 − i)

pci = NCi ∧ pc′i = NCi ∧ T 6= i ∧ same(T)

pci = li ∧ pc′i = l′i ∧ false ∧ same(T)

Automatic Verification 2009: Systems Modeling – 22/23

IM NTU

A Kripke Structure for PMX

T=0

bot
, bot

T=1

bot
, bot

T=0

l

0

, l

1

T=1

l

0

, l

1

T=0

NC
0
, l
1

T=1

l
0
, NC
1

T=0

CR
0
, l
1

T=1

l
0
, CR
1

T=0

l
0
, NC
1

T=1

NC
0
, NC
1

T=1

NC
0
, l
1

T=0

NC
0
, NC
1

T=1

NC
0
, CR
1

T=0

CR
0
, NC
1

Source: redrawn from [Clarke et al. 1999, Fig 2.2]

Automatic Verification 2009: Systems Modeling – 23/23

	Introduction
	Concurrent Reactive Systems
	Kripke Structures
	First-Order Representations
	First-Order Representations (cont.)
	From Formulae to Kripke Structures
	Varieties of Concurrent Systems
	A Synchronous Modulo 8 Counter
	A Synchronous Modulo 8 Counter (cont.)
	First-Order Representations (Circuit)
	Programs
	Labeling a Sequential Statement
	First-Order Representations (Sequential)
	First-Order Representations (cont.)
	First-Order Representations (cont.)
	Concurrent Programs
	Labeling Concurrent Programs
	First-Order Representations (Concurrent)
	Synchronization Statements
	A Mutual Exclusion Program
	First-Order Representation of P_{MX}
	A Kripke Structure for P_{MX}

