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Introduction

We have studied
the operations on OBDDs and
the encoding of a transition system in OBDDs.

How does one use OBDDs in model checking?
Symbolic CTL model checking
Symbolic LTL model checking

The model checking algorithms are , because

they are based on the manipulation of Boolean
functions (rather than state transition graphs).

OBDDs represent sets of states and transitions.

We can operate on rather than on individual
states and transitions.
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Fixpoints

Let S be the set of all states of a system.
Aset S’ € P(S) Is called a of a function
T:P(S)— P(S)Ifr(S") =9
A temporal formula f can be viewed as a set 5’ of
states such that

S" e P(S) and

f 1s true exactly on the states in 5’.

Each temporal logic operator can be characterized by a
fixpoint.

NEl )
IM mf NTU Automatic Verification 2009: Symbolic Model Checking — 3/77

M



Complete Lattices

Recall that a IS a partially ordered set in
which every subset of elements has a

(supremum) and a
(infimum).

For a given set S, (P(5), C) forms a complete lattice.

Let S" C P(S), then
the supremum of S’, usually denoted sup(S’), equals
JS" and
the infimum of S’, denoted inf(S’), equals () 5’.

The least element in P(S) Is the empty set (), which we
refer to as Fulse.

The greatest element in P(S) Is the set S, which we
refer to as True.

.
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Predicate Transformer

A predicate transformer on P(S) Is a function
T:P(S) — P(9).

T'(Z) is used to denote i applications of 7 to Z:
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Predicate Transformer (cont.)

Let 7 be a predicate transformer.
T 1S (order-preserving) provided that
P C Q implies 7(P) C 7(Q).
T 1S provided that
P C P C--- implies 7(U; ;) = U;T(P;).

T 1S provided that

PO P>D... ImplleS T(ﬂipi) — ﬁiT(Pi).
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LFP and GFP

Since P(5) Is a complete lattice and hence also a CPO,
a monotonic predicate transformer = on P(S) always has

a least fixpoint, 2 . 7(7), and
a greatest fixpoint, v7 . 7(2).

W Z | 7(Z) C Z} whenever 7 is
Wz r(z) =4 W2 ) -

U;T"(False) whenever 7 is also
U{Z | 7(Z) D Z} whenever 7 IS
N;7'(True) whenever 7 is also

vZ . 1(24) {
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Lemma b

Lemma 5: If S iIs finite and 7 IS monotonic, then 7 1s also
U-continuous and N-continuous.

Proof:

Because S is finite, there is j, such that

» for every j > jo, P; = Pj,, and

» for every j < jo, P; C Pj,.

Thus, U; P, = Pjo and T(Uipi) = T(Pj )

Because 7 IS monotonic,

e 7(P1) C7(P) C...,and thus

» for every j > jo, 7(P;) = 7(Pj,) and

» for every j < jo, 7(P;) C 7(Pj,).

As a result, u;T(F;) = 7(Pj,), and 7 IS U-continuous.
The proof that ~ iIs N-continuous is similar.
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Lemma 6

Lemma 6: If 7 IS monotonic, then for every i
7 (False) C 771 (False), and
™(True) 2O 747 True).
Proof sketch:
False C 1(Fualse).
True O 7(True).
7 IS monotonic.
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Lemma /

Lemma 7: If 7 IS monotonic and S is finite, then
there Is an integer iy such that for every j > i,
7/ (False) = 1" ( False), and
similarly, there is some j, such that for every ; > j,
7 (True) = 17°( True).
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Lemma 8

Lemma 8: If 7 IS monotonic and S is finite, then

there is an integer ig such that uZ . 7(2) = 7% (False),
and

similarly, there is an integer j, such that
vZ . 7(Z) = 70 True).
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LFP Procedure

In a Kripke structure, if 7 iIs monotonic, its least fixpoint
can be computed by the following program.

function Lfp(r : PredicateTransformer) : Predicate

() .= Fualse;

Q' = 7(Q);

while (Q # Q') do
Q=qQ
Q= 7(Q);

end while ;

return (Q);
end function
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Correctness of LFP Procedure

The invariant of the while loop Is
Q' =7(Q)N(QCpuZ . 7(2))

(Cf. (@' =7(Q) N (Q CuZ.71(Z)))
The number of iterations before the while loop
terminates is bounded by |S].

When the loop does terminate, we will have
Q = 7(Q) (Q Is a fixpoint) and
QCus.7(2).

Since @ Is also a fixpoint, uZ . 7(Z) C Q.

Hence Q = u2z . 7(2).
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IM mﬁ NTU Automatic Verification 2009: Symbolic Model Checking — 13/77

Py 3o
s



GFP Procedure

We can also see that, if 7 IS monotonic, its greatest
fixpoint can be computed by the following program.

function Gfp(r : PredicateTransformer) . Predicate

Q) .= True;
Q' = 7(Q);
while (@ # Q') do
Q:=Q"
Q' = 7(Q);
end while ;
return (Q);

end function

An analogous argument can be used to show that the
procedure terminates and the value returnsis v7 . 7(7).
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Characterization of CTL Operators

Each CTL formula f is identified with the predicate
{s|M,sE f}inP(3).

If so, then each of the basic CTL operators may be
characterized as a least or greatest fixpoint of an
appropriate predicate transformer.

correspond to
correspond to

We will take a closer look at two cases:

EGf=vZ. fNEXZ
E(f1U fol =puZ . f2V (fi NEX(2))

N El )
IM m‘s NTU Automatic Verification 2009: Symbolic Model Checking — 15/77



Characterization of EG

EGf—vZ. fAEXZ.

Let 7(Z) = f AEX Z.

7(True) = f NEX True = f.
4(True) = f NEX f.
3(True) = f ANEX (f AEX f).

(True) = f AEX (FAEX (.- (f AEX f)--)) (EX is
applied : — 1 times on the inner most ).

So intuitively, states in the limit of 7*( True) satisfy EG f.
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Lemma 9

Lemma 9: 7(Z) = f A EX Z IS monotonic.

Proof:
Let P, C P.
Consider some state s € 7(Py).
To show that s € 7(P%), It Is sufficient to show that
¢ s k= fand
» there Is a successor of s which is In P;.

Because s € 7(P;),
@ s = fand
» there exists a state s’ such that (s, s’) € R and

s’ e Py.
Because P C P, s’ € Ps.
Thus s € T(P2).

W\ ® f
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Lemma 10

Lemma 10: Let 7(Z) = f AEX Z and let 7 ( True) be the
limit of the sequence True D 7(True) O ---. FOr every
s€ S, if s € 7 (True) then s = f, and there is a state s’

such that (s,s") € R and s’ € 7%°(True).
Proof:
Let s € 7%0( True).
Because 7 ( True) is a fixpoint of r,
7 (True) = 7(7"°( True)).
Thus s € 7(7%( True)).

By definition of - we get that s = f and there is a
state s/, such that (s,s’) € R and s’ € 7%( True).

\ 3|1
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Lemma 11

Lemma 11: EG f is a fixpoint of the function
T(Z) = f NEX (Z).
Proof:

Suppose sg = EG f.

By the definition of |=, there is a path sg, s1,--- In M
such that for all &, s, = f.

This implies that sg = f and s; = EG f.

In other words, sy &= f and s) = EXEG .
Thus, EG f C f AEXEG f.

Similarly, if sg = f A EXEG f, then so = EG f.
Thus, f AEXEG f C EG /.

Consequently, EG f = f NEXEG /.

)
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Lemma 12

Lemma 12: EG [ is the greatest fixpoint of the function
7(Z) = f NEX (Z).
Proof:

Because 7 Is monotonic (Lemma 9), by Lemma 5 itis
also N-continuous.

In order to show that EG f Is the greatest fixpoint of
7, it is sufficient to prove that EG f = n;7*( True).

Al ]
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Lemma 12 (cont.)

Proof (continued):

EG f C N7 (True).

« We prove this direction by induction.

«» Base case:

@ Clearly, EG f C True.

« Induction step:

@ Assume that EG f C 7"( True).

» Because 7 is monotonic, 7(EG f) C 7" True).
+ By Lemma 11, 7(EG f) = EG f.

» Hence, EG f C 7" (True).

WEs
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Lemma 12 (cont.)

Proof (continued):
N7 (True) C EG f.
» Consider some state s € N;7'( True).
» The state s is included in every 7*( True).
» Hence, it is also in the fixpoint 7% ( True).
« By Lemma 10, s is the start of an infinite sequence
of states in which each state is related to the

previous one by the relation R.
« Furthermore, each state in the sequence satisfies

f.
@ Thus s = EG f.

CA[E f
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Characterization of EU: Lemma 13

E[f1 U fo] Is the least fixpoint function of the function
7(Z) = foaV (fi NEX (Z)).
Proof:
7(Z) = fo V (fi NEX (Z)) IS monotonic, hence 7 is
U-continuous.
E[f1 U fo] is a fixpoint of 7(2).
We still need to prove that E[f; U f5] Is the least
fixpoint of 7(7).
It is sufficient to show that E[f; U f3] = U;7*(False)
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Lemma 13 (cont.)

Proof:

U;T!(False) C E[f1 U fo
« We prove this direction by induction on .
«» Base case: Fulse C E|f; U f5]
» Ind. Hypo.: For every i < k, 7%(False) C E[f; U f].
» When i =k + 1, 7" (False) = 7(7%(False)).
» Note that 7(Z) Is monotonic, so
7(t*(False)) C 7(E[f1 U f3]) (by Ind. Hypo.)
@ Since E[f; U fo] Is a fixpoint of 7(2),
T(E[f1U f2]) = E[f1 U fa].
» Hence, we have 7*(Fulse) C E[f; U f5] for all i.
» Consequently, we have that U;7*(False) C E[f; U f].
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Lemma 13 (cont.)

Proof (continued):

E[f1 U fo] C U;(False)

@ We prove this direction by induction on the length
of the prefix of the path along with f;f2U Is
satisfied.

» If there’s a state s = E[f1 U f2], then there’s a path
T =s1,52,..., With s = s; and 57 > 1 such that s; = fo
and for all I < 7, s; & f1.

» We show that for every such state s, s € 77 (False).
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Lemma 13 (cont.)

Proof (continued):

Base case is trivial. If j =1, s = f» and therefore
s € T(False) = fo V (f1 N EX (False)).

For the Iinductive step, assume that for every s and
every j < n, s € 7/(False) always holds.

Let s be the start of the path = = 51, s9,... such that
spi1 = foand forevery il <n+1, s; E fi.

Consider the state s, on the path. It is the start of a
prefix of length n along which f, f U, holds.

By the induction hypothesis, so € 7"( False).
Because (s,s9) € Rand s = f1, s € fi NEX (7"(False)),
thus, s € 7" (False).
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An Example

Kripke structure

t2(False) v (Fulse)

Figure 6.3
Sequence of approximations for E[p U q).

‘Source: [Clarke et al. 1999]. Names of states (clockwise): sq, s1, s, S3.
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An Example (cont.)

Sequence of approximations for
EpUq|=pZ .qV (p NEXZ):

i (False) = qV (p ANEX False)
= (q

7% (False) = p AN EX 7(Fulse))

p ANEXq)
= qV (pA{s1,s3})
= qV{s1}

3 (Fasle) = qV (p AEX71%(Fasle))
= qV(pANEX(qV{s1}))
= qV (pAN{so,s1,S2,53})
= qVp

qV
qV
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Characterization of CTL Operators (cont.)

AF f=uZ . fVAXZ
EF f=uZ . fVEXZ
AGf=vZ.fANAXZ
EGf=vZ.fANEXZ
AlfUgl=upz . gV (f NAX(Z))
E[fUg]=unz . gV (f NEX(Z))
AlfRygl=vZ . gn(fVAX(Z))
E[fRgl=vZ.gn(fVEX(Z))

IM 2% NTU Automatic Verification 2009: Symbolic Model Checking — 29/77



Symbolic Model Checking for CTL

There Is a quite fast explicit state model checking
algorithms for CTL, but a state explosion problem may
occur.

In the following, we will present a
(SMC) algorithm for CTL which operates on

Kripke structures represented symbolically using
OBDDs.

For this, the logic of

(QBF) Is used to have a more succinct notation for
complex operations on Boolean formulae.
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Quantified Boolean Formulae (QBF)

Givenaset V = {uv,...,v,_1} Of propositional variables,
QBF (V) is the smallest set of formulae such that

every variable in V' Is a formula,

If / and g are formulae, then —f, f Vv g, and f A g are
formulae, and

If fi1saformulaandv eV, then Jvf and Vo f are
formulae.

An OBDD is associated to a QBF formula.
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ruth Assignment

A truth assignment for QBF (V) Is a function
o:V —{0,1}.

If a € {0,1}, then the notation o(v « a) IS used for the
truth assignment defined by

0<UH&>(w){a If v =w

o(w) otherwise

i
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Models of QBF
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The notation ¢ |= f denotes that f is true under the

assignment o
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o(v) =1

=forok=g

= fand o =g

ogv—0) = foro(v—1) = f
clv—0)Efando{v—1) = f

Q Q Q9
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Quantification

The quantifiers in QBF can be implemented as
combinations of the restrict and apply operators.

dxf = f’x<—0 v f‘$<—1
Vof = floeo N [z
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SMC Algorithm

The SMC algorithm is implemented by a procedure
Check.

Arguments: a CTL formula

Returns: an OBDD that represents exactly those
states of the system that satisfy the formula

(%)
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SMC Algorithm (cont.)

Check(a) = the OBDD representing the set of states
satisfying the atomic proposition «

Check(f N g) = Check(f) N Check(g)

Check(—f) = = Check(f)

Check(EX f) = (Check(f))

Check(E[fUg|) = (Check(f), Check(g))

Check(EG f) = (Check(f))
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CheckEX

The formula EX f is true In a state if the state has a
successor in which f is true.

CheckEX (f(v)) = I [f(¥) A R(v,7)),

where R(v,7') Is the OBDD representation of the
transition relation.

\ % s ;-E . . . .
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CheckEU

CheckEU IS based on the least fixpoint characterization
for the CTL operator EU.

E[fUgl=pz.gv(fNEXZ)

The function Lfp is used to compute a sequence of
approximations

QO?Ql);Qz,
that converges to E[f U g] in a finite number of steps.

s,
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CheckEU (cont.)

If we have OBDDs for f, g, and the current
approximation @;, then we can compute an OBDD for

the next approximation @;. 1.

When @; = Q;+1 (it Is easy to test because OBDDs
provide a canonical form of Boolean functions), the
function Lfp terminates.
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CheckEG

CheckEG 1S based on the greatest fixpoint
characterization for the CTL operator EG.

EGf=vZ.f NEXZ
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Fairness in SMC

Assume the fairness constraints are given by a set of
CTL formulae F = {Py,..., P,}.

A fair path is a path which each formula in F holds
Infinitely often on.

We define a new procedure for checking CTL
formulae relative to the fairness constructions in F.

We do this by defining new intermediate procedures

, and , which
correspond to the mtermedlate procedures used to
define
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EG f with Fairness

Consider the formula EG f given fairness constraints F.

The formula means that there exists a fair path
beginning with the current state on which f holds
globally.

The set of such states Z Is the largest set with the
following two properties:

all of the states in 7 satisfy f, and

for all P, € F and all s € Z, there Is a sequence of
states of from s to a state in Z
satisfying P, such that all states on the path satisfy /.
(cf. There exists a path in S/, where f holds, that
leads from s to some node ¢ in a

of the graph (S, R’).)
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EG f with Fairness (cont.)

The characterization can be expressed by means of a
fixpoint as follows:

EGf=vZ.fA /\ EXE[fU(ZA P)
k=1

Note that the formula is not directly expressible in CTL.
We are going to prove the correctness of this equation.
We split it into two lemmas.

s,
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Lemma 14

Lemma 14: The fair version of EG f Is a fixpoint of the
equation

Z=fN N\EXE[fU(ZAP)
k=1

Proof: It suffices to show that
EGfC fAn \ EXE[fU(EGfA P)]
k=1
and

fA \ EXE[fU(EGfAP)] CEGF.
k=1

s,
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Lemma 14 (cont.)

Case 1: EG f C f A /\ EXE[f U (EG f A P)].
k=1
Let s = EG f, then s Is the start of a fair path =, all of
whose states satisfy f.

Let s; be the first state on = such that s; € P, and

S; # S.

The state s; Is also a start of a fair path along which
all states satisfy f.

Thus, s; € EG f.

It follows that for every i,
s = fANEXE[fU(EGfAPF)).

Therefore, s = f A \ EXE[f U (EG f A P,)].

\@if _ L : :
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Lemma 14 (cont.)

Case 2: f A /\ EXE[f U (EG f A P;)] C EG f.
k=1

Ifs = fA /\ EXE[fU(EG f A P.)], then there is a
k=1
finite path starting from s to a state s’ such that

s’ = (EG f A Py).
Every state on the path from s to s’ satisfies f.

s’ IS the beginning of a fair path such that each state
on the path satisfies /.

Thus, s = EG f.

(3 v:) _ S : :
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Lemma 15

Lemma 15: The greatest fixpoint of the following
equation is included in EG f.

Z=fnN \ EXE[fU(ZA P)
k=1

,
p1_* Nag,
- NN
A
1 |
=

II\/I“* NTU Automatic Verification 2009: Symbolic Model Checking — 47/77



Lemma 15 (cont.)

Proof:
Let Z be an arbitrary fixpoint of the formula.

Assume that s € Z. Then s = f.

s has a successor s’ that Is a start of a path to a state
s1 such that

» all states on this path satisfy f and

o sp satisfles Z A P;.

Because s; € Z we can conclude by the same
argument that there is a path from s; to a state s, In
Ps.

G El Y
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Lemma 15 (cont.)

Proof (continued):

Using this argument »n times we conclude that s is the

start of a path along which all states satisfy f and

which passes through Py, ..., P;.

The last state on the path is in Z, and thus there is a
nath from this state back to some state In P;.
nduction can be used to show that there exists a fair
path starting at s such that f is satisfied along the

path, I.e., s = EG .

Wy
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CheckFairEG

CheckFairEG(f(v)) IS based on the following fixpoint
characterization:

vZ(v) . f(0) A\ EXE[f(2) U (Z(v) A Py)).
k=1
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CheckFair

The set of all states which are the start of some fair
computation is

fair(v) = CheckFair(EG True).
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CheckFairEX

The formula EX f under fairness constraints Is
equivalent to the formula EX f A fair without fairness
constraints.

CheckFairEX (f(v)) = CheckEX (f(v) A fair(v))
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CheckFaireu

The formula E[f U ¢] under fairness constraints is
equivalent to the formula E[f U g A fair] without fairness
constraints.

CheckFairEU (f(v),g(v)) = CheckEU(f(v), g(v) A fair(v))
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LTL Model Checking

Let A f be a linear temporal logic formula where f Is a
restricted path formula.

A formula f is a If all state
subformulae in f are atomic propositions.

The problem is to determine all of those states s € S
such that M,s = A f.

Since M,s = A fiff M,s = —-E~f, itis sufficient to check
the truth of formulae of the form E f.

Bk v:)
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LTL Model Checking (cont.)

Given a formula E f and a Kripke structure M, the
procedure of LTL model checking is:

Construct a tableau T for the path formula f.
Compose T with M.
Find a path in the composition.

The tableau can be represented by OBDDs.

s,l
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States of the Tableau

Each state in the tableau iIs a set of
obtained from 7.

The set of elementary subformulae of f is denoted by
el(f) and is defined recursively as follows.

el(p) = {ptifpe APy

el(-g) = el(g)

el(gVvVh) = ellg)Uel(h)

el(Xg) = 1Xg}Uel(g)

el(gUh) = {X(gUh)}Uel(g)Uel(h)

The set of states S of T'Is P(el(f)).

Ak _ L . :
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ransition Relation of the Tableau

An additional function sat Is defined recursively as

follows.
sat(g) = {s|g € s} where g € el(f)
sat(—g) = {s|s¢&sat(g)}
sat(gV h) = sat(g)U sat(h)
sat(gUh) = sat(h)U (sat(g) N sat(X(gUh)))

The transition relation Ry of T is defined as

Rr(s,s) = /\ s € sat(Xg) & s’ € sat(g)
Xgeel(f)

"
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ransition Relation of the Tableau (cont.)

An additional condition is necessary In order to identify
those paths along which f holds.

A path = that starts from a state s € sat(f) will satisfy f iff

for every subformula ¢ U h and for every state s on T,
If s € sat(¢ U h) then either s € sat(h) or there Is a later
state ¢t on = such that ¢t € sat(h).
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The Microwave Oven Example

~Start
~Close
~Heat
~Error

start oven open door close door open door

cook

~Start
Close dans
~Heat
~Error

open door close door reset start oven start cooking

b

Start
Close
~Heat
~Error

warmup

Figure 4.3
Microwave oven example.

‘Source: [Clarke et al. 1999].
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The Microwave Oven Example

g = —heat U close

Figure 6.9
Tableau for (—=heat) U close.
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Eventuality

The definition of Ry does not guarantee that eventuality
properties are fulfilled.

A path = that starts from a state s € sat(f) will satisfy f if
and only if

for every subformulae ¢ U i and for every state s on
7, If s € sat(g U h) then either s € sat(h) or there Is a
later state ¢t on 7 such that ¢ € sat(h).

IM\@%NTU
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Additional Notations

' = sy,5,... represents a path in M.

For the suffix 7} = s;,s7.,,... of 7, we define

si={v | €el(f) and M, 7" = ¢}

WEly
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Lemma 16

Lemma 16: Let sub(f) be the set of all subformulae of f.
For all g € sub(f) U el(f), M, = g If and only If
si € sat(g).
Case 1: Let g € el(f).
o M,mi =gliffges;.
e g€ s iffs; € sat(g).
Case 2. Letg= g1 0rg=0q1V ¢o.
Case 3: Let g = g1 U ¢o.
o M,7m = g1 Ugoiff M, 7} =g OF (M, 7] = ¢g1 and
M, m; = X (91U g2)).
e M, =g 0or (M,n; = g1 and M, ) = X(g1 U g2)) Iff
si € sat(go) V (s; € sat(gr) N s; € sat(X(g1 U g2))).
& 8; € sat(go) V (s; € sat(gy) N s; € sat(X (g1 U g2))) Iff
si € sat(g1 U g2).

AP alwan g0
§s 3 h
4 4 |
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Lemma 17/

i
P00« Nog
S o
F e )
Fs AR
g 3 |
= s
8% /‘ §
A WL
Naytar W
v g

Lemma 17: Let =’ = 5,5} ... be a path in M. For all i > 0,
let s; be the tableau state. Then = = sgs; ... 1S a path In
1.
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heorem 4

Theorem 4: Let T be the tableau for the path formula 7.
Then, for every Kripke structure M and every path =’ of
M, 1If M,n" = f then there is a path = in T that starts in a
state in sat(f), such that label(r') |ap,= label(r).

N1
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Composition of T and M

P = (S,R, L) Is the product of the tableau
T = (St, Rr, Ly) and the Kripke structure
M

S={(s,5)|se€Sr,s € Syand Ly(s") |ap,= L1 (s)}.
R((s,s), (t,t")) Iff Rp(s,t) and Ry (s, t").
L((s,s")) = Lp(s).
The function sat IS extended to be defined over S by
(s,5") € sat(g) If and only if s € sat(g).

i
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Lemma 18

/!

Lp((si, 7)) =

! = (80786) (s1,5}),... Isapathin P with

Lp(s;) for all : > 0 if and only If there exists

a path m = sg,s1,...InT, and a path 7’ = sp, s7,...In M

with Lt (S@)

= LM(S@') ‘APf for all > 0.
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heorem 5

M, s = E f if and only if there Is a state s in T such that

(s,5") € sat(f) and P, (s,s’) = EG True under fairness
constraints

{sat(—(¢gUh)V h) | gUh occursin f}.
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The Microwave Oven Example

—g = —(—heat U close)

©
() (-
(O
) O

Figure 6.10
The product P of the microwave M and the tableau T.

Source: [Clarke et al. 1999].
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Summary of LTL Model Checking

Given a Kripke structure M, a state s’ in M and a LTL
formula f.

Construct a symbolic representation of M.
Construct a symbolic representation of 7° ;.
Construct the product P of M and 7.

Use the symbolic CTL model checking algorithm to
check if there Is a state s In 7-,; such that

(s,5") € sat(—f) and
P, (s,s") = EG True under fairness constraints

{sat(—(¢gUh)V h) | gUh occursin f}.

(%)
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SMC for LTL [Kesten et al 1995]

Here we slightly modify the definition of Kripke
structures and the symbolic algorithm in [Kesten et al.

1995].
A Kripke structure M is a tuple (V, Sy, R) where

V' Is a set of system variables and thus the set of
states S Is the set of all valuations for V,

So 1S the Initial condition defined upon Vv, and
R C S x S Is the transition relation which is total.

The problem is to check, given a Kripke structure M and
a formula f, whether M |= f (all paths of M satisfy f).

L\ J
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SMC for LTL [Kesten et al 1995] (cont.)

Let V¢ be the set of all propositions in f. Without loss of
generality, we assume V; =V (of the Kripke structure).

For each elementary formula p € el(f), a Boolean
variable (elementary variable) z, Is associated.

The set of elementary variables are represented by a
vector z = xy,x9,...,x, Where m = |el(f)].

Note that a valuation for x constitutes a state in M/ and a
state in 7.

Al f
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Formulae in Elementary Formulae

Let CL(f) denote the closure of the LTL formula f.

For each formula p € CL(f), we define a Boolean
function x,(z) which expresses p in terms of the
elementary variables:

Forp € el(f), xp(T) = 2p

For p = —q, Xp = 'Xq

FOr g AT, xp=xq¢ /A Xr

Forp=qUr, xp = xrV (X¢ ATx(qU )
FOrp=qSr, xp =xr vV (X¢ ATy (gsr))

Note: Y Is the “previous” operator.

i
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LTL Model Checking

There exists a computation in A satisfying f Iff satys ¢
as defined below Is true.

satyr ¢ 3%,y s init(T) A EX(Z,7) A SCfE@)

.
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Initial Condition

The following formula identifies an initial state in the
product of M and T¥.

It IS an Initial state in M.
It Is also an initial atom in 7.

nit(7) - xp @ AC N\ —vp) A Sol@)
YpeCL(f)

iy,
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ransition Relation

The following formula identifies the set of transitions in
the product:

E(z,y) : e(Z,y) N R(Z,7)
where

e(Z,y): N\ (zxp < xp(H) A /\ ) < yyp)

Xpeel(f) Ypeel(f
E™(z,9) = E(z,y)V3z: ET(Z,2) N E(Z,7)
E*(z,4): (x=9)V E"(z,7)

The definitions of e (z, ) and ¢*(z, i) are similar to
E*(z,7) and E*(z,7).

i
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Fulfilling Atoms

The following formula identifies fulfilling atoms.

scfP(z): EX @z A N\ (pue@) —
pUqeCL(f)
3z 1 E*(Z,2) A xq(2) A E*(2,7))
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