
IM NTU

Symbolic Model Checking
(Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay

(original created by Ming-Hsien Tsai and Jinn-Shu Chang)

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Symbolic Model Checking – 1/77

IM NTU

Introduction

We have studied
the operations on OBDDs and
the encoding of a transition system in OBDDs.

How does one use OBDDs in model checking?
Symbolic CTL model checking
Symbolic LTL model checking

The model checking algorithms are symbolic, because
they are based on the manipulation of Boolean
functions (rather than state transition graphs).

OBDDs represent sets of states and transitions.

We can operate on entire sets rather than on individual
states and transitions.

Automatic Verification 2009: Symbolic Model Checking – 2/77

IM NTU

Fixpoints

Let S be the set of all states of a system.

A set S′ ∈ P(S) is called a fixpoint of a function
τ : P(S)→ P(S) if τ(S′) = S′.

A temporal formula f can be viewed as a set S′ of
states such that

S′ ∈ P(S) and
f is true exactly on the states in S′.

Each temporal logic operator can be characterized by a
fixpoint.

Automatic Verification 2009: Symbolic Model Checking – 3/77

IM NTU

Complete Lattices

Recall that a complete lattice is a partially ordered set in
which every subset of elements has a least upper
bound (supremum) and a greatest lower bound
(infimum).

For a given set S, 〈P(S),⊆〉 forms a complete lattice.

Let S′ ⊆ P(S), then
the supremum of S′, usually denoted sup(S′), equals
⋃

S′ and
the infimum of S′, denoted inf (S′), equals

⋂

S′.

The least element in P(S) is the empty set ∅, which we
refer to as False.

The greatest element in P(S) is the set S, which we
refer to as True.

Automatic Verification 2009: Symbolic Model Checking – 4/77

IM NTU

Predicate Transformer

A predicate transformer on P(S) is a function
τ : P(S)→ P(S).

τ i(Z) is used to denote i applications of τ to Z:
τ0(Z) = Z

τ i+1(Z) = τ(τ i(Z))

Automatic Verification 2009: Symbolic Model Checking – 5/77

IM NTU

Predicate Transformer (cont.)

Let τ be a predicate transformer.

τ is monotonic (order-preserving) provided that

P ⊆ Q implies τ(P) ⊆ τ(Q).

τ is ∪-continuous provided that

P1 ⊆ P2 ⊆ · · · implies τ(∪iPi) = ∪iτ(Pi).

τ is ∩-continuous provided that

P1 ⊇ P2 ⊇ · · · implies τ(∩iPi) = ∩iτ(Pi).

Automatic Verification 2009: Symbolic Model Checking – 6/77

IM NTU

LFP and GFP

Since P(S) is a complete lattice and hence also a CPO,
a monotonic predicate transformer τ on P(S) always has

a least fixpoint, µZ . τ(Z), and
a greatest fixpoint, νZ . τ(Z).

µZ . τ(Z) =

{

∩{Z | τ(Z) ⊆ Z} whenever τ is monotonic
∪iτ

i(False) whenever τ is also ∪-continuous

νZ . τ(Z) =

{

∪{Z | τ(Z) ⊇ Z} whenever τ is monotonic
∩iτ

i(True) whenever τ is also ∩-continuous

Automatic Verification 2009: Symbolic Model Checking – 7/77

IM NTU

Lemma 5

Lemma 5: If S is finite and τ is monotonic, then τ is also
∪-continuous and ∩-continuous.

Proof:
Because S is finite, there is j0 such that

for every j ≥ j0, Pj = Pj0, and
for every j < j0, Pj ⊆ Pj0.

Thus, ∪iPi = Pj0 and τ(∪iPi) = τ(Pj0).
Because τ is monotonic,
τ(P1) ⊆ τ(P2) ⊆ . . ., and thus
for every j ≥ j0, τ(Pj) = τ(Pj0) and
for every j < j0, τ(Pj) ⊆ τ(Pj0).

As a result, ∪iτ(Pi) = τ(Pj0), and τ is ∪-continuous.
The proof that τ is ∩-continuous is similar.

Automatic Verification 2009: Symbolic Model Checking – 8/77

IM NTU

Lemma 6

Lemma 6: If τ is monotonic, then for every i
τ i(False) ⊆ τ i+1(False), and
τ i(True) ⊇ τ i+1(True).

Proof sketch:
False ⊆ τ(False).
True ⊇ τ(True).
τ is monotonic.

Automatic Verification 2009: Symbolic Model Checking – 9/77

IM NTU

Lemma 7

Lemma 7: If τ is monotonic and S is finite, then
there is an integer i0 such that for every j ≥ i0,
τ j(False) = τ i0(False), and
similarly, there is some j0 such that for every j ≥ j0,
τ j(True) = τ j0(True).

Automatic Verification 2009: Symbolic Model Checking – 10/77

IM NTU

Lemma 8

Lemma 8: If τ is monotonic and S is finite, then
there is an integer i0 such that µZ . τ(Z) = τ i0(False),
and
similarly, there is an integer j0 such that
νZ . τ(Z) = τ j0(True).

Automatic Verification 2009: Symbolic Model Checking – 11/77

IM NTU

LFP Procedure

In a Kripke structure, if τ is monotonic, its least fixpoint
can be computed by the following program.

function Lfp(τ : PredicateTransformer) : Predicate
Q := False;
Q′ := τ(Q);
while (Q 6= Q′) do

Q := Q′;
Q′ := τ(Q);

end while ;
return (Q);

end function

Automatic Verification 2009: Symbolic Model Checking – 12/77

IM NTU

Correctness of LFP Procedure

The invariant of the while loop is

(Q′ = τ(Q)) ∧ (Q ⊆ µZ . τ(Z))

(cf. (Q′ = τ(Q)) ∧ (Q′ ⊆ µZ . τ(Z)))

The number of iterations before the while loop
terminates is bounded by |S|.

When the loop does terminate, we will have
Q = τ(Q) (Q is a fixpoint) and
Q ⊆ µZ . τ(Z).

Since Q is also a fixpoint, µZ . τ(Z) ⊆ Q.

Hence Q = µZ . τ(Z).

Automatic Verification 2009: Symbolic Model Checking – 13/77

IM NTU

GFP Procedure

We can also see that, if τ is monotonic, its greatest
fixpoint can be computed by the following program.

function Gfp(τ : PredicateTransformer) : Predicate
Q := True;
Q′ := τ(Q);
while (Q 6= Q′) do

Q := Q′;
Q′ := τ(Q);

end while ;
return (Q);

end function

An analogous argument can be used to show that the
procedure terminates and the value returns is νZ . τ(Z).

Automatic Verification 2009: Symbolic Model Checking – 14/77

IM NTU

Characterization of CTL Operators

Each CTL formula f is identified with the predicate
{s |M, s |= f} in P(S).

If so, then each of the basic CTL operators may be
characterized as a least or greatest fixpoint of an
appropriate predicate transformer.

Least fixpoints correspond to eventualities.

Greatest fixpoints correspond to properties that should
hold forever.

We will take a closer look at two cases:
EG f = νZ . f ∧ EXZ

E[f1 U f2] = µZ . f2 ∨ (f1 ∧ EX (Z))

Automatic Verification 2009: Symbolic Model Checking – 15/77

IM NTU

Characterization of EG

EG f = νZ . f ∧EXZ.

Let τ(Z) = f ∧ EXZ.

τ(True) = f ∧ EXTrue = f .

τ2(True) = f ∧ EX f .

τ3(True) = f ∧ EX (f ∧ EX f).

· · ·

τ i(True) = f ∧ EX (f ∧EX (· · · (f ∧EX f) · · ·)) (EX is
applied i− 1 times on the inner most f).

So intuitively, states in the limit of τ i(True) satisfy EG f .

Automatic Verification 2009: Symbolic Model Checking – 16/77

IM NTU

Lemma 9

Lemma 9: τ(Z) = f ∧ EXZ is monotonic.

Proof:
Let P1 ⊆ P2.
Consider some state s ∈ τ(P1).
To show that s ∈ τ(P2), it is sufficient to show that
s |= f and
there is a successor of s which is in P2.

Because s ∈ τ(P1),
s |= f and
there exists a state s′ such that (s, s′) ∈ R and
s′ ∈ P1.

Because P1 ⊆ P2, s′ ∈ P2.
Thus s ∈ τ(P2).

Automatic Verification 2009: Symbolic Model Checking – 17/77

IM NTU

Lemma 10

Lemma 10: Let τ(Z) = f ∧ EXZ and let τ i0(True) be the
limit of the sequence True ⊇ τ(True) ⊇ · · ·. For every
s ∈ S, if s ∈ τ i0(True) then s |= f , and there is a state s′

such that (s, s′) ∈ R and s′ ∈ τ i0(True).

Proof:
Let s ∈ τ i0(True).
Because τ i0(True) is a fixpoint of τ ,
τ i0(True) = τ(τ i0(True)).
Thus s ∈ τ(τ i0(True)).
By definition of τ we get that s |= f and there is a
state s′, such that (s, s′) ∈ R and s′ ∈ τ i0(True).

Automatic Verification 2009: Symbolic Model Checking – 18/77

IM NTU

Lemma 11

Lemma 11: EG f is a fixpoint of the function
τ(Z) = f ∧ EX (Z).

Proof:
Suppose s0 |= EG f .
By the definition of |=, there is a path s0, s1, · · · in M

such that for all k, sk |= f .
This implies that s0 |= f and s1 |= EG f .
In other words, s0 |= f and s0 |= EXEG f .
Thus, EG f ⊆ f ∧EXEG f .
Similarly, if s0 |= f ∧ EXEG f , then s0 |= EG f .
Thus, f ∧EXEG f ⊆ EG f .
Consequently, EG f = f ∧EXEG f .

Automatic Verification 2009: Symbolic Model Checking – 19/77

IM NTU

Lemma 12

Lemma 12: EG f is the greatest fixpoint of the function
τ(Z) = f ∧ EX (Z).

Proof:
Because τ is monotonic (Lemma 9), by Lemma 5 it is
also ∩-continuous.
In order to show that EG f is the greatest fixpoint of
τ , it is sufficient to prove that EG f = ∩iτ

i(True).

Automatic Verification 2009: Symbolic Model Checking – 20/77

IM NTU

Lemma 12 (cont.)

Proof (continued):
EG f ⊆ ∩iτ

i(True).
We prove this direction by induction.
Base case:
Clearly, EG f ⊆ True.
Induction step:
Assume that EG f ⊆ τn(True).
Because τ is monotonic, τ(EG f) ⊆ τn+1(True).
By Lemma 11, τ(EG f) = EG f .
Hence, EG f ⊆ τn+1(True).

Automatic Verification 2009: Symbolic Model Checking – 21/77

IM NTU

Lemma 12 (cont.)

Proof (continued):
∩iτ

i(True) ⊆ EG f .
Consider some state s ∈ ∩iτ

i(True).
The state s is included in every τ i(True).
Hence, it is also in the fixpoint τ i0(True).
By Lemma 10, s is the start of an infinite sequence
of states in which each state is related to the
previous one by the relation R.
Furthermore, each state in the sequence satisfies
f .
Thus s |= EG f .

Automatic Verification 2009: Symbolic Model Checking – 22/77

IM NTU

Characterization of EU: Lemma 13

E[f1 U f2] is the least fixpoint function of the function
τ(Z) = f2 ∨ (f1 ∧ EX (Z)).

Proof:
τ(Z) = f2 ∨ (f1 ∧ EX (Z)) is monotonic, hence τ is
∪-continuous.
E[f1 U f2] is a fixpoint of τ(Z).
We still need to prove that E[f1 U f2] is the least
fixpoint of τ(Z).
It is sufficient to show that E[f1 U f2] = ∪iτ

i(False)

Automatic Verification 2009: Symbolic Model Checking – 23/77

IM NTU

Lemma 13 (cont.)

Proof:
∪iτ

i(False) ⊆ E[f1 U f2]
We prove this direction by induction on i.
Base case: False ⊆ E[f1 U f2]

Ind. Hypo.: For every i ≤ k, τ i(False) ⊆ E[f1 U f2].
When i = k + 1, τk+1(False) = τ(τk(False)).
Note that τ(Z) is monotonic, so
τ(τk(False)) ⊆ τ(E[f1 U f2]) (by Ind. Hypo.)
Since E[f1 U f2] is a fixpoint of τ(Z),
τ(E[f1 U f2]) = E[f1 U f2].
Hence, we have τ i(False) ⊆ E[f1 U f2] for all i.
Consequently, we have that ∪iτ

i(False) ⊆ E[f1 U f2].

Automatic Verification 2009: Symbolic Model Checking – 24/77

IM NTU

Lemma 13 (cont.)

Proof (continued):
E[f1 U f2] ⊆ ∪iτ

i(False)
We prove this direction by induction on the length
of the prefix of the path along with f1f2U is
satisfied.
If there’s a state s |= E[f1 U f2], then there’s a path
π = s1, s2, . . ., with s = s1 and j ≥ 1 such that sj |= f2

and for all l < j, sl |= f1.
We show that for every such state s, s ∈ τ j(False).

Automatic Verification 2009: Symbolic Model Checking – 25/77

IM NTU

Lemma 13 (cont.)

Proof (continued):
Base case is trivial. If j = 1, s |= f2 and therefore
s ∈ τ(False) = f2 ∨ (f1 ∧ EX (False)).
For the inductive step, assume that for every s and
every j ≤ n, s ∈ τ j(False) always holds.
Let s be the start of the path π = s1, s2, . . . such that
sn+1 |= f2 and for every l < n+ 1, sl |= f1.
Consider the state s2 on the path. It is the start of a
prefix of length n along which f1f U 2 holds.
By the induction hypothesis, s2 ∈ τn(False).
Because (s, s2) ∈ R and s |= f1, s ∈ f1 ∧EX (τn(False)),
thus, s ∈ τn+1(False).

Automatic Verification 2009: Symbolic Model Checking – 26/77

IM NTU

An Example

Source: [Clarke et al. 1999]. Names of states (clockwise): s0, s1, s2, s3.

Automatic Verification 2009: Symbolic Model Checking – 27/77

IM NTU

An Example (cont.)

Sequence of approximations for
E[pU q] = µZ . q ∨ (p ∧ EXZ):

τ1(False) = q ∨ (p ∧ EXFalse)

= q

τ2(False) = q ∨ (p ∧ EX τ(False))

= q ∨ (p ∧ EX q)

= q ∨ (p ∧ {s1, s3})

= q ∨ {s1}

τ3(Fasle) = q ∨ (p ∧ EX τ2(Fasle))

= q ∨ (p ∧ EX (q ∨ {s1}))

= q ∨ (p ∧ {s0, s1, s2, s3})

= q ∨ p

Automatic Verification 2009: Symbolic Model Checking – 28/77

IM NTU

Characterization of CTL Operators (cont.)

AF f = µZ . f ∨AXZ

EF f = µZ . f ∨EXZ

AG f = νZ . f ∧AXZ

EG f = νZ . f ∧EXZ

A[f U g] = µZ . g ∨ (f ∧AX (Z))

E[f U g] = µZ . g ∨ (f ∧ EX (Z))

A[f R g] = νZ . g ∧ (f ∨AX (Z))

E[f R g] = νZ . g ∧ (f ∨ EX (Z))

Automatic Verification 2009: Symbolic Model Checking – 29/77

IM NTU

Symbolic Model Checking for CTL

There is a quite fast explicit state model checking
algorithms for CTL, but a state explosion problem may
occur.

In the following, we will present a Symbolic Model
Checking (SMC) algorithm for CTL which operates on
Kripke structures represented symbolically using
OBDDs.

For this, the logic of Quantified Boolean Formulae
(QBF) is used to have a more succinct notation for
complex operations on Boolean formulae.

Automatic Verification 2009: Symbolic Model Checking – 30/77

IM NTU

Quantified Boolean Formulae (QBF)

Given a set V = {v0, . . . , vn−1} of propositional variables,
QBF (V) is the smallest set of formulae such that

every variable in V is a formula,
if f and g are formulae, then ¬f , f ∨ g, and f ∧ g are
formulae, and
if f is a formula and v ∈ V , then ∃vf and ∀vf are
formulae.

An OBDD is associated to a QBF formula.

Automatic Verification 2009: Symbolic Model Checking – 31/77

IM NTU

Truth Assignment

A truth assignment for QBF (V) is a function
σ : V → {0, 1}.

If a ∈ {0, 1}, then the notation σ〈v ← a〉 is used for the
truth assignment defined by

σ〈v ← a〉(w) =

{

a if v = w

σ(w) otherwise

Automatic Verification 2009: Symbolic Model Checking – 32/77

IM NTU

Models of QBF

The notation σ |= f denotes that f is true under the
assignment σ

σ |= v iff σ(v) = 1

σ |= ¬f iff σ 6|= f

σ |= f ∨ g iff σ |= f or σ |= g

σ |= f ∧ g iff σ |= f and σ |= g

σ |= ∃vf iff σ〈v ← 0〉 |= f or σ〈v ← 1〉 |= f

σ |= ∀vf iff σ〈v ← 0〉 |= f and σ〈v ← 1〉 |= f

Automatic Verification 2009: Symbolic Model Checking – 33/77

IM NTU

Quantification

The quantifiers in QBF can be implemented as
combinations of the restrict and apply operators.

∃xf = f |x←0 ∨ f |x←1

∀xf = f |x←0 ∧ f |x←1

Automatic Verification 2009: Symbolic Model Checking – 34/77

IM NTU

SMC Algorithm

The SMC algorithm is implemented by a procedure
Check .

Arguments: a CTL formula
Returns: an OBDD that represents exactly those
states of the system that satisfy the formula

Automatic Verification 2009: Symbolic Model Checking – 35/77

IM NTU

SMC Algorithm (cont.)

Check(a) = the OBDD representing the set of states
satisfying the atomic proposition a

Check(f ∧ g) = Check(f) ∧ Check(g)

Check(¬f) = ¬Check(f)

Check(EX f) = CheckEX (Check(f))

Check(E[f U g]) = CheckEU (Check(f),Check(g))

Check(EG f) = CheckEG(Check(f))

Automatic Verification 2009: Symbolic Model Checking – 36/77

IM NTU

CheckEX

The formula EX f is true in a state if the state has a
successor in which f is true.

CheckEX (f(v̄)) = ∃v̄′[f(v̄′) ∧ R(v̄, v̄′)],

where R(v̄, v̄′) is the OBDD representation of the
transition relation.

Automatic Verification 2009: Symbolic Model Checking – 37/77

IM NTU

CheckEU

CheckEU is based on the least fixpoint characterization
for the CTL operator EU.

E[f U g] = µZ . g ∨ (f ∧ EXZ)

The function Lfp is used to compute a sequence of
approximations

Q0, Q1, . . . , Qi, . . .

that converges to E[f U g] in a finite number of steps.

Automatic Verification 2009: Symbolic Model Checking – 38/77

IM NTU

CheckEU (cont.)

If we have OBDDs for f , g, and the current
approximation Qi, then we can compute an OBDD for
the next approximation Qi+1.

When Qi = Qi+1 (it is easy to test because OBDDs
provide a canonical form of Boolean functions), the
function Lfp terminates.

Automatic Verification 2009: Symbolic Model Checking – 39/77

IM NTU

CheckEG

CheckEG is based on the greatest fixpoint
characterization for the CTL operator EG.

EG f = νZ . f ∧ EXZ

Automatic Verification 2009: Symbolic Model Checking – 40/77

IM NTU

Fairness in SMC

Assume the fairness constraints are given by a set of
CTL formulae F = {P1, . . . , Pn}.

A fair path is a path which each formula in F holds
infinitely often on.

We define a new procedure CheckFair for checking CTL
formulae relative to the fairness constructions in F .

We do this by defining new intermediate procedures
CheckFairEX , CheckFairEU , and CheckFairEG, which
correspond to the intermediate procedures used to
define Check .

Automatic Verification 2009: Symbolic Model Checking – 41/77

IM NTU

EG f with Fairness

Consider the formula EG f given fairness constraints F .

The formula means that there exists a fair path
beginning with the current state on which f holds
globally.

The set of such states Z is the largest set with the
following two properties:

all of the states in Z satisfy f , and
for all Pk ∈ F and all s ∈ Z, there is a sequence of
states of length one or greater from s to a state in Z

satisfying Pk such that all states on the path satisfy f .
(cf. There exists a path in S′, where f holds, that
leads from s to some node t in a nontrivial fair
strongly connected component of the graph (S′, R′).)

Automatic Verification 2009: Symbolic Model Checking – 42/77

IM NTU

EG f with Fairness (cont.)

The characterization can be expressed by means of a
fixpoint as follows:

EG f = νZ . f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)]

Note that the formula is not directly expressible in CTL.

We are going to prove the correctness of this equation.

We split it into two lemmas.

Automatic Verification 2009: Symbolic Model Checking – 43/77

IM NTU

Lemma 14

Lemma 14: The fair version of EG f is a fixpoint of the
equation

Z = f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)].

Proof: It suffices to show that

EG f ⊆ f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)]

and

f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)] ⊆ EG f.

Automatic Verification 2009: Symbolic Model Checking – 44/77

IM NTU

Lemma 14 (cont.)

Case 1: EG f ⊆ f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)].

Let s |= EG f , then s is the start of a fair path π, all of
whose states satisfy f .
Let si be the first state on π such that si ∈ Pi and
si 6= s.
The state si is also a start of a fair path along which
all states satisfy f .
Thus, si ∈ EG f .
It follows that for every i,
s |= f ∧ EXE[f U (EG f ∧ Pi)].

Therefore, s |= f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)].

Automatic Verification 2009: Symbolic Model Checking – 45/77

IM NTU

Lemma 14 (cont.)

Case 2: f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)] ⊆ EG f .

If s |= f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)], then there is a

finite path starting from s to a state s′ such that
s′ |= (EG f ∧ Pk).
Every state on the path from s to s′ satisfies f .
s′ is the beginning of a fair path such that each state
on the path satisfies f .
Thus, s |= EG f .

Automatic Verification 2009: Symbolic Model Checking – 46/77

IM NTU

Lemma 15

Lemma 15: The greatest fixpoint of the following
equation is included in EG f .

Z = f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)]

Automatic Verification 2009: Symbolic Model Checking – 47/77

IM NTU

Lemma 15 (cont.)

Proof:
Let Z be an arbitrary fixpoint of the formula.
Assume that s ∈ Z. Then s |= f .
s has a successor s′ that is a start of a path to a state
s1 such that

all states on this path satisfy f and
s1 satisfies Z ∧ P1.

Because s1 ∈ Z we can conclude by the same
argument that there is a path from s1 to a state s2 in
P2.

Automatic Verification 2009: Symbolic Model Checking – 48/77

IM NTU

Lemma 15 (cont.)

Proof (continued):
Using this argument n times we conclude that s is the
start of a path along which all states satisfy f and
which passes through P1, . . . , Pk.
The last state on the path is in Z, and thus there is a
path from this state back to some state in P1.
Induction can be used to show that there exists a fair
path starting at s such that f is satisfied along the
path, i.e., s |= EG f .

Automatic Verification 2009: Symbolic Model Checking – 49/77

IM NTU

CheckFairEG

CheckFairEG(f(v̄)) is based on the following fixpoint
characterization:

νZ(v̄) . f(v̄) ∧
n
∧

k=1

EXE[f(v̄)U (Z(v̄) ∧ Pk)].

Automatic Verification 2009: Symbolic Model Checking – 50/77

IM NTU

CheckFair

The set of all states which are the start of some fair
computation is

fair(v̄) = CheckFair(EGTrue).

Automatic Verification 2009: Symbolic Model Checking – 51/77

IM NTU

CheckFairEX

The formula EX f under fairness constraints is
equivalent to the formula EX f ∧ fair without fairness
constraints.

CheckFairEX (f(v̄)) = CheckEX (f(v̄) ∧ fair(v̄))

Automatic Verification 2009: Symbolic Model Checking – 52/77

IM NTU

CheckFairEU

The formula E[f U g] under fairness constraints is
equivalent to the formula E[f U g ∧ fair] without fairness
constraints.

CheckFairEU (f(v̄), g(v̄)) = CheckEU (f(v̄), g(v̄) ∧ fair(v̄))

Automatic Verification 2009: Symbolic Model Checking – 53/77

IM NTU

LTL Model Checking

Let A f be a linear temporal logic formula where f is a
restricted path formula.

A formula f is a restricted path formula if all state
subformulae in f are atomic propositions.

The problem is to determine all of those states s ∈ S
such that M, s |= A f .

Since M, s |= A f iff M, s |= ¬E¬f , it is sufficient to check
the truth of formulae of the form E f .

Automatic Verification 2009: Symbolic Model Checking – 54/77

IM NTU

LTL Model Checking (cont.)

Given a formula E f and a Kripke structure M , the
procedure of LTL model checking is:

Construct a tableau T for the path formula f .
Compose T with M .
Find a path in the composition.

The tableau can be represented by OBDDs.

Automatic Verification 2009: Symbolic Model Checking – 55/77

IM NTU

States of the Tableau

Each state in the tableau is a set of elementary
formulae obtained from f .

The set of elementary subformulae of f is denoted by
el(f) and is defined recursively as follows.

el(p) = {p} if p ∈ APf

el(¬g) = el(g)

el(g ∨ h) = el(g) ∪ el(h)

el(Xg) = {Xg} ∪ el(g)

el(gUh) = {X(gUh)} ∪ el(g) ∪ el(h)

The set of states ST of T is P(el(f)).

Automatic Verification 2009: Symbolic Model Checking – 56/77

IM NTU

Transition Relation of the Tableau

An additional function sat is defined recursively as
follows.

sat(g) = {s | g ∈ s} where g ∈ el(f)

sat(¬g) = {s | s 6∈ sat(g)}

sat(g ∨ h) = sat(g) ∪ sat(h)

sat(gUh) = sat(h) ∪ (sat(g) ∩ sat(X(gUh)))

The transition relation RT of T is defined as

RT (s, s′) =
∧

Xg∈el(f)

s ∈ sat(Xg)⇔ s′ ∈ sat(g)

Automatic Verification 2009: Symbolic Model Checking – 57/77

IM NTU

Transition Relation of the Tableau (cont.)

An additional condition is necessary in order to identify
those paths along which f holds.

A path π that starts from a state s ∈ sat(f) will satisfy f iff
for every subformula gUh and for every state s on π,
if s ∈ sat(gUh) then either s ∈ sat(h) or there is a later
state t on π such that t ∈ sat(h).

Automatic Verification 2009: Symbolic Model Checking – 58/77

IM NTU

The Microwave Oven Example

Source: [Clarke et al. 1999].

Automatic Verification 2009: Symbolic Model Checking – 59/77

IM NTU

The Microwave Oven Example

g = ¬heat U close

Source: [Clarke et al. 1999].

Automatic Verification 2009: Symbolic Model Checking – 60/77

IM NTU

Eventuality

The definition of RT does not guarantee that eventuality
properties are fulfilled.

A path π that starts from a state s ∈ sat(f) will satisfy f if
and only if

for every subformulae gUh and for every state s on
π, if s ∈ sat(gUh) then either s ∈ sat(h) or there is a
later state t on π such that t ∈ sat(h).

Automatic Verification 2009: Symbolic Model Checking – 61/77

IM NTU

Additional Notations

π′ = s′0, s
′

1, . . . represents a path in M .

For the suffix π′i = s′i, s
′

i+1, . . . of π, we define

si = {ψ | ψ ∈ el(f) and M,π′ |= ψ}

Automatic Verification 2009: Symbolic Model Checking – 62/77

IM NTU

Lemma 16

Lemma 16: Let sub(f) be the set of all subformulae of f .
For all g ∈ sub(f) ∪ el(f), M,π′i |= g if and only if
si ∈ sat(g).

Case 1: Let g ∈ el(f).
M,π′i |= g iff g ∈ si.
g ∈ si iff si ∈ sat(g).

Case 2: Let g = ¬g1 or g = g1 ∨ g2.
Case 3: Let g = g1 U g2.
M,π′i |= g1 U g2 iff M,π′i |= g2 or (M,π′i |= g1 and
M,π′i |= X(g1 U g2)).
M,π′i |= g2 or (M,π′i |= g1 and M,π′i |= X(g1 U g2)) iff
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))).
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))) iff
si ∈ sat(g1 U g2).

Automatic Verification 2009: Symbolic Model Checking – 63/77

IM NTU

Lemma 17

Lemma 17: Let π′ = s′0s
′

1 . . . be a path in M . For all i ≥ 0,
let si be the tableau state. Then π = s0s1 . . . is a path in
T .

Automatic Verification 2009: Symbolic Model Checking – 64/77

IM NTU

Theorem 4

Theorem 4: Let T be the tableau for the path formula f .
Then, for every Kripke structure M and every path π′ of
M , if M,π′ |= f then there is a path π in T that starts in a
state in sat(f), such that label(π′) |APf

= label(π).

Automatic Verification 2009: Symbolic Model Checking – 65/77

IM NTU

Composition of T and M

P = (S,R,L) is the product of the tableau
T = (ST , RT , LT) and the Kripke structure
M = (SM , RM , LM).

S = {(s, s′) | s ∈ ST , s
′ ∈ SM and LM (s′) |APf

= LT (s)}.

R((s, s′), (t, t′)) iff RT (s, t) and RM (s′, t′).
L((s, s′)) = LT (s).

The function sat is extended to be defined over S by
(s, s′) ∈ sat(g) if and only if s ∈ sat(g).

Automatic Verification 2009: Symbolic Model Checking – 66/77

IM NTU

Lemma 18

π′′ = (s0, s
′

0), (s1, s
′

1), . . . is a path in P with
LP ((si, s

′

i)) = LT (si) for all i ≥ 0 if and only if there exists
a path π = s0, s1, . . . in T , and a path π′ = s′0, s

′

1, . . . in M

with LT (si) = LM (si) |APf
for all i ≥ 0.

Automatic Verification 2009: Symbolic Model Checking – 67/77

IM NTU

Theorem 5

M, s′ |= E f if and only if there is a state s in T such that
(s, s′) ∈ sat(f) and P, (s, s′) |= EGTrue under fairness
constraints

{sat(¬(gUh) ∨ h) | gUh occurs in f}.

Automatic Verification 2009: Symbolic Model Checking – 68/77

IM NTU

The Microwave Oven Example

¬g = ¬(¬heat U close)

Source: [Clarke et al. 1999].

Automatic Verification 2009: Symbolic Model Checking – 69/77

IM NTU

Summary of LTL Model Checking

Given a Kripke structure M , a state s′ in M and a LTL
formula f .

Construct a symbolic representation of M .

Construct a symbolic representation of T¬f .

Construct the product P of M and T¬f .

Use the symbolic CTL model checking algorithm to
check if there is a state s in T¬f such that

(s, s′) ∈ sat(¬f) and
P, (s, s′) |= EGTrue under fairness constraints

{sat(¬(gUh) ∨ h) | gUh occurs in f}.

Automatic Verification 2009: Symbolic Model Checking – 70/77

IM NTU

SMC for LTL [Kesten et al 1995]

Here we slightly modify the definition of Kripke
structures and the symbolic algorithm in [Kesten et al.
1995].

A Kripke structure M is a tuple (V, S0, R) where
V is a set of system variables and thus the set of
states S is the set of all valuations for V ,
S0 is the initial condition defined upon V , and
R ⊆ S × S is the transition relation which is total.

The problem is to check, given a Kripke structure M and
a formula f , whether M |= f (all paths of M satisfy f).

Automatic Verification 2009: Symbolic Model Checking – 71/77

IM NTU

SMC for LTL [Kesten et al 1995] (cont.)

Let Vf be the set of all propositions in f . Without loss of
generality, we assume Vf = V (of the Kripke structure).

For each elementary formula p ∈ el(f), a Boolean
variable (elementary variable) xp is associated.

The set of elementary variables are represented by a
vector x̄ = x1, x2, . . . , xm where m = |el(f)|.

Note that a valuation for x̄ constitutes a state in M and a
state in Tf .

Automatic Verification 2009: Symbolic Model Checking – 72/77

IM NTU

Formulae in Elementary Formulae

Let CL(f) denote the closure of the LTL formula f .

For each formula p ∈ CL(f), we define a Boolean
function χp(x̄) which expresses p in terms of the
elementary variables:

For p ∈ el(f), χp(x̄) = xp

For p = ¬q, χp = ¬χq

For q ∧ r, χp = χq ∧ χr

For p = qU r, χp = χr ∨ (χq ∧ xX(q U r))

For p = q S r, χp = χr ∨ (χq ∧ xY(q S r))

Note: Y is the “previous” operator.

Automatic Verification 2009: Symbolic Model Checking – 73/77

IM NTU

LTL Model Checking

There exists a computation in M satisfying f iff satM,f

as defined below is true.

satM,f : ∃x̄, ȳ : init(x̄) ∧ E∗(x̄, ȳ) ∧ scf E(ȳ)

Automatic Verification 2009: Symbolic Model Checking – 74/77

IM NTU

Initial Condition

The following formula identifies an initial state in the
product of M and Tf .

It is an initial state in M .
It is also an initial atom in Tf .

init(x̄) : χf (x̄) ∧ (
∧

Yp∈CL(f)

¬xYp) ∧ S0(x̄)

Automatic Verification 2009: Symbolic Model Checking – 75/77

IM NTU

Transition Relation

The following formula identifies the set of transitions in
the product:

E(x̄, ȳ) : e(x̄, ȳ) ∧ R(x̄, ȳ)

where

e(x̄, ȳ) :
∧

Xp∈el(f)

(xXp ↔ χp(ȳ)) ∧
∧

Yp∈el(f)

(χp(x̄)↔ yYp)

E+(x̄, ȳ) = E(x̄, ȳ) ∨ ∃z̄ : E+(x̄, z̄) ∧ E(z̄, ȳ)

E∗(x̄, ȳ) : (x̄ = ȳ) ∨ E+(x̄, ȳ)

The definitions of e+(x̄, ȳ) and e∗(x̄, ȳ) are similar to
E+(x̄, ȳ) and E∗(x̄, ȳ).

Automatic Verification 2009: Symbolic Model Checking – 76/77

IM NTU

Fulfilling Atoms

The following formula identifies fulfilling atoms.

scfE(x̄) : E+(x̄, x̄) ∧
∧

pU q∈CL(f)

(χpU q(x̄)→

∃z̄ : E∗(x̄, z̄) ∧ χq(z̄) ∧ E
∗(z̄, x̄))

Automatic Verification 2009: Symbolic Model Checking – 77/77

	Introduction
	Fixpoints
	Complete Lattices
	Predicate Transformer
	Predicate Transformer (cont.)
	LFP and GFP
	Lemma 5
	Lemma 6
	Lemma 7
	Lemma 8
	LFP Procedure
	Correctness of LFP Procedure
	GFP Procedure
	Characterization of CTL Operators
	Characterization of $egop $
	Lemma 9
	Lemma 10
	Lemma 11
	Lemma 12
	Lemma 12 (cont.)
	Lemma 12 (cont.)
	Characterization of $euop $: Lemma 13
	Lemma 13 (cont.)
	Lemma 13 (cont.)
	Lemma 13 (cont.)
	An Example
	An Example (cont.)
	Characterization of CTL Operators (cont.)
	Symbolic Model Checking for CTL
	Quantified Boolean Formulae (QBF)
	Truth Assignment
	Models of QBF
	Quantification
	SMC Algorithm
	SMC Algorithm (cont.)
	CheckEX
	CheckEU
	CheckEU (cont.)
	CheckEG
	Fairness in SMC
	$eg {f}$ with Fairness
	$eg {f}$ with Fairness (cont.)
	Lemma 14
	Lemma 14 (cont.)
	Lemma 14 (cont.)
	Lemma 15
	Lemma 15 (cont.)
	Lemma 15 (cont.)
	CheckFairEG
	CheckFair
	CheckFairEX
	CheckFairEU
	LTL Model Checking
	LTL Model Checking (cont.)
	States of the Tableau
	Transition Relation of the Tableau
	Transition Relation of the Tableau (cont.)
	The Microwave Oven Example
	The Microwave Oven Example
	Eventuality
	Additional Notations
	Lemma 16
	Lemma 17
	Theorem 4
	Composition of T and M
	Lemma 18
	Theorem 5
	The Microwave Oven Example
	Summary of LTL Model Checking
	SMC for LTL [Kesten et al 1995]
	SMC for LTL [Kesten et al 1995] (cont.)
	Formulae in Elementary Formulae
	LTL Model Checking
	Initial Condition
	Transition Relation
	Fulfilling Atoms

