
IM NTU

Symbolic Model Checking
(Based on [Clarke et al. 1999] and [Kesten et al. 1995])

Yih-Kuen Tsay

(original created by Ming-Hsien Tsai and Jinn-Shu Chang)

Dept. of Information Management

National Taiwan University

Automatic Verification 2009: Symbolic Model Checking – 1/77



IM NTU

Introduction

We have studied
the operations on OBDDs and
the encoding of a transition system in OBDDs.

How does one use OBDDs in model checking?
Symbolic CTL model checking
Symbolic LTL model checking

The model checking algorithms are symbolic, because
they are based on the manipulation of Boolean
functions (rather than state transition graphs).

OBDDs represent sets of states and transitions.

We can operate on entire sets rather than on individual
states and transitions.
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Fixpoints

Let S be the set of all states of a system.

A set S′ ∈ P(S) is called a fixpoint of a function
τ : P(S)→ P(S) if τ(S′) = S′.

A temporal formula f can be viewed as a set S′ of
states such that

S′ ∈ P(S) and
f is true exactly on the states in S′.

Each temporal logic operator can be characterized by a
fixpoint.
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Complete Lattices

Recall that a complete lattice is a partially ordered set in
which every subset of elements has a least upper
bound (supremum) and a greatest lower bound
(infimum).

For a given set S, 〈P(S),⊆〉 forms a complete lattice.

Let S′ ⊆ P(S), then
the supremum of S′, usually denoted sup(S′), equals
⋃

S′ and
the infimum of S′, denoted inf (S′), equals

⋂

S′.

The least element in P(S) is the empty set ∅, which we
refer to as False.

The greatest element in P(S) is the set S, which we
refer to as True.
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Predicate Transformer

A predicate transformer on P(S) is a function
τ : P(S)→ P(S).

τ i(Z) is used to denote i applications of τ to Z:
τ0(Z) = Z

τ i+1(Z) = τ(τ i(Z))
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Predicate Transformer (cont.)

Let τ be a predicate transformer.

τ is monotonic (order-preserving) provided that

P ⊆ Q implies τ(P ) ⊆ τ(Q).

τ is ∪-continuous provided that

P1 ⊆ P2 ⊆ · · · implies τ(∪iPi) = ∪iτ(Pi).

τ is ∩-continuous provided that

P1 ⊇ P2 ⊇ · · · implies τ(∩iPi) = ∩iτ(Pi).
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LFP and GFP

Since P(S) is a complete lattice and hence also a CPO,
a monotonic predicate transformer τ on P(S) always has

a least fixpoint, µZ . τ(Z), and
a greatest fixpoint, νZ . τ(Z).

µZ . τ(Z) =

{

∩{Z | τ(Z) ⊆ Z} whenever τ is monotonic
∪iτ

i(False) whenever τ is also ∪-continuous

νZ . τ(Z) =

{

∪{Z | τ(Z) ⊇ Z} whenever τ is monotonic
∩iτ

i(True) whenever τ is also ∩-continuous
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Lemma 5

Lemma 5: If S is finite and τ is monotonic, then τ is also
∪-continuous and ∩-continuous.

Proof:
Because S is finite, there is j0 such that

for every j ≥ j0, Pj = Pj0, and
for every j < j0, Pj ⊆ Pj0.

Thus, ∪iPi = Pj0 and τ(∪iPi) = τ(Pj0).
Because τ is monotonic,
τ(P1) ⊆ τ(P2) ⊆ . . ., and thus
for every j ≥ j0, τ(Pj) = τ(Pj0) and
for every j < j0, τ(Pj) ⊆ τ(Pj0).

As a result, ∪iτ(Pi) = τ(Pj0), and τ is ∪-continuous.
The proof that τ is ∩-continuous is similar.
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Lemma 6

Lemma 6: If τ is monotonic, then for every i
τ i(False) ⊆ τ i+1(False), and
τ i(True) ⊇ τ i+1(True).

Proof sketch:
False ⊆ τ(False).
True ⊇ τ(True).
τ is monotonic.
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Lemma 7

Lemma 7: If τ is monotonic and S is finite, then
there is an integer i0 such that for every j ≥ i0,
τ j(False) = τ i0(False), and
similarly, there is some j0 such that for every j ≥ j0,
τ j(True) = τ j0(True).
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Lemma 8

Lemma 8: If τ is monotonic and S is finite, then
there is an integer i0 such that µZ . τ(Z) = τ i0(False),
and
similarly, there is an integer j0 such that
νZ . τ(Z) = τ j0(True).
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LFP Procedure

In a Kripke structure, if τ is monotonic, its least fixpoint
can be computed by the following program.

function Lfp(τ : PredicateTransformer ) : Predicate
Q := False;
Q′ := τ(Q);
while (Q 6= Q′) do

Q := Q′;
Q′ := τ(Q);

end while ;
return (Q);

end function
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Correctness of LFP Procedure

The invariant of the while loop is

(Q′ = τ(Q)) ∧ (Q ⊆ µZ . τ(Z))

(cf. (Q′ = τ(Q)) ∧ (Q′ ⊆ µZ . τ(Z)))

The number of iterations before the while loop
terminates is bounded by |S|.

When the loop does terminate, we will have
Q = τ(Q) (Q is a fixpoint) and
Q ⊆ µZ . τ(Z).

Since Q is also a fixpoint, µZ . τ(Z) ⊆ Q.

Hence Q = µZ . τ(Z).
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GFP Procedure

We can also see that, if τ is monotonic, its greatest
fixpoint can be computed by the following program.

function Gfp(τ : PredicateTransformer) : Predicate
Q := True;
Q′ := τ(Q);
while (Q 6= Q′) do

Q := Q′;
Q′ := τ(Q);

end while ;
return (Q);

end function

An analogous argument can be used to show that the
procedure terminates and the value returns is νZ . τ(Z).
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Characterization of CTL Operators

Each CTL formula f is identified with the predicate
{s |M, s |= f} in P(S).

If so, then each of the basic CTL operators may be
characterized as a least or greatest fixpoint of an
appropriate predicate transformer.

Least fixpoints correspond to eventualities.

Greatest fixpoints correspond to properties that should
hold forever.

We will take a closer look at two cases:
EG f = νZ . f ∧ EXZ

E[f1 U f2] = µZ . f2 ∨ (f1 ∧ EX (Z))
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Characterization of EG

EG f = νZ . f ∧EXZ.

Let τ(Z) = f ∧ EXZ.

τ(True) = f ∧ EXTrue = f .

τ2(True) = f ∧ EX f .

τ3(True) = f ∧ EX (f ∧ EX f).

· · ·

τ i(True) = f ∧ EX (f ∧EX (· · · (f ∧EX f) · · ·)) (EX is
applied i− 1 times on the inner most f).

So intuitively, states in the limit of τ i(True) satisfy EG f .
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Lemma 9

Lemma 9: τ(Z) = f ∧ EXZ is monotonic.

Proof:
Let P1 ⊆ P2.
Consider some state s ∈ τ(P1).
To show that s ∈ τ(P2), it is sufficient to show that
s |= f and
there is a successor of s which is in P2.

Because s ∈ τ(P1),
s |= f and
there exists a state s′ such that (s, s′) ∈ R and
s′ ∈ P1.

Because P1 ⊆ P2, s′ ∈ P2.
Thus s ∈ τ(P2).
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Lemma 10

Lemma 10: Let τ(Z) = f ∧ EXZ and let τ i0(True) be the
limit of the sequence True ⊇ τ(True) ⊇ · · ·. For every
s ∈ S, if s ∈ τ i0(True) then s |= f , and there is a state s′

such that (s, s′) ∈ R and s′ ∈ τ i0(True).

Proof:
Let s ∈ τ i0(True).
Because τ i0(True) is a fixpoint of τ ,
τ i0(True) = τ(τ i0(True)).
Thus s ∈ τ(τ i0(True)).
By definition of τ we get that s |= f and there is a
state s′, such that (s, s′) ∈ R and s′ ∈ τ i0(True).
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Lemma 11

Lemma 11: EG f is a fixpoint of the function
τ(Z) = f ∧ EX (Z).

Proof:
Suppose s0 |= EG f .
By the definition of |=, there is a path s0, s1, · · · in M

such that for all k, sk |= f .
This implies that s0 |= f and s1 |= EG f .
In other words, s0 |= f and s0 |= EXEG f .
Thus, EG f ⊆ f ∧EXEG f .
Similarly, if s0 |= f ∧ EXEG f , then s0 |= EG f .
Thus, f ∧EXEG f ⊆ EG f .
Consequently, EG f = f ∧EXEG f .
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Lemma 12

Lemma 12: EG f is the greatest fixpoint of the function
τ(Z) = f ∧ EX (Z).

Proof:
Because τ is monotonic (Lemma 9), by Lemma 5 it is
also ∩-continuous.
In order to show that EG f is the greatest fixpoint of
τ , it is sufficient to prove that EG f = ∩iτ

i(True).
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Lemma 12 (cont.)

Proof (continued):
EG f ⊆ ∩iτ

i(True).
We prove this direction by induction.
Base case:
Clearly, EG f ⊆ True.
Induction step:
Assume that EG f ⊆ τn(True).
Because τ is monotonic, τ(EG f) ⊆ τn+1(True).
By Lemma 11, τ(EG f) = EG f .
Hence, EG f ⊆ τn+1(True).
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Lemma 12 (cont.)

Proof (continued):
∩iτ

i(True) ⊆ EG f .
Consider some state s ∈ ∩iτ

i(True).
The state s is included in every τ i(True).
Hence, it is also in the fixpoint τ i0(True).
By Lemma 10, s is the start of an infinite sequence
of states in which each state is related to the
previous one by the relation R.
Furthermore, each state in the sequence satisfies
f .
Thus s |= EG f .
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Characterization of EU: Lemma 13

E[f1 U f2] is the least fixpoint function of the function
τ(Z) = f2 ∨ (f1 ∧ EX (Z)).

Proof:
τ(Z) = f2 ∨ (f1 ∧ EX (Z)) is monotonic, hence τ is
∪-continuous.
E[f1 U f2] is a fixpoint of τ(Z).
We still need to prove that E[f1 U f2] is the least
fixpoint of τ(Z).
It is sufficient to show that E[f1 U f2] = ∪iτ

i(False)
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Lemma 13 (cont.)

Proof:
∪iτ

i(False) ⊆ E[f1 U f2]
We prove this direction by induction on i.
Base case: False ⊆ E[f1 U f2]

Ind. Hypo.: For every i ≤ k, τ i(False) ⊆ E[f1 U f2].
When i = k + 1, τk+1(False) = τ(τk(False)).
Note that τ(Z) is monotonic, so
τ(τk(False)) ⊆ τ(E[f1 U f2]) (by Ind. Hypo.)
Since E[f1 U f2] is a fixpoint of τ(Z),
τ(E[f1 U f2]) = E[f1 U f2].
Hence, we have τ i(False) ⊆ E[f1 U f2] for all i.
Consequently, we have that ∪iτ

i(False) ⊆ E[f1 U f2].
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Lemma 13 (cont.)

Proof (continued):
E[f1 U f2] ⊆ ∪iτ

i(False)
We prove this direction by induction on the length
of the prefix of the path along with f1f2U is
satisfied.
If there’s a state s |= E[f1 U f2], then there’s a path
π = s1, s2, . . ., with s = s1 and j ≥ 1 such that sj |= f2

and for all l < j, sl |= f1.
We show that for every such state s, s ∈ τ j(False).
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Lemma 13 (cont.)

Proof (continued):
Base case is trivial. If j = 1, s |= f2 and therefore
s ∈ τ(False) = f2 ∨ (f1 ∧ EX (False)).
For the inductive step, assume that for every s and
every j ≤ n, s ∈ τ j(False) always holds.
Let s be the start of the path π = s1, s2, . . . such that
sn+1 |= f2 and for every l < n+ 1, sl |= f1.
Consider the state s2 on the path. It is the start of a
prefix of length n along which f1f U 2 holds.
By the induction hypothesis, s2 ∈ τn(False).
Because (s, s2) ∈ R and s |= f1, s ∈ f1 ∧EX (τn(False)),
thus, s ∈ τn+1(False).
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An Example

Source: [Clarke et al. 1999]. Names of states (clockwise): s0, s1, s2, s3.
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An Example (cont.)

Sequence of approximations for
E[pU q] = µZ . q ∨ (p ∧ EXZ):

τ1(False) = q ∨ (p ∧ EXFalse)

= q

τ2(False) = q ∨ (p ∧ EX τ(False))

= q ∨ (p ∧ EX q)

= q ∨ (p ∧ {s1, s3})

= q ∨ {s1}

τ3(Fasle) = q ∨ (p ∧ EX τ2(Fasle))

= q ∨ (p ∧ EX (q ∨ {s1}))

= q ∨ (p ∧ {s0, s1, s2, s3})

= q ∨ p
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Characterization of CTL Operators (cont.)

AF f = µZ . f ∨AXZ

EF f = µZ . f ∨EXZ

AG f = νZ . f ∧AXZ

EG f = νZ . f ∧EXZ

A[f U g] = µZ . g ∨ (f ∧AX (Z))

E[f U g] = µZ . g ∨ (f ∧ EX (Z))

A[f R g] = νZ . g ∧ (f ∨AX (Z))

E[f R g] = νZ . g ∧ (f ∨ EX (Z))
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Symbolic Model Checking for CTL

There is a quite fast explicit state model checking
algorithms for CTL, but a state explosion problem may
occur.

In the following, we will present a Symbolic Model
Checking (SMC) algorithm for CTL which operates on
Kripke structures represented symbolically using
OBDDs.

For this, the logic of Quantified Boolean Formulae
(QBF) is used to have a more succinct notation for
complex operations on Boolean formulae.
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Quantified Boolean Formulae (QBF)

Given a set V = {v0, . . . , vn−1} of propositional variables,
QBF (V ) is the smallest set of formulae such that

every variable in V is a formula,
if f and g are formulae, then ¬f , f ∨ g, and f ∧ g are
formulae, and
if f is a formula and v ∈ V , then ∃vf and ∀vf are
formulae.

An OBDD is associated to a QBF formula.
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Truth Assignment

A truth assignment for QBF (V ) is a function
σ : V → {0, 1}.

If a ∈ {0, 1}, then the notation σ〈v ← a〉 is used for the
truth assignment defined by

σ〈v ← a〉(w) =

{

a if v = w

σ(w) otherwise
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Models of QBF

The notation σ |= f denotes that f is true under the
assignment σ

σ |= v iff σ(v) = 1

σ |= ¬f iff σ 6|= f

σ |= f ∨ g iff σ |= f or σ |= g

σ |= f ∧ g iff σ |= f and σ |= g

σ |= ∃vf iff σ〈v ← 0〉 |= f or σ〈v ← 1〉 |= f

σ |= ∀vf iff σ〈v ← 0〉 |= f and σ〈v ← 1〉 |= f
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Quantification

The quantifiers in QBF can be implemented as
combinations of the restrict and apply operators.

∃xf = f |x←0 ∨ f |x←1

∀xf = f |x←0 ∧ f |x←1
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SMC Algorithm

The SMC algorithm is implemented by a procedure
Check .

Arguments: a CTL formula
Returns: an OBDD that represents exactly those
states of the system that satisfy the formula
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SMC Algorithm (cont.)

Check(a) = the OBDD representing the set of states
satisfying the atomic proposition a

Check(f ∧ g) = Check(f) ∧ Check(g)

Check(¬f) = ¬Check(f)

Check(EX f) = CheckEX (Check(f))

Check(E[f U g]) = CheckEU (Check(f),Check(g))

Check(EG f) = CheckEG(Check(f))
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CheckEX

The formula EX f is true in a state if the state has a
successor in which f is true.

CheckEX (f(v̄)) = ∃v̄′[f(v̄′) ∧ R(v̄, v̄′)],

where R(v̄, v̄′) is the OBDD representation of the
transition relation.
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CheckEU

CheckEU is based on the least fixpoint characterization
for the CTL operator EU.

E[f U g] = µZ . g ∨ (f ∧ EXZ)

The function Lfp is used to compute a sequence of
approximations

Q0, Q1, . . . , Qi, . . .

that converges to E[f U g] in a finite number of steps.
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CheckEU (cont.)

If we have OBDDs for f , g, and the current
approximation Qi, then we can compute an OBDD for
the next approximation Qi+1.

When Qi = Qi+1 (it is easy to test because OBDDs
provide a canonical form of Boolean functions), the
function Lfp terminates.
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CheckEG

CheckEG is based on the greatest fixpoint
characterization for the CTL operator EG.

EG f = νZ . f ∧ EXZ
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Fairness in SMC

Assume the fairness constraints are given by a set of
CTL formulae F = {P1, . . . , Pn}.

A fair path is a path which each formula in F holds
infinitely often on.

We define a new procedure CheckFair for checking CTL
formulae relative to the fairness constructions in F .

We do this by defining new intermediate procedures
CheckFairEX , CheckFairEU , and CheckFairEG, which
correspond to the intermediate procedures used to
define Check .

Automatic Verification 2009: Symbolic Model Checking – 41/77



IM NTU

EG f with Fairness

Consider the formula EG f given fairness constraints F .

The formula means that there exists a fair path
beginning with the current state on which f holds
globally.

The set of such states Z is the largest set with the
following two properties:

all of the states in Z satisfy f , and
for all Pk ∈ F and all s ∈ Z, there is a sequence of
states of length one or greater from s to a state in Z

satisfying Pk such that all states on the path satisfy f .
(cf. There exists a path in S′, where f holds, that
leads from s to some node t in a nontrivial fair
strongly connected component of the graph (S′, R′).)

Automatic Verification 2009: Symbolic Model Checking – 42/77



IM NTU

EG f with Fairness (cont.)

The characterization can be expressed by means of a
fixpoint as follows:

EG f = νZ . f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)]

Note that the formula is not directly expressible in CTL.

We are going to prove the correctness of this equation.

We split it into two lemmas.
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Lemma 14

Lemma 14: The fair version of EG f is a fixpoint of the
equation

Z = f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)].

Proof: It suffices to show that

EG f ⊆ f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)]

and

f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)] ⊆ EG f.
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Lemma 14 (cont.)

Case 1: EG f ⊆ f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)].

Let s |= EG f , then s is the start of a fair path π, all of
whose states satisfy f .
Let si be the first state on π such that si ∈ Pi and
si 6= s.
The state si is also a start of a fair path along which
all states satisfy f .
Thus, si ∈ EG f .
It follows that for every i,
s |= f ∧ EXE[f U (EG f ∧ Pi)].

Therefore, s |= f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)].
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Lemma 14 (cont.)

Case 2: f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)] ⊆ EG f .

If s |= f ∧
n
∧

k=1

EXE[f U (EG f ∧ Pk)], then there is a

finite path starting from s to a state s′ such that
s′ |= (EG f ∧ Pk).
Every state on the path from s to s′ satisfies f .
s′ is the beginning of a fair path such that each state
on the path satisfies f .
Thus, s |= EG f .
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Lemma 15

Lemma 15: The greatest fixpoint of the following
equation is included in EG f .

Z = f ∧
n
∧

k=1

EXE[f U (Z ∧ Pk)]
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Lemma 15 (cont.)

Proof:
Let Z be an arbitrary fixpoint of the formula.
Assume that s ∈ Z. Then s |= f .
s has a successor s′ that is a start of a path to a state
s1 such that

all states on this path satisfy f and
s1 satisfies Z ∧ P1.

Because s1 ∈ Z we can conclude by the same
argument that there is a path from s1 to a state s2 in
P2.
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Lemma 15 (cont.)

Proof (continued):
Using this argument n times we conclude that s is the
start of a path along which all states satisfy f and
which passes through P1, . . . , Pk.
The last state on the path is in Z, and thus there is a
path from this state back to some state in P1.
Induction can be used to show that there exists a fair
path starting at s such that f is satisfied along the
path, i.e., s |= EG f .
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CheckFairEG

CheckFairEG(f(v̄)) is based on the following fixpoint
characterization:

νZ(v̄) . f(v̄) ∧
n
∧

k=1

EXE[f(v̄)U (Z(v̄) ∧ Pk)].
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CheckFair

The set of all states which are the start of some fair
computation is

fair(v̄) = CheckFair(EGTrue).
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CheckFairEX

The formula EX f under fairness constraints is
equivalent to the formula EX f ∧ fair without fairness
constraints.

CheckFairEX (f(v̄)) = CheckEX (f(v̄) ∧ fair(v̄))

Automatic Verification 2009: Symbolic Model Checking – 52/77



IM NTU

CheckFairEU

The formula E[f U g] under fairness constraints is
equivalent to the formula E[f U g ∧ fair ] without fairness
constraints.

CheckFairEU (f(v̄), g(v̄)) = CheckEU (f(v̄), g(v̄) ∧ fair(v̄))
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LTL Model Checking

Let A f be a linear temporal logic formula where f is a
restricted path formula.

A formula f is a restricted path formula if all state
subformulae in f are atomic propositions.

The problem is to determine all of those states s ∈ S
such that M, s |= A f .

Since M, s |= A f iff M, s |= ¬E¬f , it is sufficient to check
the truth of formulae of the form E f .
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LTL Model Checking (cont.)

Given a formula E f and a Kripke structure M , the
procedure of LTL model checking is:

Construct a tableau T for the path formula f .
Compose T with M .
Find a path in the composition.

The tableau can be represented by OBDDs.
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States of the Tableau

Each state in the tableau is a set of elementary
formulae obtained from f .

The set of elementary subformulae of f is denoted by
el(f) and is defined recursively as follows.

el(p) = {p} if p ∈ APf

el(¬g) = el(g)

el(g ∨ h) = el(g) ∪ el(h)

el(Xg) = {Xg} ∪ el(g)

el(gUh) = {X(gUh)} ∪ el(g) ∪ el(h)

The set of states ST of T is P(el(f)).
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Transition Relation of the Tableau

An additional function sat is defined recursively as
follows.

sat(g) = {s | g ∈ s} where g ∈ el(f)

sat(¬g) = {s | s 6∈ sat(g)}

sat(g ∨ h) = sat(g) ∪ sat(h)

sat(gUh) = sat(h) ∪ (sat(g) ∩ sat(X(gUh)))

The transition relation RT of T is defined as

RT (s, s′) =
∧

Xg∈el(f)

s ∈ sat(Xg)⇔ s′ ∈ sat(g)
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Transition Relation of the Tableau (cont.)

An additional condition is necessary in order to identify
those paths along which f holds.

A path π that starts from a state s ∈ sat(f) will satisfy f iff
for every subformula gUh and for every state s on π,
if s ∈ sat(gUh) then either s ∈ sat(h) or there is a later
state t on π such that t ∈ sat(h).
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The Microwave Oven Example

Source: [Clarke et al. 1999].
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The Microwave Oven Example

g = ¬heat U close

Source: [Clarke et al. 1999].
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Eventuality

The definition of RT does not guarantee that eventuality
properties are fulfilled.

A path π that starts from a state s ∈ sat(f) will satisfy f if
and only if

for every subformulae gUh and for every state s on
π, if s ∈ sat(gUh) then either s ∈ sat(h) or there is a
later state t on π such that t ∈ sat(h).
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Additional Notations

π′ = s′0, s
′

1, . . . represents a path in M .

For the suffix π′i = s′i, s
′

i+1, . . . of π, we define

si = {ψ | ψ ∈ el(f) and M,π′ |= ψ}
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Lemma 16

Lemma 16: Let sub(f) be the set of all subformulae of f .
For all g ∈ sub(f) ∪ el(f), M,π′i |= g if and only if
si ∈ sat(g).

Case 1: Let g ∈ el(f).
M,π′i |= g iff g ∈ si.
g ∈ si iff si ∈ sat(g).

Case 2: Let g = ¬g1 or g = g1 ∨ g2.
Case 3: Let g = g1 U g2.
M,π′i |= g1 U g2 iff M,π′i |= g2 or (M,π′i |= g1 and
M,π′i |= X(g1 U g2)).
M,π′i |= g2 or (M,π′i |= g1 and M,π′i |= X(g1 U g2)) iff
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))).
si ∈ sat(g2) ∨ (si ∈ sat(g1) ∧ si ∈ sat(X(g1 U g2))) iff
si ∈ sat(g1 U g2).
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Lemma 17

Lemma 17: Let π′ = s′0s
′

1 . . . be a path in M . For all i ≥ 0,
let si be the tableau state. Then π = s0s1 . . . is a path in
T .
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Theorem 4

Theorem 4: Let T be the tableau for the path formula f .
Then, for every Kripke structure M and every path π′ of
M , if M,π′ |= f then there is a path π in T that starts in a
state in sat(f), such that label(π′) |APf

= label(π).
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Composition of T and M

P = (S,R,L) is the product of the tableau
T = (ST , RT , LT ) and the Kripke structure
M = (SM , RM , LM ).

S = {(s, s′) | s ∈ ST , s
′ ∈ SM and LM (s′) |APf

= LT (s)}.

R((s, s′), (t, t′)) iff RT (s, t) and RM (s′, t′).
L((s, s′)) = LT (s).

The function sat is extended to be defined over S by
(s, s′) ∈ sat(g) if and only if s ∈ sat(g).
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Lemma 18

π′′ = (s0, s
′

0), (s1, s
′

1), . . . is a path in P with
LP ((si, s

′

i)) = LT (si) for all i ≥ 0 if and only if there exists
a path π = s0, s1, . . . in T , and a path π′ = s′0, s

′

1, . . . in M

with LT (si) = LM (si) |APf
for all i ≥ 0.
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Theorem 5

M, s′ |= E f if and only if there is a state s in T such that
(s, s′) ∈ sat(f) and P, (s, s′) |= EGTrue under fairness
constraints

{sat(¬(gUh) ∨ h) | gUh occurs in f}.
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The Microwave Oven Example

¬g = ¬(¬heat U close)

Source: [Clarke et al. 1999].
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Summary of LTL Model Checking

Given a Kripke structure M , a state s′ in M and a LTL
formula f .

Construct a symbolic representation of M .

Construct a symbolic representation of T¬f .

Construct the product P of M and T¬f .

Use the symbolic CTL model checking algorithm to
check if there is a state s in T¬f such that

(s, s′) ∈ sat(¬f) and
P, (s, s′) |= EGTrue under fairness constraints

{sat(¬(gUh) ∨ h) | gUh occurs in f}.
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SMC for LTL [Kesten et al 1995]

Here we slightly modify the definition of Kripke
structures and the symbolic algorithm in [Kesten et al.
1995].

A Kripke structure M is a tuple (V, S0, R) where
V is a set of system variables and thus the set of
states S is the set of all valuations for V ,
S0 is the initial condition defined upon V , and
R ⊆ S × S is the transition relation which is total.

The problem is to check, given a Kripke structure M and
a formula f , whether M |= f (all paths of M satisfy f).
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SMC for LTL [Kesten et al 1995] (cont.)

Let Vf be the set of all propositions in f . Without loss of
generality, we assume Vf = V (of the Kripke structure).

For each elementary formula p ∈ el(f), a Boolean
variable (elementary variable) xp is associated.

The set of elementary variables are represented by a
vector x̄ = x1, x2, . . . , xm where m = |el(f)|.

Note that a valuation for x̄ constitutes a state in M and a
state in Tf .
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Formulae in Elementary Formulae

Let CL(f) denote the closure of the LTL formula f .

For each formula p ∈ CL(f), we define a Boolean
function χp(x̄) which expresses p in terms of the
elementary variables:

For p ∈ el(f), χp(x̄) = xp

For p = ¬q, χp = ¬χq

For q ∧ r, χp = χq ∧ χr

For p = qU r, χp = χr ∨ (χq ∧ xX(q U r))

For p = q S r, χp = χr ∨ (χq ∧ xY(q S r))

Note: Y is the “previous” operator.
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LTL Model Checking

There exists a computation in M satisfying f iff satM,f

as defined below is true.

satM,f : ∃x̄, ȳ : init(x̄) ∧ E∗(x̄, ȳ) ∧ scf E(ȳ)
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Initial Condition

The following formula identifies an initial state in the
product of M and Tf .

It is an initial state in M .
It is also an initial atom in Tf .

init(x̄) : χf (x̄) ∧ (
∧

Yp∈CL(f)

¬xYp) ∧ S0(x̄)
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Transition Relation

The following formula identifies the set of transitions in
the product:

E(x̄, ȳ) : e(x̄, ȳ) ∧ R(x̄, ȳ)

where

e(x̄, ȳ) :
∧

Xp∈el(f)

(xXp ↔ χp(ȳ)) ∧
∧

Yp∈el(f)

(χp(x̄)↔ yYp)

E+(x̄, ȳ) = E(x̄, ȳ) ∨ ∃z̄ : E+(x̄, z̄) ∧ E(z̄, ȳ)

E∗(x̄, ȳ) : (x̄ = ȳ) ∨ E+(x̄, ȳ)

The definitions of e+(x̄, ȳ) and e∗(x̄, ȳ) are similar to
E+(x̄, ȳ) and E∗(x̄, ȳ).
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Fulfilling Atoms

The following formula identifies fulfilling atoms.

scfE(x̄) : E+(x̄, x̄) ∧
∧

pU q∈CL(f)

(χpU q(x̄)→

∃z̄ : E∗(x̄, z̄) ∧ χq(z̄) ∧ E
∗(z̄, x̄))
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