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Verification of Parallel Compositions

Verification Task: verify if the system composed of
components M, and M, satisfies a property P, 1.e., M,||[M,E P.

M, and M, may rely on each other to satisfy P.

Component M, Component M,
Out y,z : Boolean;
Init y = z = true;
Repeat forever

Out x : Boolean;

Iny : Boolean; always x=true

Init X = true; __ _
y, Z := true, false;

Repeat forever _ _
o= y, Z .= true, false;

Yy, Z .= true, true;

M, alone does not guarantee “always x = true”!

Can the construction of M, ||M, be avoided?
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\ Compositional Reasoning

= An Assume-Guarantee (A-QG) rule:

Jile |8 - -
S| i - 0

= If a small contextual assumption A (an abstraction of M,)
exists, then the overall verification task may become
casier.

— )

8
Lg)) But, how to find ‘ automatically?

S

= It 1s possible when M, M,, A, and P are finite automata.
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Compositional Reasoning (cont.)

Component M,

Out x : Boolean;

In y,z : Boolean;

Init x = true;

Repeat forever
X =Y,

Component M,

Out y,z : Boolean;
Inity = z = true;
Repeat forever
y, Z .= true, false;
y, Z .= true, false;
y, Z .= true, true;

A suitable contextual assumption{ﬁ} ;

always x=true

Component A

Out y,z : Boolean;
Init y = true;
Repeat forever

y, Z .= true, ?7;

Component A has fewer states (automaton locations) than M,
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\ Setting the Stage
e @ -
0 14 - o=

O The behaviors of components and properties are described as regular languages.

O Parallel composition is presented by the intersection of the languages.

O A system satisfies a property if the language of the system is a subset of the
language of the property.

o0
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Outline

Learning-Based Compositional Model Checking:

o Automation by Learning
o The L* Algorithm

a0 The Problem of L*-Based Approaches

Learning Minimal Separating DFA’s:

0 The L3P Algorithm

a0 Comparison with Another Algorithm

o Adapt L3F? for Compositional Model Checking
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‘ Overview of the L* Algorithm

Membership Query

Finite string

Yes/No

Finite Automaton

TCounterexample/ Yes

Equivalence Query

Answering queries for a
regular language U

DFA (deterministic finite automaton)

If such a teacher is provided, L* guarantees to produce a DFA that
recognizes U using a polynomial number of queries.

Yih-Kuen Tsay Automatic Verification 2011: Compositional Reasoning 7/35



SVVRL ) IM.NTU

‘ Automation by Learning

= First developed by Cobleigh, Giannakopoulou, and
Pasareanu [TACAS 2003]

= Apply the L* learning algorithm for regular languages
to find an ' for the A-G rule:

*OC P *Q
e NiuasC [ e |
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Basic Understanding

A closer look at the A-G rule:

When A=PUM1 ,

M1N ACP & C M2§A<:>_

M1n ANP=(< * DQQ @ —{9 M2CPUM1<&

AN(PUMT)=0) < * ﬂ* C @ M2N(PUM1)=0<&
N M2NPNM1=0<

AC PUM1

M1NM2CP

Conceptually, the target language is PUM1, the
weakest assumption for the premise M1NACP.

Actually reaching the target would be even worse
than checking M1NM2CP directly.

It really pays off when we can stop earlier ...
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‘ The Algorithm of Cobleigh et
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al.

Target: PUM1

Equivalence queries

NO + ce Real YES

M1NACP (A, C PUM1)
‘L YES
M2CA ES
I P holds

lNO + ce
(We stop early in the

Error?

(ce tells how A, s

should be enlarged.)

>
P violated

se two cases.)

(ce is a real error_if ce is in M2, but not in Puﬁt
implying M2ZPUM1, i.e., MINM2ZP.)
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‘ The L* Learning Algorithm

= Proposed by D. Angluin [Info.&Comp. 1987] and
improved by Rivest and Schapire [Info.&Comp. 1993]

Membership Query

Finite string

Yes/No

Finite Automaton

*Counterexample/ Yes

Equivalence Query

Answering queries for a
regular language U

DFA (deterministic finite automaton)
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'L*: Initial Setting

A reminder:
E: Distinguishing Experiments
{_A_\ Membership Query
Finite string
)\
States S \ - i
{
Next SZ a le/ Y&
States b Equivalence Query
2 9
?

Target: (ab+aab)*
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L*: Fill Up the Table by Membership Queries

A / Fill up the table using membership queries.
A TA
“a 1:‘\>5 a represents a new equivalence class, because
\?—f its row i1s different from all of those in the current
' S set.
a
b ,

Target: (ab+aab)*
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L*: Table Expansion

Move a to the S set and expand the table with elements aa and ab.

A
AT
a | F
b | F
aa
ab

Target: (ab+aab)*
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L*: A Closed Table

A
\ T Again, fill up the table using membership queries.
a F
b F
aa | F
ab \T

—

We say that the table is closed because every row
in the S set appears somewhere in the S set.

Target: (ab+aab)*

Yih-Kuen Tsay Automatic Verification 2011: Compositional Reasoning 15/ 35



SVVRL ) IM.NTU

L*: Making a Conjecture

A\ Construct a DFA from the learned equivalence classes.
A T a, b
a | F
S ONmOD!
aa | F b
ab | T

Counterexample: bb

d(s,a) = s’ iff sa and s’ have the same row.

A suffix b 1s extracted from bb as Target: (ab+aab)*
a valid distinguishing experiment

Theorem:
At least one suffix of the counterexample 1s a valid distinguishing experiment.
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*: 2nd Jteration

Add b to the E set, fill up and expand the table following the same procedure.

b

é
T
F
F
F

A
a
b

ada

ab
ba
bb

o= s TS

Counterexample: aaab

A suffix ab 1s extracted from aaab
as a valid distinguishing experiment. Target: (ab+aad)”
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L*: 3" Jteration (Completed)

Add ab to the E set, fill up and expand the table following the same procedure.

A
a
b

a

ab

ba
bb
aada

a,b

N

Target: (ab+aabd)”

e RN B sl S IS I By

el Nl o | eSS S | RS

el el e S B A

aab

Theorem:
The DFA produced by L* is the minimal DFA that recognizes that target language.
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L*: Complexity

- i Al b | ab
Complexity: T
Q Equivalence query: at most n ;1 E E g

)

0 Membership query: O(|Z|n? +n log m) i E E E
a0 ' :
ba |F|F|F
b |F|F|F
aaa | F | F | F
aah |'T | F | T

Note: n is the size of the minimal DFA that recognizes U, m is the length
of the longest counterexample returned from the teacher.
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‘ The Problem

o The L*-based approaches cannot guarantee finding the
minimal assumption (in size), even if there exists one.

Jen@cm @
Jhik g 7]

» The smaller the size of . is, the easier it is to check the
correctness of the two premises.

o L” targets a single language, however, there exists a range of
languages that satisfy the premises of an A-G rule.
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Finding a Minimal Assumption

= A reminder: we use the following Assume-Guarantee rule for
decomposition.

M1NACP &
M1N ANP=0<
AN(PUMT)=0 &
AC PUM1

= The two premises can be rewritten as follows:

Jee ¢ @ c Ui
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Finding a Minimal Assumption (cont.)

= To apply the A-G rule 1s to find an. satisfying the following

constraint:
gk - 3% 070 U e

= So, the problem of finding a minimal assumption for the A-G
rule reduces to finding a minimal separating DFA that
o accepts every string in M2 and
0 rejects every string not in P U M1.

First observed by Gupta, McMillan, and Fu
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Q|‘-I

Learning a Minimal Separating DFA

B Contribution of [Chen et al. TACAS 2009]: a polynomial-
query learning algorithm, L>°, for minimal separating
DFA’s.

B Problem: given two disjoint regular languages L1 and L2,
we want to find a minimal DFA A that satisfies

Liccyciz O

QP

B Assum ptl on: a teacher for L1 and L2: We say that A is a separating
DFA for L1 and L2

B Membership query: if a string S is in L1 (resp. L2)
B Containment query: ?7CL1, ?DL1, 7CL2, and 7212
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3-Value DFA (3DFA)

B A3DFAis a tuple C=(%,5,s0,0, Acc, Rej, Dont). >©8‘

B A DFAA s encoded ina3DFA Ciff A
B accepts all strings that C accepts and

An example of
B rejects all strings that C rejects. a 3DFA

B A don’t care string in C can be either accepted or
rejected by A.
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The L3¢ Algorithm: Overview

DFA’s encoded in C, O all separating DFA’s for L1 and L2

= /

C. T
—p C Finding a A ,
Extet:{ded o Complet§ness 5 Minimal DFA Kb Check 1f_? -
L &=  Checking Encoded in C. LICL(A)C L2° i
NO + CE
Target: L1NnL2 Ala
A (DE
4 (F) %) Extend the L*
ab |@|D algorithm to allow
D b DD | don’tcare values.
° aa | T | F
aba | D | D
abb | T | F
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The Target 3DFA

B The target 3DFA C
W accepts every string in L1, and ~ DFA'sencodedin C =
. ] . all separating DFA’s for L1 and L2
B rejects every string in L2.
B Strings in L1NL2 are don’t care strings.

=== — Definition:
<inike B ADFAAisencoded ina3DFACiff A
B accepts all strings that C accepts and
B rejects all strings that C rejects.
B ADFAAseparates L1 and L2 iff A
D;)n’t care B accepts all strings in L1 and

B rejects all strings in L2.

B A minimal DFA encoded in C 1s a minimal separating DFA of L1
and L2.
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The L5 Algorithm

<

C. —
! Finding a :
Extended Completeness | C . A Check if
=2 Minimal DFA = —, ==
% : C )C L2? |YES
L Checking Buwdsd fin ©, LICL(A)C L2
NO + CE

Check if all of the separating DFA’s of L1 and L2 are encoded in C,,
which can be done by checking the following conditions:

Definition:
Lo B ADFAAisencodedina3DFACIiff A
B accepts all strings that C accepts and
_ - : : :
Rejected rejects all strings that C rejects.

B ADFAAseparates L1 and L2 iff A
B accepts all strings in L1 and

B rejects all strings in L2.

Yih-Kuen Tsay Automatic Verification 2011: Compositional Reasoning 27135



The L5 Algorithm

C.

The algorithm of
Rho et. al. (1994)
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L Finding a :
Extended Completeness | C . A Check if
[ CE Checking =2 Minimal DFA — LICL(A)C 127 fr==b
Encoded in C,
NO + CE
LEMMA:
The size of minimal separating DFA of L1 and L2 >
|A |, the size of the minimal DFA encoded in Ci.
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The L5 Algorithm

- =

Extended [ Completeness | G Finding a 3 Check if

« CE ) = Minimal DFA criac 799 e
L <~  Checking Encoded in C, LICtiays L2t

/h INO+CE

If L1 C L(A) C L2:
A. 1s a minimal separating DFA.

IfL1 ¢ L(A,) or L(A) € L2:
Counterexample CE 1s a witness for C, not being the target 3DFA.

LEMMA:
The size of minimal separating DFA of L1 and L2 >
|A|, the size of the minimal DFA encoded in Ci.
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The Algorithm of Gupta et al.

Requires an exponential
number of iterations in
the worst case

Begin with an empty sample set

Make a minimal DFA A. Check if
that consistent with the : > LICL(A) C T39 —
current sample set CL(A) & - |YES
Add CE to the sample set

An Example Find a minimal
Make a :
3DEA DFA encoded in
the 3DFA (NP-hard)
+ SAMPLES: b
\,aa,abb A
o iBe

- SAMPLES: a,b
a,aaa,abba a
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The L¢P Algorithm
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Requires a polynomial
number of iterations in

the worst case

alg(]i:i{ttﬁlr;dtt)hfnizage 2 > Clitrel <t >
the collected samples. LICL(AYE L27 |YES
lh INO + CE
An Example
Make a Find a minimal
Ala ADFA DFA encoded in
AN | T|F the 3DFA (NP-hard)
a F|T
ab |D|D A
NHE O
aa | T | F
a,b
aba | D | D
abb | T | F
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Comparing the Two Algorithms

Al oa
A T|F
| F|T b
|_Sep: . A
ab | DD
D7D 3 D
aae | T | F a,b
ba | D | D
Zbg T|F Find a minimal
/A Make a DFA encoded in
Same sample set] SDFA the 3DFA (NP-hard)
+ SAMPLES: b
Guptaetal.: A,aa,abb
O
- SAMPLES: s
a,aaa,abba a
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Adapt L3P for Compositional Verification

Let L1 =M2 and L2 = PUM1, use L5¢ to find a
separating DFA for L1 and L2.

When M2ZPUM1 (i.e., MINM2¢P ), LS can be

modified to guarantee finding a string in M2, but
not in PUM1(i.e., M1NM2\P).

Yih-Kuen Tsay Automatic Verification 2011: Compositional Reasoning 33/35



SVVRL ) IM.NTU

"

Adapt L>¢P for Compositional Verification

= Use heuristics to find a small consistent DFA:

C. —
: i Finding a :
C. A.
Crtane 2] e o) srmiia B | S, e
& Encoded in C, -

T NO + CE

Minimality is no longer guaranteed!
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‘ Adapt L>¢P for Compositional Verification |

= Skip completeness checking:

Finding a A

Small DFA = f | 5
— 1 . YES

Candidate
Generator

A NO + CE

Minimality is no longer guaranteed!
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