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Symbolic Model Veri�er (SMV)
SMV is a tool to check �nite state system that satis�esspeci�cations in CTL.SMV uses the BDD-based symbolic model checking algorithm.The �rst model checker based on BDDs.The language component of SMV is used to describe complex�nite-state system.The primary purpose of the SMV input language is to describethe transition relation of a �nite Kripke structure.
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NuSMV(1/1)NuSMV is a new symbolic model checker, reimplementationand extension of CMU SMV.NuSMV 2 is Open Source and the latest version is NuSMV2.5.4 (Oct 28, 2011)NuSMV allows for the representation of synchronous andasynchronous �nite state systems.The analysis of speci�cations expressed in Computation TreeLogic (CTL) and Linear Temporal Logic (LTL), usingBDD-based and SAT-based(Mini-Sat) model checkingtechniques.
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NuSMV(2/2)A SMV �le includes the input language for description of �nitestate machine and SPEC formulas that be used to verify ourdesired properties.NuSMV Work �ow diagram:
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Important Features of the Language(1/3)
ModulesUser can decompose the descriptions of �nite-statesystems into modules.Individual modules can be instantiated multiple times, andmodules can reference variables declared in other modules.Modules can have parameters, which in turn may be statecomponents, expressions, or other modules.Modules can also contain fairness constraints.
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Important Features of the Language(2/3)
Synchronous and interleaved compositionSMV modules can be composed either synchronously orusing interleaving.In a synchronous component, a single step in thecomposition corresponds to a single step in each of thecomponents.With interleaving, a single step in the compositionrepresents a step by exactly one component. (use keywordprocess)
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Important Features of the Language(3/3)
Nondeterministic transitionsNondeterminism can re�ect actual choice in the actions ofthe system being modeled, or it can be used to describe amore abstract model.Transition relationsIt can be speci�ed explicitly in terms of boolean relationson the current and next state values of state variables,or implicitly as a set of parallel assignment statements.

Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 9 / 88



A Simple ExampleThe following is a simple example that illustrates the basicconcepts.MODULE mainVARrequest : boolean;state : {ready, busy};ASSIGNinit(state) := ready;next(state) := casestate = ready & request : busy;TRUE : {ready,busy};esac;SPECAG(request -> AF state = busy)Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 10 / 88



Types Overview(1/2)booleanintegerenumerationsymbolic enumex: {stopped, running, waiting}integers-and-symbolic enumex: {-1, 1, waiting}word: are used to model vector of bits (booleans) which allowbitwise logical and arithmetic operationsunsigned word [•]signed word [•]Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 11 / 88



Types Overview(2/2)array: are declared with slower and upper bound for the index,and the type of the elements in the array.ex: array 0..3 of booleanarray 1..8 of array -1..2 of unsigned word[5]set: are used to identify expressions representing a set ofvalues.boolean setinteger setsymbolic setintegers-and-symbolic set
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Expressions(1/4)Constant Expressionsconstant ::boolean_constant| integer_constant| symbolic_constant| word_constant| range_constantword_constant :: 0 [word_sign_specifier]word_base [word_width] _ word_valueex: 0sb5_10111 has type signed word[5]range constant :: integer_number .. integer_number
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Expressions(2/4)Basic Expressionsbasic_expr :: constant|variable_identifier|define_identifier|! basic_expr|basic_expr & basic_expr|basic_expr | basic_expr|basic_expr -> basic_expr|basic_expr = basic_expr|basic_expr ? basic_expr : basic_expr|basic_next_expr|case_expr|{ set_body_expr }...Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 14 / 88



Expressions(3/4)Case Expressionscase_expr ::caseexpr_a1 : expr_b1 ;expr_a2 : expr_b2 ;...expr_an : expr_bn ;esacIf-Then-Else Expressionscond_expr ? basic_expr1 : basic_expr2Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 15 / 88



Expressions(4/4)Set ExpressionsDe�ning a set of boolean, integer and symbolic enum valuesThere cannot be a set of sets in NuSMVBe created with the union operatorset_body_expr :: basic_expr| set_body_expr , basic_exprex: expression {exp1, exp2, exp3} is equivalent to exp1 union exp2union exp3Next ExpressionsRefer to the values of variables in the next statebasic_next_expr :: next ( basic_expr )
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Statement declaration - Variable(1/3)A variable can be an input, a frozen, or a state variable.Type Speci�erstype_specifier :: simple_type_specifier| module_type_specifiersimple_type_specifier :: boolean| word [ basic_expr ]| unsigned word [ basic_expr ]| signed word [ basic_expr ]| { enumeration_type_body }| basic_expr .. basic_expr| array basic_expr .. basic_exprof simple_type_specifierWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 17 / 88



Statement declaration - Variable(2/3)State VariablesA state of the model is an assignment of values to a set of state andfrozen variables.var_declaration :: VAR var_listvar_list :: identifier : type_specifier ;| var_list identifier : type_specifier ;Example: VAR a : {stopped, running, finished};Input VariablesIVARs (input variables) are used to label transitions of the FiniteState Machineivar_declaration :: IVAR simple_var_listsimple_var_list :: identifier : simple_type_specifier ;| simple_var_list identifier :simple_type_specifier ;Example: IVAR b : {TRUE, FALSE};Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 18 / 88



Statement declaration - Variable(3/3)Frozen VariablesFROZENVAR s (frozen variables) are variables that retain theirinitial value throughout the evolution of the state machinefrozenvar_declaration :: FROZENVAR simple_var_listSemantic meaning:ASSIGN next(a) := a;Example:FROZENVAR a : boolean;VAR b : boolean;ASSIGNnext(a) := b; -- illegala := b; -- illegal
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Statement declaration - Constraint(1/5)
ASSIGN Constraintassign_constraint :: ASSIGN assign_listassign_list :: assign ;| assign_list assign ;assign :: complex_identifier := simple_expr| init ( complex_identifier ) := simple_expr| next ( complex_identifier ) := next_expr
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Statement declaration - Constraint(2/5)
Example of ASSIGNASSIGNinit(turn) := 0;next(turn) :=caseturn = turn0 & state0 = critical:!turn;TRUE: turn;esac;
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Statement declaration - Constraint(3/5)TRANS ConstraintThe transition relation of the model is a set of current state/nextstate pairsThe transition relation is the conjunction of all of TRANStrans_constraint :: TRANS next_expr [;]INIT ConstraintThe set of initial states of the model is determined by a booleanexpression under the INITThe expression doesn't contain the next() operator.The initial set is the conjunction of all of INITinit_constrain :: INIT simple_expr [;]Example:INIT output = 0TRANSnext(output)=!input| next(output)=outputWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 22 / 88



Statement declaration - Constraint(4/5)INVAR Constraintinvar_constraint :: INVAR simple_expr [;]The set of invariant states can be speci�ed using a booleanexpression under the INVAR keyword.The expression doesn't contain the next() operator.The invariant is the conjunction of all of INVAR.Example:INVAR x = y + 1
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Statement declaration - Constraint(5/5)
Semantically assignments can be expressed using other kinds ofconstraintsASSIGN a := exp;is equivalent to INVAR a = exp;ASSIGN init(a) := exp;is equivalent to INIT a = exp;ASSIGN next(a) := exp;is equivalent to TRANS next(a) = exp;
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Statement declaration - Spec & Fairness(1/2)SPEC declarationdecl :: "SPEC" ctlformA CTL formula doesn't contain next() operator.A CTL formula return a value 0 or 1.The speci�cation is the conjunction of all of SPEC.FAIRNESS constraint declarationfairness_constraint ::FAIRNESS simple_expr [;]| JUSTICE simple_expr [;]| COMPASSION ( simple_expr , simple_expr ) [;]
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Statement declaration - Spec & Fairness(2/2)
Example of SPEC and FAIRNESSSPECAG((s0 = trying) -> AF (s0 = critical))FAIRNESS !(s0 = critical)
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Statement declaration - DEFINE &MODULE(1/2)DEFINE Declarationsdefine_declaration :: DEFINE define_bodydefine_body :: identifier := simple_expr ;| define_body identifier := simple_expr ;MODULE Declaratiosmodule :: MODULE identifier [( module_parameters )][module_body]
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Statement declaration - DEFINE &MODULE(2/2)Example of MODULE and DEFINEMODULE counter_cell(carry_in)VARvalue:boolean;ASSIGNinit(value):=0;next(value):=value+carry_in mod 2;DEFINEcarry_out:=value&carry_in;
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Statement declaration - main & identi�er(1/2)References to Module ComponentsBoth of variable identi�ers and de�ne identi�ers are complexidenti�erscomplex_identifier :: identifier| complex_identifier . identifier| complex_identifier [ simple_expression ]| selfA Program and the main ModuleThere must be one module with the name main and no formalparameters.program :: module| module_list moduleWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 29 / 88



Statement declaration - main & identi�er(2/2)Example of main and identi�ers.MODULE main... VARa : bar;m : foo(a);...MODULE barVARq : boolean;p : boolean;MODULE foo(c)DEFINEflag := c.q | c.p;Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 30 / 88



Statement declaration - CTL(1/2)
CTL Speci�cationsctl_specification :: CTLSPEC ctl_expr [;]| SPEC ctl_expr [;]| CTLSPEC NAME name := ctl_expr [;]| SPEC NAME name := ctl_expr [;]
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Statement declaration - CTL(2/2)A CTL formula has the syntaxctl_expr ::simple_expr| ! ctl_expr| ctl_expr & ctl_expr| ctl_expr | ctl_expr| ctl_expr -> ctl_expr| ctl_expr <-> ctl_expr| EG ctl_expr| EX ctl_expr| EF ctl_expr| AG ctl_expr| AX ctl_expr| AF ctl_expr| E [ ctl_expr U ctl_expr ]| A [ ctl_expr U ctl_expr ]Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 32 / 88
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Mutual Exclusion Problem(1/7)The goal of this program is to exclude the possibility that bothprocesses are in their critical regions at the same time.A process which wants to enter its critical region willeventually be able to enter.Each process in one of three region: noncritical, trying, critical.noncriticalWVUTPQRS tryingp1.state=noncriticalWVUTPQRS criticalWVUTPQRS// // //
cc

�� ��
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Mutual Exclusion Problem(2/7)Initially, both processes are in their noncritical regions.A process is in trying region and the other is in noncriticalregion, the �rst process can immediately enter its criticalregion.If both processes are in their trying regions, the booleanvariable turn is used to determine which process enters itscritical region.if turn = 0 then process 0 can enter and turn := !turn.if turn = 1 then process 1 can enter and turn := !turn.We assume that a process must eventually leave its criticalregion.It may remain in its noncritical region forever.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 35 / 88



Mutual Exclusion Problem(3/7)
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Code of Mutual Exclusion
1 MODULE main --two process mutual exclusion2 VAR3 s0: {noncritical, trying, critical};4 s1: {noncritical, trying, critical};5 turn: boolean;6 pr0: process prc(s0, s1, turn, 0);7 pr1: process prc(s1, s0, turn, 1);8 ASSIGN9 init(turn) := 0;
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Mutual Exclusion Problem(4/7)Module de�nitions begin with the keyword MODULE.The module main is top-level module. (line 1)The module prc has formal parameter state0, state1,turn, turn0. (line 19)Variables are declared using VAR.i.e., turn is a boolean variable, while s0 and s1 arevariables which can have one of three region. (line 3-5)It's also used to instantiate other modules. (line 6-7)The keyword process is used in both cases, the globalmodel is constructed by interleaving steps from pr0 andpr1.
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Code of Mutual Exclusion(cont'd)19 MODULE prc(state0, state1, turn, turn0)20 ASSIGN21 init(state0) := noncritical;22 next(state0) :=23 case24 (state0= noncritical):{trying,noncritical};25 (state0= trying)&(state1= noncritical): critical;26 (state0= trying)&(state1= trying)&(turn = turn0):critical;27 (state0= critical) : {critical,noncritical};28 1:state0;29 esac;
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Code of Mutual Exclusion(cont'd)
30 next(turn) :=31 case32 turn = turn0 & state0 = critical: !turn;33 1: turn;34 esac;
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Mutual Exclusion Problem(5/7)The ASSIGN statement is used to de�ne the initial states andtransitions of the model.i.e.,the initial value of variable turn is 0. (line 9)The value of the variable state0 and turn in the nextstate is given by the case statement. (line 23-29) (line31-34)The value of a case statement is determined by evaluatingthe clauses within the statement in sequence.When a set expression is assigned to a variable, the valueof variable is chosen nondeterministically from the set.
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Code of Mutual Exclusion(cont'd)10 FAIRNESS !(s0 = critical)11 FAIRNESS !(s1 = critical)12 SPEC EF((s0 = critical) & (s1 = critical))13 SPEC AG((s0 = trying) -> AF (s0 = critical))14 SPEC AG((s1 = trying) -> AF (s1 = critical))15 SPEC AG((s0 = critical) -> A[(s0 = critical) U16 (!(s0 = critical) & !E[!(s1 = critical) U(s0 = critical)])])17 SPEC AG((s1 = critical) -> A[(s1 = critical) U18 (!(s1 = critical) & !E[!(s0 = critical) U(s1 = critical)])])...35 FAIRNESS runningWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 42 / 88



Mutual Exclusion Problem(6/7)The FAIRNESS statements are fairness constrains.Fairness constrains (line10-11) are used to prevent aprocess remain in its critical region forever.The CTL properties to be veri�ed are given as SPECstatements.The �rst speci�cation checks for a violation of the mutualexclusion requirement.(line 12)The second and third check that a process which wants toenter its critical region will eventually be able to enter.(line13-14)The last two speci�cations check whether processes muststrictly alternate entry into their critical regions.(line15-17)Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 43 / 88



Mutual Exclusion Problem(7/7)Result:EF((s0 = critical) & (s1 = critical)) is falseAG((s0 = trying) -> AF (s0 = critical)) is trueAG((s1 = trying) -> AF (s1 = critical)) is trueAG((s0 = critical) -> A[(s0 = critical).. is falseAG((s1 = critical) -> A[(s1 = critical).. is falseThe output note following:mutual exclusion is not violated,absence of starvation is true,strict alternation of critical region is false.SMV produced counterexample computation paths in the falsecases.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 44 / 88



CounterexampleCounterexample for strict alternation of critical regions.-- specification AG (s0 = critical -> A(... is false-- as demonstrated by the following execution sequencestate 2.1: s0 = noncriticals1 = noncriticalturn=0state 2.2: [executing process pr0]state 2.3: [executing process pr0]s0 = tryingstate 2.4: s0 = criticalstate 2.5: [executing process pr0]state 2.6: s0 = noncriticalturn = 1state 2.7: [executing process pr0]state 2.8: [executing process pr0]s0 = tryingstate 2.9: s0 = criticalWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 45 / 88



A Realistic Example: Futurebus+The formalization and veri�cation of the cache coherenceprotocoldraft IEEE Futurebus+ standard (IEEE Standard896.1-1991).A precise model of the protocol was constructed in SMVlanguage and model checking was used to show that it satis�eda formal speci�cation of cache coherence.A number of errors and ambiguities were discovered.This experience demonstrates that hardware description andmodel checking techniques can be used to help design realindustrial standards.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 46 / 88



Futurebus+Futurebus+ is a bus architecture for high-performancecomputers.The cache coherence protocol used in Futurebus+ is requiredto insure consistency of data in hierarchical systems composedof many processors and caches interconnected by multiple bussegments.The model is highly nondeterministic, both to reduce thecomplexity of veri�cation and to cover allowed design choices.The model for the cache coherence protocol consists of 2300lines of SMV code.
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Design of Futurebus+Futurebus+ maintains coherence by having the individualcaches snoop, or observe, all bus transaction and update theirstatus.Coherence across buses is maintained using bus bridges.Special agents at the end of the bridges represent remotecaches and memories.The protocol uses split transaction to increase performance.This facility makes it possible to service local requests whileremote requests are being processed.
Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 48 / 88



Design of Futurebus+(cont'd)We are interested in cache modules that represents acache/processor pair and shared memory modules.Each cache module in the system is required to keep anattribute for the cache line; the attribute represents the readand write access the cache has to the line.The attributes speci�ed by the Futurebus+ protocol are:invalidshared unmodi�edexclusive unmodi�edexclusive modi�ed
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Design of Futurebus+(cont'd)
The standard de�nes a number of transactions that relate tothe movement of the data lines.Read Shared: This transaction is initiated by a cache whichwishes to obtain read access to the data lineRead Modi�ed: is initiated by a cache who wishes to obtainread/write access to the data lineInvalidate: is initiated by a cache who has read access to thedata line and wishes to obtain write access to the line
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Design of Futurebus+(cont'd)
Copyback: is initiated by a cache has modi�ed the data lineand wishes to evict the line from its memory.Shared Response: is initiated by a cache who has forcedanother module to go into a requester state. This response issharable, others may snarf it.Modi�ed Response: is initiated by a cache has forced anothermodule to go into a requester state. This response is notsharable.
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Design of Futurebus+(cont'd)Transition diagram between line attribute in response totransactions.

Source: Esser."Veri�cation of the Futurebus+ Cache Coherence protocol: Acase study in model checking",2003Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 52 / 88



Design of Futurebus+(cont'd)1 The module completed a read shared transaction that wassnarfed by another module, or it has snarfed the completedread shared transaction of another module.2 Completed a read shared transaction that was not snarfed byanother module3 Completed a read modi�ed transaction4 The module may voluntarily clear the cache of a line, or themodule did not snarf read shared transaction belonging toanother module, or another module initiated read modi�ed orinvalidate transaction.5 Completed an invalidate transactionWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 53 / 88



Design of Futurebus+(cont'd)6 The module may change an exclusive unmodi�ed line toexclusive modi�ed at any time without a bus transaction.7 The module may change the line state to shared-unmodi�edwithout a bus transaction, or the module snarfed the readshared transaction of another module.8 Removed the line from the cache (after performing a copybacktransaction)9 The module performed a copyback transaction and kept a copyof the line.10 Removed the line from the cache, or the module did not snarfthe read share transaction of another module, or anothermodule initiated a read modi�ed transaction.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 54 / 88



Example of Futurebus+: Single busWe consider some example transactions for a single cache linein the two-processor system.Initially, neither processor has a copy of the line in its cache.All processor are in the invalid state.P1 P2M
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Example of Futurebus+: Single bus(cont'd)P1 issues a read-shared transaction to obtain a readable copyof the data from M(memory).P2 snoops this transaction, and it also can obtain a readablecopy, this is called snar�ng.If P2 snarfs, both caches contain a shared-unmodi�ed copy.Next, P1 decides to write, and issues an invalidate transactionon the bus.P2 snoops this transaction, and delete the copy.Final, P1 has an exclusive-modi�ed copy of the data.
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Two-bus ExampleInitially, both processor caches are in the invalid state.Each processor doesn't have a copy in its cache.
P1 CAM

MAP2 Bus2
Bus1
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Two-Bus Example(cont'd)
P2 issues a read-modi�ed to obtain a writable copy, thenMA(memory agent) splits the transaction, for it must get thedata from M.The command is passed to CA(cache agent), and CA issuesthe read-modi�ed on bus 1.M supplies the data to CA, which in turn passes it to MA.MA issues a modi�ed-response on bus 2 to complete the splittransaction.
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Two-Bus Example(cont'd)Suppose now that P1 issues a read-shared command.CA, knowing that a remote cache has an exclusive-modi�edcopy, intervenes in the transaction to indicate that it willsupply the data, and splits the transaction.CA passes the read-shared to MA, which issues it.P2 intervenes and supplies the data to MA, which passes it toCA.CA performs a shared-response transaction which complete theread-shared issued by P1.
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Simpli�cations
First, a number of the low-level details dealing with howmodules communicate were eliminated.The most signi�cant simpli�cation was to use a model inwhich one step corresponds to one transaction.Second, it was used to reduce the size of some parts of thesystem.E.g., only transactions involving a single cache line wereconsidered.The data were reduced to single bit.
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Simpli�cations(cont'd)Third, it involved eliminating the read-invalid and write-invalidcommands.These commands are used in DMA transfers to and frommemory.Last, it involved using nondeterminism to simplify the modelsof some of the components.Processor are assumed to issue read and write requests fora given cache line nondeterministically.Responses to split transactions are assumed to be issuedafter arbitrary delays.Finally, the model of a bus bridge is highlynondeterministic.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 61 / 88



Cache Model1 next(state) :=2 case3 CMD=none:4 case5 state=share-unmodified:6 case7 requester=exclusive: share-unmodified;8 1: invalid, shared-unmodified;9 esac;10 state=exclusive-unmodified: invalid, shared-unmodified,11 exclusive-unmodified, exclusive-modified;12 1: state;13 esac;14 ...Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 62 / 88



Cache Model(cont'd)State components with (CMD, SR, TF) denote bus signalsvisible to the cache, and components with (state, tf) areunder the control of the cache.This part speci�es what happen when an idle cycle occurs.If the cache has a shared-unmodi�ed copy, then the line may benondeterministically kicked out of the cache unless there is anoutstanding request to change the line to exclusive-modi�ed.If a cache has an exclusive-unmodi�ed copy of the line, it maykick the line out of the cache or change it toexclusive-modi�ed.
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Cache Model(cont'd)15 master:16 case17 CMD=read-shared:18 case19 state=invalid:20 case21 !SR & !TF: exclusive-unmodified;22 !SR: shared-unmodified;23 1: invalid;24 esac;25 ...28 esac;29 ...Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 64 / 88



Cache Model(cont'd)This part indicate how the cache line state is updated whenthe cache issues a read-shared transition.This should only happen when the cache doesn't have a copy.If the transaction is not split (!SR), then the data will besupplied to the cache.Either no other caches will snarf the data (!TF), in which casethe cache obtain an exclusive-unmodi�ed copies.If the transition is split, the cache line remains in the invalidstate.
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Cache Model(cont'd)
30 CMD=read-shared:31 case32 state = invalid, shared-unmodified:33 case34 !tf: invalid;35 !SR: shared-unmodified;36 1: state;37 esac;38 ...41 esac;
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Cache Model(cont'd)This part tells how caches respond when they observe anotherone issuing a read-shared transaction.If the observing cache is either invalid or shared-unmodi�ed,then it may indicate that it doesn't want a copy and the linebecomes invalid.Alternatively, it may assert tf and try to snarf the data. Thetransaction is not split (!SR) , the cache obtaines ashared-unmodi�ed copy.Otherwise, the case stays in it current state.
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Speci�cationsAG(p1.writable → ¬p2.readable)If p1 is in the exclusive-modi�ed state, p2 is in invalid.AG(p1.readable ∧ p2.readable → p1.data = p2.data)If two caches have copies ,then they have the same data.AG(p.readable ∧ ¬m.memory -line-modi�ed
→ p.data = m.data)If memory has an up-to-date data, then any cache that has a copymust agree with memory on the data.AG EF p.readable ∧ AG EF p.writableThis is used to check that it is always possible for a cache to getread or write access to the line.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 68 / 88



Two of the errorsThe �rst error occurs in the single bus protocol.Initially, both caches are invalid.P1 obtain an exclusive-unmodi�ed copy.Next, P2 issues a read-modi�ed, which P1 splits forinvalidation.M supplies a copy to P2,which transitions toshared-unmodi�ed.At this point, P1,still having an exclusive-unmodi�ed copy,transitions to exclusive-modi�ed and writes the cache line.P1 and P2 are inconsistent.The bug can be �xed by requiring that P1 transition to theshared-unmodi�ed state when it splits the read-modi�ed forinvalidation.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 69 / 88



Two of the errors(cont'd)The second error occurs in the hierarchical con�guration.P1, P2, and P3 all obtain share-unmodi�ed copies.
P3 CAM

MAP2P1 Bus2
Bus1
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Two of the errors(cont'd)
P1 issues an invalidate transaction that P2 and MA split.P3 issues an invalidate that CA splits.The bridge detects that an invalidate-invalidate collision hasoccurred.The collision should be resolved by having MA invalidate P1.When MA tries to do this, P2 asserts a busy signal on the bus.MA observes this and acquires the requester-waiting attribute.
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Two of the errors(cont'd)P2 now �nishes invalidating and issues a modi�ed-response.This is split by MA because P3 still not invalid.However,MA still maintains the requester-waiting attribute.MA will not issue commands since it is waiting for a completedresponse,but no such response can occur.There is a deadlock.The deadlock can be avoided by having MA clear therequester-waiting attribute when it observe that P2 has�nished invalidating.
Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 72 / 88



Agenda
Introduction to SMV and NuSMVInput LanguageExamples: Mutual Exclusion and FutureBus+LTL, CTL, and BMC in NuSMVReferences
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LTL, CTL, and BMC in NuSMVThe main purpose of a model checker is to verify that a modelsatis�es a set of desired properties speci�ed by the user.In NuSMV, the speci�cations to be checked can be expressedin two di�erent temporal logics: the Computation Tree Logic(CTL), and the Linear Temporal Logic (LTL).CTL and LTL speci�cations are evaluated by NuSMV in orderto determine their truth or falsity in the FSMWhen a speci�cation is discovered to be false, NuSMVconstructs and prints a counterexample.
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LTL Statement declarationA LTL formula has the syntexLTLexpr ::LTLexpr| "!" LTLexpr| LTLexpr1 "&" LTLexpr2| LTLexpr1 "|" LTLexpr2| LTLexpr1 "->" LTLexpr2| LTLexpr1 "<->" LTLexpr2Furture operators| "X" LTLexpr| "G" LTLexpr| "F" LTLexpr| LTLexpr"U" LTLexpr| LTLexpr"V" LTLexprWei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 75 / 88



LTL Statement declaration(cont'd)
A LTL formula has the syntexLTLexpr :: Past operators| "Y" LTLexpr previous state| "Z" LTLexpr before| "H" LTLexpr historically| "O" LTLexpr once| LTLexpr"S" LTLexpr since| LTLexpr"T" LTLexpr triggered
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Semaphore
Each process has four state: idle, entering, critical andexiting.The entering state indicate that the process wants to enterits critical region.If semaphore is 0, it goes to the critical, and setssemaphore to 1.In exiting state, the process sets semaphore to 0.
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Semaphore(cont'd)
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Code of Semaphore
1 MODULE main2 VAR3 semaphore : boolean;4 proc1 : process user(semaphore);5 proc2 : process user(semaphore);6 ASSIGN7 init(semaphore) := 0;
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Code of Semaphore(cont'd)8 MODULE user(semaphore)9 VAR10 state : {idle, entering, critical, exiting};11 ASSIGN12 init(state) := idle;13 next(state) :=14 case15 state = idle: {idle, entering};16 state = entering & !semaphore: critical;17 state = critical: {critical, exiting};18 state = exiting: idle;19 1: state;20 esac;
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Code of Semaphore(cont'd)
21 next(semaphore) :=22 case23 state = entering: 1;24 state = exiting: 0;25 1: semaphore;26 esac;27 FAIRNESS28 running
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CTL Speci�cation of Semaphore
proc1 and prco2 are not at the same time in the critical state.SPECAG!(proc1.state=critical & proc2.state=critical)If porc1 wants to enter its critical state, it eventually does.SPECAG(proc1.state=entering -> AF proc1.state=critical)
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LTL Speci�cation of SemaphoreThe two process cannot be in the critical region at the sametime.LTLSPECG!(proc1.state=critical & proc2.state=critical)A process wants to enter its critical session, it eventually does.LTLSPECG(proc1.state=entering -> F proc1.state=critical)A process enters its critical session, it once want to do it.LTLSPECG(proc1.state=critical -> O proc1.state=entering)Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 83 / 88



Bounded Model Checking in NuSMVInstruct NuSMV to run in BMC by using command-line option-bmcIn BMC mode NuSMV tries to �nd a counterexample ofincreasing length, and immediately stops when it succeeds,declaring that the formula is false.If the maximum number of iterations is reached and nocounterexample is found, then NuSMV exits, and the truth ofthe formula is not decided.The maximum number of iterations can be controlled by usingbmc_length.The default value is 10.Wei-Hsien, Chang (SVVRL@IM.NTU) Symbolic Model Checkers April 21, 2012 84 / 88



Example of Bounded Model Checking
1 MODULE main2 VAR3 y : 0..15;4 ASSIGN5 init(y) := 0;6 TRANS7 case8 y = 7 : next(y) = 0;9 1 : next(y) = ((y + 1) mod 16);10 esac
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Checking LTL Speci�cations with BMC
Check the following LTL speci�cation with BMCLTLSPEC G ( y=4 -> X y=6 )FalseLTLSPEC !G F (y = 2)FalseLTLSPEC F ( X y=8 | O y<3)This formula can't be decided within 10 iterations
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