

Automata-Theoretic Approach to Model Checking

(Based on [Clarke et al. 1999] and [Holzmann 2003])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Outline

Büchi and Generalized Büchi Automata

Automata-Based Model Checking

Intersection

Emptiness Test

LTL to Büchi Automata

Basic Practical Details
Parallel Compositions
On-the-Fly State Exploration
Fairness

Büchi Automata

- The simplest computation model for finite behaviors is the finite state automaton, which accepts finite words.
- The simplest computation model for infinite behaviors is the ω -automaton, which accepts infinite words.
- Both have the same syntactic structure.
- Model checking traditionally deals with non-terminating systems.
- Infinite words conveniently represent the infinite behaviors exhibited by a non-terminating system.
- lacktriangle Büchi automata are the simplest kind of ω -automata.
- They were first proposed and studied by J.R. Büchi in the early 1960's, to devise decision procedures for the logic S1S.

Büchi Automata (cont.)

- A Büchi automaton (BA) has the same structure as a finite state automaton (FA) and is also given by a 5-tuple $(\Sigma, Q, \Delta, q_0, F)$:
 - 1. Σ is a finite set of symbols (the *alphabet*),
 - 2. *Q* is a finite set of *states*,
 - 3. $\Delta \subseteq Q \times \Sigma \times Q$ is the *transition relation*,
 - 4. $q_0 \in Q$ is the *start* (or *initial*) state (sometimes we allow multiple start states, indicated by Q_0 or Q^0), and
 - 5. $F \subseteq Q$ is the set of *accepting* (final in FA) states.
- Let $B = (\Sigma, Q, \Delta, q_0, F)$ be a BA and $w = w_1 w_2 \dots w_i w_{i+1} \dots$ be an infinite string (or word) over Σ .
- A run of B over w is a sequence of states $r_0, r_1, r_2, \ldots, r_i, r_{i+1}, \ldots$ such that
 - 1. $r_0 = q_0$ and
 - 2. $(r_i, w_{i+1}, r_{i+1}) \in \Delta \text{ for } i \geq 0.$

Büchi Automata (cont.)

- Let $inf(\rho)$ denote the set of states occurring infinitely many times in a run ρ .

$$inf(\rho) \cap F \neq \emptyset$$
.

- ♦ An infinite word $w \in \Sigma^{\omega}$ is accepted by a BA B if there exists an accepting run of B over w.
- The *language* recognized by B (or the language of B), denoted L(B), is the set of all words accepted by B.

An Example Büchi Automaton

- This Büchi automaton accepts infinite words over {a, b} that have infinitely many a's.
- Using an ω -regular expression, its language is expressed as $(b^*a)^\omega$.

Closure Properties

- A class of languages is closed under intersection if the intersection of any two languages in the class remains in the class.
- Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed under **intersection** and **complementation** (and hence all boolean operations).

Note: the theorem would not hold if we were restricted to deterministic Büchi automata, unlike in the classic case.

Generalized Büchi Automata

- A generalized Büchi automaton (GBA) has an acceptance component of the form $F = \{F_1, F_2, \dots, F_n\} \subseteq 2^Q$.
- GBA's naturally arise in the modeling of finite-state concurrent systems with fairness constraints.
- They are also a convenient intermediate representation in the translation from a linear temporal formula to an equivalent BA.
- There is a simple translation from a GBA to a Büchi automaton, as shown next.

GBA to BA

- lacktriangle Let $B=(\Sigma,Q,\Delta,q_0,F)$, where $F=\{F_1,\cdots,F_n\}$, be a GBA.
- Solution Construct $B' = (\Sigma, Q \times \{0, \cdots, n\}, \Delta', \langle q_0, 0 \rangle, Q \times \{n\}).$
- The transition relation Δ' is constructed such that $(\langle q, x \rangle, a, \langle q', y \rangle) \in \Delta'$ when $(q, a, q') \in \Delta$ and x and y are defined according to the following rules:
 - $ilde{*}$ If $q' \in F_i$ and x = i 1, then y = i.
 - $\stackrel{\bullet}{=}$ If x = n, then y = 0.
 - % Otherwise, y = x.
- \bigcirc Claim: L(B') = L(B).

Theorem

For every GBA B, there is an equivalent BA B' such that L(B') = L(B).

Model Checking Using Automata

- Kripke structures are the most commonly used model for concurrent and reactive systems in model checking.
- \bigcirc Let AP be a set of atomic propositions.
- A Kripke structure M over AP is a four-tuple $M = (S, R, S_0, L)$:
 - 1. *S* is a finite set of states.
 - 2. $R \subseteq S \times S$ is a transition relation that must be total, that is, for every state $s \in S$ there is a state $s' \in S$ such that R(s, s').
 - 3. $S_0 \subseteq S$ is the set of initial states.
 - 4. $L: S \to 2^{AP}$ is a function that labels each state with the set of atomic propositions true in that state.

Model Checking Using Automata (cont.)

- Finite automata can be used to model concurrent and reactive systems as well.
- One of the main advantages of using automata for model checking is that both the modeled system and the specification are represented in the same way.
- A Kripke structure directly corresponds to a Büchi automaton, where all the states are accepting.
- A Kripke structure (S, R, S₀, L) can be transformed into an automaton A = (Σ, S ∪ {ι}, Δ, ι, S ∪ {ι}) with Σ = 2^{AP} where
 - $(s, \alpha, s') \in \Delta$ for $s, s' \in S$ iff $(s, s') \in R$ and $\alpha = L(s')$ and
 - $ilde{*} \ (\iota, \alpha, s) \in \Delta \ ext{iff} \ s \in S_0 \ ext{and} \ \alpha = \mathit{L}(s).$

Model Checking Using Automata (cont.)

- The given system is modeled as a Büchi automaton A.
- \odot Suppose the desired property is originally given by a linear temporal formula f.
- ♦ Let B_f (resp. $B_{\neg f}$) denote a Büchi automaton equivalent to f (resp. $\neg f$); we will later study how a temporal formula can be translated into an automaton.
- The model checking problem $A \models f$ is equivalent to asking whether

$$L(A) \subseteq L(B_f)$$
 or $L(A) \cap L(B_{\neg f}) = \emptyset$.

- The well-used model checker SPIN, for example, adopts this automata-theoretic approach.
- So, we are left with two basic problems:
 - 🌞 Compute the intersection of two Büchi automata.
 - Test the emptiness of the resulting automaton.

Intersection of Büchi Automata

- Let $B_1 = (\Sigma, Q_1, \Delta_1, Q_1^0, F_1)$ and $B_2 = (\Sigma, Q_2, \Delta_2, Q_2^0, F_2)$.
- $igoplus We can build an automaton for <math>L(B_1) \cap L(B_2)$ as follows.
- $B_1 \cap B_2 = (\Sigma, Q_1 \times Q_2 \times \{0, 1, 2\}, \Delta, Q_1^0 \times Q_2^0 \times \{0\}, Q_1 \times Q_2 \times \{2\}).$
- We have $(\langle r, q, x \rangle, a, \langle r', q', y \rangle) \in \Delta$ iff the following conditions hold:
 - $\red (r,a,r')\in \Delta_1 \text{ and } (q,a,q')\in \Delta_2.$
 - * The third component is affected by the accepting conditions of B_1 and B_2 .
 - \bullet If x=0 and $r'\in F_1$, then y=1.
 - $m{\omega}$ If x=1 and $q'\in F_2$, then y=2.
 - \bullet If x = 2, then y = 0.
 - Otherwise, y = x.
- The third component is responsible for guaranteeing that accepting states from both B_1 and B_2 appear infinitely often.

Intersection of Büchi Automata (cont.)

- A simpler intersection may be obtained when all of the states of one of the automata are accepting.
- Assuming all states of B_1 are accepting and that the acceptance set of B_2 is F_2 , their intersection can be defined as follows:

$$B_1 \cap B_2 = (\Sigma, Q_1 \times Q_2, \Delta', Q_1^0 \times Q_2^0, Q_1 \times F_2)$$

where $(\langle r, q \rangle, a, \langle r', q' \rangle) \in \Delta'$ iff $(r, a, r') \in \Delta_1$ and $(q, a, q') \in \Delta_2$.

Checking Emptiness

- Let ρ be an accepting run of a Büchi automaton $B = (\Sigma, Q, \Delta, Q^0, F)$.
- lacktriangle Then, ho contains infinitely many accepting states from F.
- Since Q is finite, there is some suffix ρ' of ρ such that every state on it appears infinitely many times.
- lacktriangle Each state on ho' is reachable from any other state on ho' .
- igoplus P Hence, the states in ho' are included in a strongly connected component.
- This component is reachable from an initial state and contains an accepting state.

Checking Emptiness (cont.)

- Conversely, any strongly connected component that is reachable from an initial state and contains an accepting state generates an accepting run of the automaton.
- \odot Thus, checking nonemptiness of L(B) is equivalent to finding a strongly connected component that is reachable from an initial state and contains an accepting state.
- That is, the language L(B) is nonempty iff there is a reachable accepting state with a cycle back to itself.

Double DFS Algorithm


```
procedure emptiness
   for all q_0 \in Q^0 do
       dfs1(q_0);
   terminate(True);
end procedure
procedure dfs1(q)
   local q';
    hash(q);
   for all successors q' of q do
       if q' not in the hash table then dfs1(q');
   if accept(q) then dfs2(q);
end procedure
```

Double DFS Algorithm (cont.)


```
procedure dfs2(q)
  local q';
  flag(q);
  for all successors q' of q do
      if q' on dfs1 stack then terminate(False);
      else if q' not flagged then dfs2(q');
      end if;
end procedure
```

Correctness

Lemma

Let q be a node that does not appear on any cycle. Then the DFS algorithm will backtrack from q only after all the nodes that are reachable from q have been explored and backtracked from.

This lemma still holds for the first DFS in the double DFS algorithm.

Theorem

The double DFS algorithm returns a counterexample for the emptiness of the checked automaton B exactly when the language L(B) is not empty.

Correctness (cont.)

- Suppose a second DFS is started from a state q and there is a path from q to some state p on the search stack of the first DFS.
- There are two cases:
 - There exists a path from q to a state on the search stack of the first DFS that contains only unflagged nodes when the second DFS is started from q.
 - On every path from q to a state on the search stack of the first DFS, there exists a state r that is already flagged.
- The algorithm will find a cycle in the first case.
- We show next that the second case is impossible.

Correctness (cont.)

- Suppose the contrary: on every path from q to a state on the search stack of the first DFS, there exists a state r that is already flagged.
- Then there is an accepting state from which a second DFS starts but fails to find a cycle even though one exists.
- \bigcirc Let q be the first such state.
- \bullet Let r be the first flagged state that is reached from q during the second DFS and is on a cycle through q.
- Let q' be the accepting state that starts the second DFS in which r was first encountered.
- Thus, according to our assumptions, a second DFS was started from q' before a second DFS was started from q.

Correctness (cont.)

- \bigcirc Case 1: the state q' is reachable from q.
 - $ilde{*}$ There is a cycle $q' o\cdots o r o\cdots o q o\cdots o q'$.
 - This cycle could not have been found previously; otherwise, the algorithm would have terminated.
 - This contradicts our assumption that q is the first accepting state from which the second DFS missed a cycle.
- \odot Case 2: the state q' is not reachable from q.
 - q' cannot appear on a cycle; otherwise, q would not be the first node to start the second DFS and miss a cycle.
 - $ilde{*} q$ is reachable from r and q'.
 - % If q' does not occur on a cycle, by the lemma we must have backtracked from q in the first DFS before from q'.
 - This contradicts our assumption about the order of doing the second DFS.

Temporal Formula vs. Büchi Automaton

- The above Büchi automaton says that, whenever p holds at some point in time, q must hold at the same time or will hold at a later time.
 - Note: the alphabet is $\{pq, p\sim q, \sim pq, \sim p\sim q\}$; q alone denotes any input symbol from $\{pq, \sim pq\}$.
- 📀 It may not be easy to see that this indeed is the case.
- lacktriangledown In linear temporal logic, this can easily be expressed as ${f G}(p o{f F}q)$, which reads "always p implies eventually q".

LTL to Büchi Automata Translation

- We will study a tableau-based algorithm [GPVW] for obtaining a Büchi automaton from an LTL formula.
- The algorithm is geared towards being used in model checking in an on-the-fly fashion:
 It is possible to detect that a property does not hold by only constructing part of the model and of the automaton.
- The algorithm can also be used to check the validity of a temporal logic assertion.
- To apply the translation algorithm, we first convert the formula φ into the *negation normal form*.

Preprocessing of Formulae

Every LTL formula can be converted into the negation normal form:

- $\bigcirc \diamondsuit p$ (or $\mathbf{F}p$) = $\mathit{True}~\mathcal{U}~p$
- $\bigcirc \square p$ (or $\mathbf{G}p$) = $False <math>\mathcal{R}$ p
- $lap{?}
 abla (p \ \mathcal{U} \ q) = (
 eg p) \ \mathcal{R} (
 eg q)$

Data Structure of an Automaton Node

- ID: a string that identifies the node.
- Incoming: the incoming edges, represented by the IDs of the nodes with an outgoing edge leading to this node.
- New: a set of subformulae that must hold at this state and have not yet been processed.
- Old: the subformulae that must hold at this state and have already been processed.
- Next: the subformulae that must hold in all states that are immediate successors of states satisfying the formulae in Old.

The Algorithm: Start and Overview

- Start with a single node having a single incoming edge labeled *init* (i.e., from an initial node).
- The starting node has initially one obligation in *New*, namely φ , and *Old* and *Next* are initially empty.
- Expand the starting node (which generates new nodes) in an DFS manner.
- Fully processed nodes are put in a list called Nodes.

```
\begin{array}{l} \textbf{function} \ \textit{create\_graph}(\varphi) \\ \textit{expand}([\textit{ID} \leftarrow \textit{new\_ID}(), \\ \textit{Incoming} \leftarrow \{\textit{init}\}, \\ \textit{Old} \leftarrow \emptyset, \\ \textit{New} \leftarrow \{\varphi\}, \\ \textit{Next} \leftarrow \emptyset], \\ \emptyset); \end{array}
```

end function

The Algorithm: Node-Expansion

- Check if there are unprocessed obligations in New of the current node N.
- If New is empty, it means node N is fully processed and ready to be added to Nodes.
- Otherwise, a formula in New is selected, processed, and moved to Old.

```
function expand(q, Nodes)

if New(q) = \emptyset then

if \exists r \in Nodes : Old(r) = Old(q) \land Next(r) = Next(q) then

...

else ...

else let \eta \in New(q);

New(q) := New(q) - \eta;
```

end function


```
/* in function expand */
if New(q) = \emptyset then
    if \exists r \in Nodes : Old(r) = Old(q) \land Next(r) = Next(q) then
          Incoming(r) := Incoming(r) \cup Incoming(q);
         return(Nodes);
    else expand(ID \leftarrow new_ID(),
                   Incoming \leftarrow \{ID(q)\},\
                   Old \leftarrow \emptyset.
                   New \leftarrow Next(q),
                   Next \leftarrow \emptyset, Nodes \cup \{q\});
     end if
else let \eta \in New(q);
      New(q) := New(q) - \eta;
     if \eta \in Old(q) then expand(q, Nodes);
     else ... /* cases according to the form of \eta */
```

Automatic Verification 2015

The Algorithm: Updating the Nodes List

A fully processed current node N is added to *Nodes* as follows:

- If there already is a node in *Nodes* with the same obligations in both its *Old* and *Next* fields, the incoming edges of *N* are incorporated into those of the existing node.
- Otherwise, the current node N is added to Nodes.
- → With the addition of node N in Nodes, a new current node is formed for its successor as follows:
 - 1. There is initially one edge from N to the new node.
 - 2. New is set initially to the Next field of N.
 - 3. Old and Next of the new node are initially empty.

The Algorithm: Node-Expansion (cont.)

A formula η in *New* is processed as follows:

- lacktriangle If η is just a literal (a proposition or the negation of a proposition), then
 - \red if $\neg \eta$ is in *Old*, the current node is discarded;
 - \red otherwise, η is added to Old.
- If η is not a literal, the current node can be split into two or not split, and new formulae can be added to the fields New and Next.
- igoplus The exact actions depend on the form of η .

The Algorithm: Node-Expansion (cont.)


```
case \eta of
     p \wedge q: q' := [ID \leftarrow new\_ID(),
                       Incoming \leftarrow Incoming(q),
                       Old \leftarrow Old(q) \cup \{\eta\},\
                       New \leftarrow New(q) \cup \{p, q\},\
                       Next \leftarrow Next(q)];
               expand(q', Nodes);
     p \vee q: ...
     р U q: ...
     p \mathcal{R} q: \dots
     ○p: ...
end case
```

The Algorithm: Node-Expansion (cont.)

Actions on η (that is not a literal):

- $\Pledsymbol{\circ} \eta = p \wedge q$, then both p and q are added to New.
- $\eta = p \ \mathcal{U} \ q \ (\cong q \lor (p \land \bigcirc (p \ \mathcal{U} \ q)))$, then the node is split. For the first copy, p is added to New and $p \ \mathcal{U} \ q$ to Next. For the other copy, q is added to New.
- $ightharpoonup \eta = p \; \mathcal{R} \; q \; (\cong (p \wedge q) \lor (q \wedge \bigcirc (p \; \mathcal{R} \; q)))$, similar to $\mathcal U$.

The Algorithm: Handling $\,\mathcal{U}\,$


```
case \eta of
```

```
p \mathcal{U} q: q_1 := [ID \leftarrow new\_ID(),
                    Incoming \leftarrow Incoming(q),
                    Old \leftarrow Old(q) \cup \{\eta\},\
                    New \leftarrow New(q) \cup \{p\},\
                    Next \leftarrow Next(q) \cup \{p \ \mathcal{U} \ q\}\};
           q_2 := [ID \leftarrow new\_ID(),
                    Incoming \leftarrow Incoming(q),
                    Old \leftarrow Old(q) \cup \{\eta\},\
                    New \leftarrow New(q) \cup \{q\},\
                    Next \leftarrow Next(q)];
           expand(q_2, expand(q_1, Nodes));
```

end case

The Algorithm: Handling $\,\mathcal{R}\,$

case η of

```
p \mathcal{R} q: q_1 := [ID \leftarrow new\_ID(),
                    Incoming \leftarrow Incoming(q),
                    Old \leftarrow Old(q) \cup \{\eta\},\
                    New \leftarrow New(q) \cup \{q\},\
                    Next \leftarrow Next(q) \cup \{p \ \mathcal{R} \ q\}\};
           q_2 := [ID \leftarrow new\_ID(),
                    Incoming \leftarrow Incoming(q),
                    Old \leftarrow Old(q) \cup \{\eta\},\
                    New \leftarrow New(q) \cup \{p, q\},\
                    Next \leftarrow Next(q)];
           expand(q_2, expand(q_1, Nodes));
```

end case

Nodes to GBA

The list of nodes in *Nodes* can now be converted into a generalized Büchi automaton $B = (\Sigma, Q, q_0, \Delta, F)$:

- 1. Σ consists of sets of propositions from AP.
- 2. The set of states Q includes the nodes in *Nodes* and the additional initial state q_0 .
- 3. $(r, \alpha, r') \in \Delta$ iff $r \in Incoming(r')$ and α satisfies the conjunction of the negated and nonnegated propositions in Old(r')
- 4. q_0 is the initial state, playing the role of *init*.
- 5. F contains a separate set F_i of states for each subformula of the form $p \mathcal{U} q$; F_i contains all the states r such that either $q \in Old(r)$ or $p \mathcal{U} q \notin Old(r)$.

Basic Practical Details

- We now have the essential automata-based theory for model checking, but we still need to pay attention to a few more basic practical details.
- Many systems are more naturally represented as the parallel composition of several concurrently executing processes, rather than as a monolithic chunk of code.
- There are also concerns with the size of the system and the gap between the computation model and a concurrent system running on real hardware.
- Specifically, we will look into
 - 🌞 asynchronous products of automata,
 - 🥟 on-the-fly state exploration, and
 - fairness (in the computation model).

Processes as Automata

```
#define N 4
int x = N;
active proctype AO()
  do
  :: x\%2 \rightarrow x = 3*x + 1
  od
active proctype A1()
  do
  :: !(x\%2) \rightarrow x = x/2
  od
```


The transition labeled "x%2" is enabled if $x\%2 \neq 0$, i.e., if x is odd; "!(x%2)" is enabled

Interleaving as Asynchronous Product

Expanded Asynchronous Product

With x = 4 initially, we have a concrete finite-state automaton:

Specification as a Büchi Automaton


```
/* N was defined to be $4$ */
#define p (x < N)
never { /* <>[]p */
TO init:
  if
  :: p -> goto accept_S4
  :: true -> goto T0_init
  fi;
accept_S4:
  if
  :: p -> goto accept_S4
  fi;
```


Automaton *B* is equivalent to the "never claim", which specifies all the bad behaviors.

Synchronous Product

On-the-Fly State Exploration

- The automaton of the system under verification may be too large to fit into the memory.
- Using the double DFS search for a counterexample, the system (the asynchronous product automaton) need not be expanded fully.
- All we need to do are the following:
 - 🌞 Keep track of the current active search path.
 - Compute the successor states of the current state.
 - 🌞 Remember (by hashing) states that have been visited.
- This avoids construction of the entire system automaton and is referred to as *on-the-fly* state exploration.
- The search can stop as soon as a counterexample is found.

Fairness

- A concurrent system is composed of several concurrently executing processes.
- Any process that can execute a statement should eventually proceed with that instruction, reflecting the very basic fact that a normal functioning processor has a positive speed.
- This is the well-known notion of weak fairness, which is practically the most important kind of fairness.
- Such fairness may be enforced in one of the following two ways:
 - When searching for a counterexample, make sure that every process gets a chance to execute its next statement.
 - Encode the fairness constraint in the specification automaton.