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Component M1

Out  x : Boolean;
In y : Boolean;
Init x = true;
Repeat forever 
x:=y; 

always x=true

Verification Task: verify if the system composed of 
components M1 and M2 satisfies a property P, i.e., M1||M2 P.
M1 and M2 may rely on each other to satisfy P.

Can the construction of M1||M2 be avoided?

M1 alone does not guarantee “always x = true”!

Verification of Parallel Compositions
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Component M2

Out y,z : Boolean;
Init y = z = true;
Repeat forever 
y, z := true, false;
y, z := true, false;
y, z := true, true;
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An Assume-Guarantee (A-G) rule:

If a small contextual assumption A (an abstraction of M2) 
exists, then the overall verification task may become 
easier.

It is possible when M1, M2, A, and P are finite automata.

M2 AA||M1 P

M1 || M2 P

But, how to find           automatically?A

Compositional Reasoning
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Compositional Reasoning (cont.)
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Component M1

Out  x : Boolean;
In y,z : Boolean;
Init x = true;
Repeat forever 
x := y; 

Component M2

Out y,z : Boolean;
Init y = z = true;
Repeat forever 
y, z := true, false;
y, z := true, false;
y, z := true, true;

always x=true

Component A

Out y,z : Boolean;
Init y = true;
Repeat forever 
y, z := true, ?;

A suitable contextual assumption         :

Component A has fewer states (automaton locations) than M2.

A
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M2 AA||M1 P

M1 || M2 P

The behaviors of components and properties are described as regular languages.

Parallel composition is presented by the intersection of the languages.

A system satisfies a property if the language of the system is a subset of the 

language of the property.
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Setting the Stage
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Outline

Learning-Based Compositional Model Checking: 
Automation by Learning
The L* Algorithm
The Problem of L*-Based Approaches

Learning Minimal Separating DFA’s: 
The LSEP Algorithm
Comparison with Another Algorithm
Adapt LSEP for Compositional Model Checking
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Teacher

a

b

L* 
Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Answering queries for a 
regular language U

a

b

Membership Query

Equivalence Query

DFA (deterministic finite automaton) 

Overview of the L* Algorithm

If such a teacher is provided, L* guarantees to produce a DFA that 
recognizes U using a polynomial number of queries.

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 7



SVVRL  @  IM.NTU

/ 35

Automation by Learning

First developed by Cobleigh, Giannakopoulou, and 
Păsăreanu [TACAS 2003]

Apply the L* learning algorithm for regular languages 
to find an         for the A-G rule:A
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A closer look at the A-G rule:

Conceptually, the target language is P∪M1, the 
weakest assumption for the premise M1ÅA⊆P.
Actually reaching the target would be even worse 
than checking M1ÅM2⊆P directly.
It really pays off when we can stop earlier … 

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

M1Å A⊆P 

M1Å AÅP=∅

AÅ(P∪M1)=∅

A⊆ P∪M1
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Basic Understanding

When A=P∪M1 ,

M2⊆A

M2⊆P∪M1

M2Å(P∪M1)=∅

M2ÅPÅM1=∅

M1ÅM2⊆P
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M1ÅAi⊆P 

M2⊆Ai

Real 
Error? 

NO + ce

NO + ce

NO + ce YES

YES
YES

P holds

P violated

Ai

Equivalence queries

L* Algorithm
Target: P∪M1 
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(ce is a real error if ce is in M2, but not in P∪M1,
implying M2*P∪M1, i.e., M1ÅM2*P.) 

(Ai ⊆ P∪M1)

(ce tells how Ai should be enlarged.)

The Algorithm of Cobleigh et al.

(We stop early in these two cases.)
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Proposed by D. Angluin [Info.&Comp. 1987] and 
improved by Rivest and Schapire [Info.&Comp. 1993]

Teacher

a

b

L* 
Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Answering queries for a 
regular language U

a

b

Membership Query

Equivalence Query

DFA (deterministic finite automaton) 

The L* Learning Algorithm
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L*: Initial Setting

Target: (ab+aab)*

Teacher
L* 

Algorithm

±Counterexample/ Yes

Finite string

Yes/No

Finite Automaton

Membership Query

Equivalence Query

A reminder:

SStates

E: Distinguishing Experiments

SΣNext
States

λ

b

a

?

?
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L*: Fill Up the Table by Membership Queries

Fill up the table using membership queries.

a represents a new equivalence class, because 
its row is different from all of those in the current 
S set.

Target: (ab+aab)*

λ

b ?

a a

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 13
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L*: Table Expansion

Move a to the S set and expand the table with elements aa and ab.

Target: (ab+aab)*
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L*: A Closed Table

Again, fill up the table using membership queries.

We say that the table is closed because every row 
in the SΣ set appears somewhere in the S set.

Target: (ab+aab)*
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L*: Making a Conjecture

aλ

a,b

b
a

Construct a DFA from the learned equivalence classes.

Counterexample: bb

Target: (ab+aab)*A suffix b is extracted from bb as 
a valid distinguishing experiment

Theorem: 
At least one suffix of the counterexample is a valid distinguishing experiment.

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 16
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L*: 2nd Iteration
Add b to the E set, fill up and expand the table following the same procedure.

a

Target: (ab+aab)*

Counterexample: aaab

aλ
b

a

b a,b

b

A suffix ab is extracted from aaab
as a valid distinguishing experiment.

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 17



SVVRL  @  IM.NTU

/ 35

L*: 3rd Iteration (Completed)

Target: (ab+aab)*

Add ab to the E set, fill up and expand the table following the same procedure.

aλ

a

b

a

ba,b

b

aaa

b

Theorem: 
The DFA produced by L* is the minimal DFA that recognizes that target language.
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L*: Complexity
Complexity:

Equivalence query: at most n
Membership query: O(|Σ|n2 +n log m)

Note: n is the size of the minimal DFA that recognizes U, m is the length 
of the longest counterexample returned from the teacher.
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The Problem
The L*-based approaches cannot guarantee finding the 
minimal assumption (in size), even if there exists one.

The smaller the size of          is, the easier it is to check the 
correctness of the two premises.

L* targets a single language, however, there exists a range of 
languages that satisfy the premises of an A-G rule.

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

A
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SVVRL  @  IM.NTU

/ 35

Finding a Minimal Assumption

A reminder: we use the following Assume-Guarantee rule for 
decomposition.

The two premises can be rewritten as follows:

M2 A ∪ M1P⊆⊆

M2 AAÅM1 P

M1 M2 PÅ

⊆ ⊆

⊆

M1Å A⊆P 

M1Å AÅP=∅

AÅ(P∪M1)=∅

A⊆ P∪M1
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Finding a Minimal Assumption (cont.)

To apply the A-G rule is to find an          satisfying the following 
constraint:

So, the problem of finding a minimal assumption for the A-G 
rule reduces to finding a minimal separating DFA that 

accepts every string in M2 and 
rejects every string not in P ∪ M1.

M2 A ∪ M1P⊆⊆

First observed by Gupta, McMillan, and Fu

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 22

A



SVVRL  @  IM.NTU

/ 35

Contribution of [Chen et al. TACAS 2009]: a polynomial-
query learning algorithm, LSep, for minimal separating 
DFA’s.
Problem: given two disjoint regular languages L1 and L2, 
we want to find a minimal DFA A that satisfies

Assumption: a teacher for L1 and L2: 
Membership query: if a string s is in L1 (resp. L2)
Containment query: ?⊆L1 , ?⊇L1, ?⊆L2, and ?⊇L2

Learning a Minimal Separating DFA

L1 ⊆ L(A) ⊆ L2 L1 L2L(A) 

We say that A is a separating 
DFA for L1 and L2

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 23
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3-Value DFA (3DFA)

A 3DFA is  a tuple                                               .

A DFA A is encoded in a 3DFA C iff A
accepts all strings that C accepts and 
rejects all strings that C rejects.
A don’t care string in C can be either accepted or 
rejected by A.

b b

a

a

a

b

An example of 
a 3DFA
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The LSep Algorithm: Overview

Ai
L1 L2

T D F

L1ÅL2
Extend the L* 
algorithm to allow 
don’t care values.

Target:

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Extended 
L*

Completeness
Checking

Finding a 
Minimal DFA 
Encoded in Ci

Ci
Ci

CE

DFA’s encoded in Ci ⊇ all separating DFA’s for L1 and L2
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The Target 3DFA

The target 3DFA C
accepts every string in L1, and
rejects every string in L2.
Strings in L1∩L2 are don’t care strings.

A minimal DFA encoded in C is a minimal separating DFA of L1
and L2.

Ai
L1 L2

Accept

Don’t care

Reject

L1ÅL2
Definition:

A DFA A is encoded in a 3DFA C iff A
accepts all strings that C accepts and 
rejects all strings that C rejects.

A DFA A separates L1 and L2 iff A
accepts all strings in L1 and
rejects all strings in L2.

DFA’s encoded in C = 
all separating DFA’s for L1 and L2

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 26
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The LSep Algorithm

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Extended 
L*

Completeness
Checking

Ci
Ci

CE

L2L1

Accepted Rejected

Check if all of the separating DFA’s of L1 and L2 are encoded in Ci, 
which can be done by checking the following conditions:

Finding a 
Minimal DFA 
Encoded in Ci

Definition:
A DFA A is encoded in a 3DFA C iff A

accepts all strings that C accepts and 
rejects all strings that C rejects.

A DFA A separates L1 and L2 iff A
accepts all strings in L1 and
rejects all strings in L2.

L(A) 

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 27
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The LSep Algorithm

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Extended 
L*

Completeness
Checking

Ci
Ci

CE
Finding a 

Minimal DFA 
Encoded in Ci

The algorithm of
Rho et. al. (1994)

LEMMA: 
The size of minimal separating DFA of L1 and L2 ≥ 
|Ai|, the size of the minimal DFA encoded in Ci.

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 28
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The LSep Algorithm

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Extended 
L*

Completeness
Checking

Ci
Ci

CE
Finding a 

Minimal DFA 
Encoded in Ci

LEMMA: 
The size of minimal separating DFA of L1 and L2 ≥ 
|Ai|, the size of the minimal DFA encoded in Ci.

If  L1 ⊆ L(Ai) ⊆ L2: 
Ai is a minimal separating DFA.

If L1 * L(Ai) or L(Ai) * L2: 
Counterexample CE is a witness for Ci not being the target 3DFA. 
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Requires an exponential
number of iterations in 

the worst case

The Algorithm of Gupta et al.

Begin with an empty sample set

Make a minimal DFA 
that consistent with the 

current sample set

Check if
L1⊆L(Ai) ⊆ L2? 

Ai

YES

NO + CE
Add CE to the sample set

An Example

+ SAMPLES:
λ,aa,abb

- SAMPLES:
a,aaa,abba

Make a 
3DFA

a

a

a

b

b

a

Find a minimal 
DFA encoded in 
the 3DFA (NP-hard)

b
a

a,b

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 30
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Requires a polynomial
number of iterations in 

the worst case

The LSep Algorithm

Extend the L* 
algorithm to manage 

the collected samples.

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

An Example

b
a

a,b

Make a 
3DFA

b b

a

a

a

b

Find a minimal 
DFA encoded in 
the 3DFA (NP-hard)
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Comparing the Two Algorithms

b b

a

a

a

b

b
a

a,b

+ SAMPLES:
λ,aa,abb

- SAMPLES:
a,aaa,abba

a

a

a

b

b

a

b
a

a,b

LSep:

Gupta et al. :

Same sample set!

Make a 
3DFA

Find a minimal 
DFA encoded in 
the 3DFA (NP-hard)

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 32



SVVRL  @  IM.NTU

/ 35

Let L1 = M2 and L2 = P∪M1, use LSep to find a 
separating DFA for L1 and L2. 

When M2*P∪M1 (i.e., M1ÅM2*P ), LSep can be 
modified to guarantee finding a string in M2, but 
not in P∪M1(i.e., M1ÅM2\P).

Adapt LSep for Compositional Verification

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 33
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Use heuristics to find a small consistent DFA:

Adapt LSep for Compositional Verification

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Candidate 
Generator

Completeness
Checking

Finding a 
Small DFA 

Encoded in Ci

Ci
Ci

CE

Minimality is no longer guaranteed!

Automatic Verification 2015: Compositional ReasoningYih-Kuen Tsay 34
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Skip completeness checking:

Adapt LSep for Compositional Verification

Minimality is no longer guaranteed!

Check if 
L1⊆L(Ai)⊆ L2? 

Ai
YES

NO + CE

Candidate 
Generator

Completeness
Checking

Finding a 
Small  DFA 

Encoded in Ci

Ci
Ci

CE
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