

Ordered Sets and Fixpoints

(Based on [Davey and Priestley 2002])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Partial Orders

- Let P be a set.
- ♠ A partial order, or simply order, on P is a binary relation ≤ on P such that:
 - 1. $\forall x \in P, x \leq x$, (reflexivity)
 - 2. $\forall x, y, z \in P, x \leq y \land y \leq z \rightarrow x \leq z$, (transitivity)
 - 3. $\forall x, y \in P, x \leq y \land y \leq x \rightarrow x = y$. (antisymmetry)
- ♦ A set P equipped with a partial order \leq , often written as $\langle P, \leq \rangle$, is called a *partially ordered set*, or simply *ordered set*, sometimes abbreviated as *poset*.
- A binary relation that is reflexive and transitive is called a pre-order or quasi-order.
- \P We write x < y to mean $x \le y$ and $x \ne y$.

Examples of Ordered Sets

- - \mathscr{H} $\mathcal{N}=\{1,2,3,\cdots\}$, the set of natural numbers.
 - $ilde{*} \leq$ is the usual "less than or equal to" relation.

Variant: $\langle \mathcal{N}_0, \leq \rangle$ with $\mathcal{N}_0 = \mathcal{N} \cup \{0\} = \{0, 1, 2, 3, \cdots\}$.

- $\Diamond \langle \mathcal{P}(X), \subseteq \rangle$
 - $ilde{*} \mathcal{P}(X)$ is the powerset of X, consisting of all subsets of X.
 - $ilde{*}\subseteq$ is the set inclusion relation.
- $\langle \Sigma^*, \leq \rangle$
 - $ilde{*}\hspace{0.1cm} \Sigma^*$ is the set of all finite strings over the alphabet Σ .
 - $ilde{*} \leq$ is the "is a prefix of" relation.

Order-Isomorphisms

- We want to be able to tell when two ordered sets are essentially the same.
- \bigcirc Let $\langle P, \leq_P \rangle$ and $\langle Q, \leq_Q \rangle$ be two ordered sets.
- P and Q are said to be (order-)isomorphic, denoted $P \cong Q$, if there is a map φ from P onto Q such that $x \leq_P y$ if and only if $\varphi(x) \leq_Q \varphi(y)$.
- lacktriangle The map arphi above is called an *order-isomorphism*.
- For example, N₀ and N are order-isomorphic with the successor function n → n + 1 as the order-isomorphism.
- An order-isomorphism is necessarily *bijective* (one-to-one and onto). Therefore, an order-isomorphism $\varphi: P \to Q$ has a well-defined inverse $\varphi^{-1}: Q \to P$.

Chains and Antichains

- Let P be an ordered set.
- P is called a *chain* if $\forall x, y \in P, x \leq y \lor y \leq x$, i.e., any two elements in P are comparable.
- For example, $\langle \mathcal{N}, \leq \rangle$ is a chain.
- Alternative names for a chain are *totally ordered set* and *linearly ordered set*.
- ♦ P is called an antichain if $\forall x, y \in P, x \leq y \rightarrow x = y$, i.e., no two distinct elements in P are ordered.
- Clearly, any subset of a chain (an antichain) is a chain (an antichain).
- We write \mathbf{n} to denote a chain of n elements and $\bar{\mathbf{n}}$ an antichain of n elements.

Sums of Ordered Sets

- Let P and Q be two disjoint ordered sets.
- **③** The disjoint union $P \uplus Q$ is defined by $x \le y$ in $P \uplus Q$ if and only if
 - 1. $x, y \in P$ and $x \le y$ in P, or
 - 2. $x, y \in Q$ and $x \le y$ in Q.
- $\red{}$ The linear sum $P \oplus Q$ is defined by $x \leq y$ in $P \oplus Q$ if and only if
 - 1. $x, y \in P$ and $x \le y$ in P, or
 - 2. $x, y \in Q$ and $x \leq y$ in Q, or
 - 3. $x \in P$ and $y \in Q$.

Diagrams for Ordered Sets

• All possible ordered sets with three elements:

Partial Maps

- A (total) map or function f from X to Y is a binary relation on X and Y satisfying the following conditions:
 - 1. (single-valued) For every $x \in X$, there is at most one $y \in Y$ such that (x, y) is related by f. In other words, if both (x, y_1) and (x, y_2) are related by f, then y_1 and y_2 must be equal.
 - 2. (total) For every $x \in X$, there is at least one $y \in Y$ such that (x, y) is related by f.
- \bigcirc A partial map f from X to Y is a single-valued, not necessarily total, binary relation on X and Y.
- Representation of a total or partial map f from X to Y as a subset of $X \times Y$, or as an element of $\mathcal{P}(X \times Y)$, is called the *graph* of f, denoted graph(f).

Partial Maps as an Ordered Set

- We write $(X \longrightarrow Y)$ to denote the set of all partial maps from X to Y.
- For $\sigma, \tau \in (X \longrightarrow Y)$, we define $\sigma \leq \tau$ if and only if $\operatorname{graph}(\sigma) \subseteq \operatorname{graph}(\tau)$. In other words, $\sigma \leq \tau$ if and only if whenever $\sigma(x)$ is defined, $\tau(x)$ is also defined and equals $\sigma(x)$.
- $\Diamond ((X \longrightarrow Y), \leq)$ is an ordered set.

Programs as Partial Maps

- Two programs P and Q with common sets X and Y respectively of *initial* states and *final* states may be seen as defining two partial maps $\sigma_P, \sigma_Q : X \longrightarrow Y$.
- lacktriangle The two programs might be related by $\sigma_P \leq \sigma_Q$, meaning that
 - for any input state from which P terminates, Q also terminates, and
 - for every case where P terminates, Q produces the same output as P does.
- When $\sigma_P \leq \sigma_Q$ does hold, we say P is refined by Q or Q refines P. (Some prefer the opposite.)
- The refinement relation between two programs as defined is clearly a partial order.

Automatic Verification 2015

Order-Preserving Maps

- Let P and Q be ordered sets.
- A map $\varphi: P \to Q$ is said to be order-preserving (or monotone) if $x \le y$ in P implies $\varphi(x) \le \varphi(y)$ in Q.
- The composition of two order-preserving maps is also order-preserving.
- A map $\varphi: P \to Q$ is said to be an order-embedding (denoted $P \hookrightarrow Q$) if $x \leq y$ in P if and only if $\varphi(x) \leq \varphi(y)$ in Q.

Galois Connections and Insertions

- \bigcirc Let P and Q be ordered sets.
- A pair (α, γ) of maps $\alpha : P \to Q$ and $\gamma : Q \to P$ is a *Galois connection* between P and Q if, for all $p \in P$ and $q \in Q$,

$$\alpha(p) \le q \leftrightarrow p \le \gamma(q)$$

- Alternatively, (α, γ) is a Galois connection between P and Q if, for all $p, p_1, p_2 \in P$, $q, q_1, q_2 \in Q$,
 - 1. $p_1 \leq p_2 \rightarrow \alpha(p_1) \leq \alpha(p_2)$ and $q_1 \leq q_2 \rightarrow \gamma(q_1) \leq \gamma(q_2)$ (i.e., α and γ are monotone)
 - 2. $p \leq \gamma(\alpha(p))$ and $\alpha(\gamma(q)) \leq q$.
- A *Galois insertion* is a Galois connection where $\alpha \circ \gamma$ is the identity map, i.e., $\alpha(\gamma(q)) = q$.

Dual of an Ordered Set

- Given an ordered set P, we can form a new ordered set P^{∂} (the "dual of P") by defining $x \leq y$ to hold in P^{∂} if and only if $y \leq x$ holds in P.
- For a finite P, a diagram for P^{∂} can be obtained by turning upside down a diagram for P:

The Duality Principle

- For a statement Φ about ordered sets, its dual statement Φ^{∂} is obtained by replacing each occurrence of \leq with \geq and vice versa.
- The Duality Principle: Given a statement Φ about ordered sets that is true for all ordered sets, the dual statement Φ^{∂} is also true for all ordered sets.

Bottom and Top

- Let P be an ordered set.
- **③** P has a bottom element if there exists $\bot ∈ P$ ("bottom") such that $\bot ≤ x$ for all x ∈ P.
- **⊙** Dually, P has a top element if there exists $\top \in P$ ("top") such that $x \leq \top$ for all $x \in P$.
- $holdsymbol{lack}{} \perp$ is unique when it exists; dually, op is unique when it exists.
- ${\color{red} igcepsilon}$ In $\langle \mathcal{P}(X),\subseteq
 angle$, we have $ot=\emptyset$ and ot=X.
- A finite chain always has a bottom and a top elements; this may not hold for an infinite chain.
- Given a bottomless P, we may form P_{\perp} (P lifted or the lifting of P) by $P_{\perp} \stackrel{\Delta}{=} \mathbf{1} \oplus P$.

Maximal and Minimal Elements

- $\red{\bullet}$ Let P be an ordered set and $S\subseteq P$.
- An element $a \in S$ is a maximal element of S if $a \le x$ and $x \in S$ imply x = a.
- If Q has a top element T_Q , it is called the *greatest element* (or *maximum*) of Q.
- A minimal element of S and the least element (or minimum) of S (if it exists) are defined dually.

Down-sets and Up-sets

- Let P be an ordered set and $S \subseteq P$.
- § S is a down-set (order ideal) if, whenever $x \in S$, $y \in P$, and $y \le x$, we have $y \in S$.
- Dually, S is a *up-set* (order filter) if, whenever $x \in S$, $y \in P$, and $y \ge x$, we have $y \in S$.
- igoplus Given an arbitrary $Q \subseteq P$ and $x \in P$, we define
 - $\clubsuit \downarrow Q \stackrel{\Delta}{=} \{ y \in P \mid \exists x \in Q, y \leq x \} \text{ ("down } Q"),$
 - $* \uparrow Q \stackrel{\Delta}{=} \{ y \in P \mid \exists x \in Q, y \geq x \} \text{ ("up } Q"),$
 - $\stackrel{\clubsuit}{=} \downarrow x \stackrel{\triangle}{=} \{ y \in P \mid y \leq x \}, \text{ and }$
- \bigcirc ↓ Q is the smallest down-set containing Q and Q is a down-set if and only if $Q = \downarrow Q$; dually for $\uparrow Q$.

Upper and Lower Bounds

- \bigcirc Let P be an ordered set and $S \subseteq P$.
- An element $x \in P$ is an *upper bound* of S if, for all $s \in S$, $s \le x$.
- Dually, an element $x \in P$ is an *lower bound* of S if, for all $s \in S$, $s \ge x$ (or $x \le s$).
- The set of all upper bounds of S is denoted by S^u ("S upper");
 S^u = {x ∈ P | ∀s ∈ S, s ≤ x}.
- The set of all lower bounds of S is denoted by S^{I} ("S lower"); $S^{I} = \{x \in P \mid \forall s \in S, s \geq x\}.$
- igotimes By convention, $\emptyset^u=P$ and $\emptyset^l=P$.
- \bigcirc Since \leq is transitive, S^u is an up-set and S^l a down-set.

Least Upper and Greatest Lower Bounds

- \cite{P} Let P be an ordered set and $S\subseteq P$.
- If S^u has a least element, it is called the *least upper bound* (supremum) of S, denoted $\sup(S)$.
- ullet Equivalently, x is the least upper bound of S if

 - \red for every upper bound y of S, $x \leq y$.
- \bigcirc Dually, if S^I has a greatest element, it is called the *greatest lower bound* (infimum) of S, denoted $\inf(S)$.
- When P has a top element, P^u = {⊤} and sup(P) = ⊤. Dually, if P has a bottom element, P^l = {⊥} and inf(P) = ⊥.
- Since $\emptyset^u = \emptyset^l = P$, $\sup(\emptyset)$ exists if P has a bottom element; dually, $\inf(\emptyset)$ exists if P has a top element.

Join and Meet

- We write $x \vee y$ ("x join y") in place of $\sup(\{x,y\})$ when it exists and $x \wedge y$ ("x meet y") in place of $\inf(\{x,y\})$ when it exists.
- Let P be an ordered set. If $x, y \in P$ and $x < y, x \lor y = y$ and $x \wedge y = x$.
- In the following two cases, $a \vee b$ does not exist.

Analogously, we write $\bigvee S$ (the "join of S") and $\bigwedge S$ (the "meet of S").

Lattices and Complete Lattices

- Let P be a non-empty ordered set.
- P is called a *complete lattice* if $\bigvee S$ and $\bigwedge S$ exist for all $S \subseteq P$. Note: as S may be empty, the definition implies that every complete lattice is *bounded*, i.e., it has *top* and *bottom* elements.
- Every finite lattice is complete.

Fixpoints

- **③** Given an ordered set P and a map $F: P \rightarrow P$, an element $x \in P$ is called a *fixpoint* of F if F(x) = x.
- \bigcirc The set of fixpoints of F is denoted fix(F).
- The least element of fix(F), when it exists, is denoted $\mu(F)$, and the greatest by $\nu(F)$ if it exists.

A Fixpoint Theorem for Complete Lattices

Theorem (Knaster-Tarski Fixpoint Theorem)

Let L be a complete lattice and $F: L \to L$ an order-preserving map. Then.

$$\mu(F) = \bigwedge \{ x \in L \mid F(x) \le x \}.$$

Dually, $\nu(F) = \bigvee \{x \in L \mid x < F(x)\}.$

- Let $M = \{x \in L \mid F(x) < x\}$ and $\alpha = \bigwedge M$. We need to show (1) $F(\alpha) = \alpha$ and (2) for every $\beta \in fix(F)$, $\alpha \leq \beta$.
- \P For all $x \in M$, $\alpha < x$ and so $F(\alpha) < F(x) < x$. Thus, $F(\alpha) \in M'$ and hence $F(\alpha) < \alpha \ (= \bigwedge M)$.
- \P $F(F(\alpha)) < F(\alpha)$, implying $F(\alpha) \in M$ and so $\alpha < F(\alpha)$.
- For every $\beta \in \text{fix}(F)$, $\beta \in M$ and hence $\alpha \leq \beta$.

Chain Conditions

- Let P be an ordered set.
- P satisfies the ascending chain condition (ACC), if given any sequence $x_1 ≤ x_2 ≤ \cdots ≤ x_n ≤ \cdots$ of elements in P, there exists k ∈ N such that $x_k = x_{k+1} = \cdots$.
- Dually, P satisfies the descending chain condition (DCC), if given any sequence $x_1 \ge x_2 \ge \cdots \ge x_n \ge \cdots$ of elements in P, there exists $k \in N$ such that $x_k = x_{k+1} = \cdots$.

Directed Sets

- Let S be a non-empty subset of an ordered set.
- S is said to be *directed* if, for every pair of elements $x, y \in S$ there exists $z \in S$ such that $z \in \{x, y\}^u$.
- S is directed if and only if, for every finite subset F of S, there exists $z \in S$ such that $z \in F^u$.
- In an ordered set with the ACC, a set is directed if and only if it has a greatest element.
- When D is directed for which $\bigvee D$ exists, we write $\coprod D$ in place of $\bigvee D$.

Complete Partial Orders (CPO)

- ightharpoonup An ordered set P is called a Complete Partial Order (CPO) if
 - 1. P has a bottom element \perp and
 - 2. $\square D$ exists for each directed subset D of P.
- Alternatively, P is a CPO if each chain of P has a least upper bound in P.
- Any complete lattice is a CPO.
- For an ordered P satisfying Condition 2 above (called a pre-CPO), its lifting P_{\perp} is a CPO.

Continuous Maps

- \bigcirc Let P and Q be CPOs.
- lacktriangledown A map $\varphi:P o Q$ is said to be continuous if, for every directed set D in P,
 - 1. the subset $\varphi(D)$ of Q is directed and
 - 2. $\varphi(\bigsqcup D) = \bigsqcup \varphi(D)$.
- A continuous map need not preserve bottoms, since by definition the empty set is not directed.
- lacksquare A map arphi:P o Q such that arphi(ot)=ot is called strict.

A Fixpoint Theorem for CPOs

- The *n*-fold composite F^n of $F: P \to P$ is defined as follows.
 - 1. F^0 is the identity.
 - 2. $F^n = F \circ F^{n-1}$ for $n \ge 1$.
- If F is order-preserving, so is F^n .

Theorem (CPO Fixpoint Theorem I)

Let P be a CPO and $F: P \to P$ an order-preserving map. Define $\alpha \triangleq \bigsqcup_{n \geq 0} F^n(\bot)$.

- 1. If $\alpha \in fix(F)$, then $\alpha = \mu(F)$.
- 2. If F is continuous, then $\mu(F)$ exists and equals α .

Proof of CPO Fixpoint Theorem I (1)

• $\bot \le F(\bot)$. So, $F^n(\bot) \le F^{n+1}(\bot)$, for all n, inducing a chain in P:

$$\perp \leq F(\perp) \leq F^{2}(\perp) \leq \cdots \leq F^{n}(\perp) \leq F^{n+1}(\perp) \leq \cdots$$

- \bigcirc Since P is a CPO, $\alpha \stackrel{\triangle}{=} \bigsqcup_{n>0} F^n(\bot)$ exists.
- \odot Let β be any fixpoint of F; we need to show that $\alpha \leq \beta$.
- **S** By induction, $F^n(\beta) = \beta$, for all n.
- \bigcirc We have $\bot \leq \beta$, hence $F^n(\bot) \leq F^n(\beta) = \beta$.
- The definition of α then ensures $\alpha \leq \beta$.

Proof of CPO Fixpoint Theorem I (2)

- It suffices to show that $\alpha \in fix(F)$.
- We have

$$F(\bigsqcup_{n\geq 0} F^n(\bot)) = \bigsqcup_{n\geq 0} F(F^n(\bot)) \quad (F \text{ continuous})$$

$$= \bigsqcup_{n\geq 1} F^n(\bot)$$

$$= \bigsqcup_{n\geq 0} F^n(\bot) \quad (\bot \leq F^n(\bot) \text{ for all } n)$$

Another Fixpoint Theorem for CPOs

Theorem (CPO Fixpoint Theorem II)

Let P be a CPO and $F: P \rightarrow P$ an order-preserving map. Then F has a least fixpoint.