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Partial Orders

Let P be a set.

A partial order, or simply order, on P is a binary relation ≤ on P
such that:

1. ∀x ∈ P, x ≤ x , (reflexivity)
2. ∀x , y , z ∈ P, x ≤ y ∧ y ≤ z → x ≤ z , (transitivity)
3. ∀x , y ∈ P, x ≤ y ∧ y ≤ x → x = y . (antisymmetry)

A set P equipped with a partial order ≤, often written as
〈P ,≤〉, is called a partially ordered set, or simply ordered set,
sometimes abbreviated as poset.

A binary relation that is reflexive and transitive is called a
pre-order or quasi-order.

We write x < y to mean x ≤ y and x 6= y .
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Examples of Ordered Sets

〈N ,≤〉
N = {1, 2, 3, · · · }, the set of natural numbers.
≤ is the usual “less than or equal to” relation.

Variant: 〈N0,≤〉 with N0 = N ∪ {0} = {0, 1, 2, 3, · · · }.
〈P(X ),⊆〉

P(X ) is the powerset of X , consisting of all subsets of X .
⊆ is the set inclusion relation.

〈Σ∗,≤〉
Σ∗ is the set of all finite strings over the alphabet Σ.
≤ is the “is a prefix of” relation.
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Order-Isomorphisms

We want to be able to tell when two ordered sets are essentially
the same.

Let 〈P ,≤P〉 and 〈Q,≤Q〉 be two ordered sets.

P and Q are said to be (order-)isomorphic, denoted P ∼= Q, if
there is a map ϕ from P onto Q such that x ≤P y if and only if
ϕ(x) ≤Q ϕ(y).

The map ϕ above is called an order-isomorphism.

For example, N0 and N are order-isomorphic with the successor
function n 7→ n + 1 as the order-isomorphism.

An order-isomorphism is necessarily bijective (one-to-one and
onto). Therefore, an order-isomorphism ϕ : P → Q has a
well-defined inverse ϕ−1 : Q → P .
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Chains and Antichains

Let P be an ordered set.

P is called a chain if ∀x , y ∈ P , x ≤ y ∨ y ≤ x , i.e., any two
elements in P are comparable.

For example, 〈N ,≤〉 is a chain.

Alternative names for a chain are totally ordered set and linearly
ordered set.

P is called an antichain if ∀x , y ∈ P , x ≤ y → x = y , i.e., no
two distinct elements in P are ordered.

Clearly, any subset of a chain (an antichain) is a chain (an
antichain).

We write n to denote a chain of n elements and n̄ an antichain
of n elements.
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Sums of Ordered Sets

Let P and Q be two disjoint ordered sets.

The disjoint union P ] Q is defined by x ≤ y in P ] Q if and
only if

1. x , y ∈ P and x ≤ y in P, or
2. x , y ∈ Q and x ≤ y in Q.

The linear sum P⊕Q is defined by x ≤ y in P⊕Q if and only if

1. x , y ∈ P and x ≤ y in P, or
2. x , y ∈ Q and x ≤ y in Q, or
3. x ∈ P and y ∈ Q.
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Diagrams for Ordered Sets

All possible ordered sets with three elements:

•

•

•

• •

•

• •

•

•

•
•

• • •

3 2̄⊕ 1 1⊕ 2̄ 2 ] 1 3̄

〈P({1, 2, 3}),⊆〉:

⊥ = ∅

> = {1, 2, 3}

•

• • •

• • •

•
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Partial Maps

A (total) map or function f from X to Y is a binary relation on
X and Y satisfying the following conditions:

1. (single-valued) For every x ∈ X , there is at most one y ∈ Y
such that (x , y) is related by f .
In other words, if both (x , y1) and (x , y2) are related by f , then
y1 and y2 must be equal.

2. (total) For every x ∈ X , there is at least one y ∈ Y such that
(x , y) is related by f .

A partial map f from X to Y is a single-valued, not necessarily
total, binary relation on X and Y .

Representation of a total or partial map f from X to Y as a
subset of X × Y , or as an element of P(X × Y ), is called the
graph of f , denoted graph(f ).
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Partial Maps as an Ordered Set

We write (X −7→ Y ) to denote the set of all partial maps from
X to Y .

For σ, τ ∈ (X −7→ Y ), we define σ ≤ τ if and only if
graph(σ) ⊆ graph(τ).
In other words, σ ≤ τ if and only if whenever σ(x) is defined,
τ(x) is also defined and equals σ(x).

〈(X −7→ Y ),≤〉 is an ordered set.
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Programs as Partial Maps

Two programs P and Q with common sets X and Y respectively
of initial states and final states may be seen as defining two
partial maps σP , σQ : X −7→ Y .

The two programs might be related by σP ≤ σQ , meaning that

for any input state from which P terminates, Q also terminates,
and
for every case where P terminates, Q produces the same output
as P does.

When σP ≤ σQ does hold, we say P is refined by Q or Q refines
P . (Some prefer the opposite.)

The refinement relation between two programs as defined is
clearly a partial order.
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Order-Preserving Maps

Let P and Q be ordered sets.

A map ϕ : P → Q is said to be order-preserving (or monotone)
if x ≤ y in P implies ϕ(x) ≤ ϕ(y) in Q.

The composition of two order-preserving maps is also
order-preserving.

A map ϕ : P → Q is said to be an order-embedding (denoted
P ↪→ Q) if x ≤ y in P if and only if ϕ(x) ≤ ϕ(y) in Q.
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Galois Connections and Insertions

Let P and Q be ordered sets.

A pair (α, γ) of maps α : P → Q and γ : Q → P is a Galois
connection between P and Q if, for all p ∈ P and q ∈ Q,

α(p) ≤ q ↔ p ≤ γ(q)

Alternatively, (α, γ) is a Galois connection between P and Q if,
for all p, p1, p2 ∈ P , q, q1, q2 ∈ Q,

1. p1 ≤ p2 → α(p1) ≤ α(p2) and q1 ≤ q2 → γ(q1) ≤ γ(q2)
(i.e., α and γ are monotone)

2. p ≤ γ(α(p)) and α(γ(q)) ≤ q.

A Galois insertion is a Galois connection where α ◦ γ is the
identity map, i.e., α(γ(q)) = q.
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Dual of an Ordered Set

Given an ordered set P , we can form a new ordered set P∂ (the
“dual of P”) by defining x ≤ y to hold in P∂ if and only if
y ≤ x holds in P .

For a finite P , a diagram for P∂ can be obtained by turning
upside down a diagram for P :

• • •

•

•
•

• • •

•

•
•

P P∂
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The Duality Principle

For a statement Φ about ordered sets, its dual statement Φ∂ is
obtained by replacing each occurrence of ≤ with ≥ and vice
versa.

The Duality Principle: Given a statement Φ about ordered sets
that is true for all ordered sets, the dual statement Φ∂ is also
true for all ordered sets.
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Bottom and Top

Let P be an ordered set.

P has a bottom element if there exists ⊥ ∈ P (“bottom”) such
that ⊥ ≤ x for all x ∈ P .

Dually, P has a top element if there exists > ∈ P (“top”) such
that x ≤ > for all x ∈ P .

⊥ is unique when it exists; dually, > is unique when it exists.

In 〈P(X ),⊆〉, we have ⊥ = ∅ and > = X .

A finite chain always has a bottom and a top elements; this may
not hold for an infinite chain.

Given a bottomless P , we may form P⊥ (P lifted or the lifting of

P) by P⊥
∆
= 1⊕ P .
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Maximal and Minimal Elements

Let P be an ordered set and S ⊆ P .

An element a ∈ S is a maximal element of S if a ≤ x and x ∈ S
imply x = a.

If Q has a top element >Q , it is called the greatest element (or
maximum) of Q.

A minimal element of S and the least element (or minimum) of
S (if it exists) are defined dually.
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Down-sets and Up-sets

Let P be an ordered set and S ⊆ P .

S is a down-set (order ideal) if, whenever x ∈ S , y ∈ P , and
y ≤ x , we have y ∈ S .

Dually, S is a up-set (order filter) if, whenever x ∈ S , y ∈ P ,
and y ≥ x , we have y ∈ S .

Given an arbitrary Q ⊆ P and x ∈ P , we define

↓ Q ∆
= {y ∈ P | ∃x ∈ Q, y ≤ x} (“down Q”),

↑ Q ∆
= {y ∈ P | ∃x ∈ Q, y ≥ x} (“up Q”),

↓ x ∆
= {y ∈ P | y ≤ x}, and

↑ x ∆
= {y ∈ P | y ≥ x}.

↓ Q is the smallest down-set containing Q and Q is a down-set
if and only if Q =↓ Q; dually for ↑ Q.
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Upper and Lower Bounds

Let P be an ordered set and S ⊆ P .

An element x ∈ P is an upper bound of S if, for all s ∈ S , s ≤ x .

Dually, an element x ∈ P is an lower bound of S if, for all s ∈ S ,
s ≥ x (or x ≤ s).

The set of all upper bounds of S is denoted by Su (“S upper”);
Su = {x ∈ P | ∀s ∈ S , s ≤ x}.
The set of all lower bounds of S is denoted by S l (“S lower”);
S l = {x ∈ P | ∀s ∈ S , s ≥ x}.
By convention, ∅u = P and ∅l = P .

Since ≤ is transitive, Su is an up-set and S l a down-set.
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Least Upper and Greatest Lower Bounds

Let P be an ordered set and S ⊆ P .

If Su has a least element, it is called the least upper bound
(supremum) of S , denoted sup(S).

Equivalently, x is the least upper bound of S if

x is an upper bound of S , and
for every upper bound y of S , x ≤ y .

Dually, if S l has a greatest element, it is called the greatest
lower bound (infimum) of S , denoted inf(S).

When P has a top element, Pu = {>} and sup(P) = >. Dually,
if P has a bottom element, P l = {⊥} and inf(P) = ⊥.

Since ∅u = ∅l = P , sup(∅) exists if P has a bottom element;
dually, inf(∅) exists if P has a top element.
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Join and Meet

We write x ∨ y (“x join y”) in place of sup({x , y}) when it
exists and x ∧ y (“x meet y”) in place of inf({x , y}) when it
exists.

Let P be an ordered set. If x , y ∈ P and x ≤ y , x ∨ y = y and
x ∧ y = x .

In the following two cases, a ∨ b does not exist.

•
a

•
b a b

c d

• •

• •

Analogously, we write
∨

S (the “join of S”) and
∧

S (the “meet
of S”).
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Lattices and Complete Lattices

Let P be a non-empty ordered set.

P is called a lattice if x ∨ y and x ∧ y exist for all x , y ∈ P .

P is called a complete lattice if
∨

S and
∧

S exist for all S ⊆ P .
Note: as S may be empty, the definition implies that every
complete lattice is bounded, i.e., it has top and bottom elements.

Every finite lattice is complete.
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Fixpoints

Given an ordered set P and a map F : P → P , an element
x ∈ P is called a fixpoint of F if F (x) = x .

The set of fixpoints of F is denoted fix(F ).

The least element of fix(F ), when it exists, is denoted µ(F ), and
the greatest by ν(F ) if it exists.
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A Fixpoint Theorem for Complete Lattices

Theorem (Knaster-Tarski Fixpoint Theorem)

Let L be a complete lattice and F : L → L an order-preserving map.
Then,

µ(F ) =
∧
{x ∈ L | F (x) ≤ x}.

Dually, ν(F ) =
∨
{x ∈ L | x ≤ F (x)}.

Let M = {x ∈ L | F (x) ≤ x} and α =
∧

M . We need to show
(1) F (α) = α and (2) for every β ∈ fix(F ), α ≤ β.

For all x ∈ M , α ≤ x and so F (α) ≤ F (x) ≤ x . Thus,
F (α) ∈ M l and hence F (α) ≤ α (=

∧
M).

F (F (α)) ≤ F (α), implying F (α) ∈ M and so α ≤ F (α).

For every β ∈ fix(F ), β ∈ M and hence α ≤ β.
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Chain Conditions

Let P be an ordered set.

P satisfies the ascending chain condition (ACC), if given any
sequence x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · of elements in P , there
exists k ∈ N such that xk = xk+1 = · · · .
Dually, P satisfies the descending chain condition (DCC), if
given any sequence x1 ≥ x2 ≥ · · · ≥ xn ≥ · · · of elements in P ,
there exists k ∈ N such that xk = xk+1 = · · · .
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Directed Sets

Let S be a non-empty subset of an ordered set.

S is said to be directed if, for every pair of elements x , y ∈ S
there exists z ∈ S such that z ∈ {x , y}u.

S is directed if and only if, for every finite subset F of S , there
exists z ∈ S such that z ∈ F u.

In an ordered set with the ACC, a set is directed if and only if it
has a greatest element.

When D is directed for which
∨

D exists, we write
⊔

D in place
of

∨
D.
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Complete Partial Orders (CPO)

An ordered set P is called a Complete Partial Order (CPO) if

1. P has a bottom element ⊥ and
2.

⊔
D exists for each directed subset D of P.

Alternatively, P is a CPO if each chain of P has a least upper
bound in P .

Any complete lattice is a CPO.

For an ordered P satisfying Condition 2 above (called a
pre-CPO), its lifting P⊥ is a CPO.
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Continuous Maps

Let P and Q be CPOs.

A map ϕ : P → Q is said to be continuous if, for every directed
set D in P ,

1. the subset ϕ(D) of Q is directed and
2. ϕ(

⊔
D) =

⊔
ϕ(D).

A continuous map need not preserve bottoms, since by definition
the empty set is not directed.

A map ϕ : P → Q such that ϕ(⊥) = ⊥ is called strict.

Yih-Kuen Tsay (IM.NTU) Ordered Sets and Fixpoints Automatic Verification 2015 27 / 31



A Fixpoint Theorem for CPOs

The n-fold composite F n of F : P → P is defined as follows.

1. F 0 is the identity.
2. F n = F ◦ F n−1 for n ≥ 1.

If F is order-preserving, so is F n.

Theorem (CPO Fixpoint Theorem I)

Let P be a CPO and F : P → P an order-preserving map. Define

α
∆
=

⊔
n≥0 F n(⊥).

1. If α ∈ fix(F ), then α = µ(F ).

2. If F is continuous, then µ(F ) exists and equals α.
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Proof of CPO Fixpoint Theorem I (1)

⊥ ≤ F (⊥). So, F n(⊥) ≤ F n+1(⊥), for all n, inducing a chain in
P:

⊥ ≤ F (⊥) ≤ F 2(⊥) ≤ · · · ≤ F n(⊥) ≤ F n+1(⊥) ≤ · · ·

Since P is a CPO, α
∆
=

⊔
n≥0 F n(⊥) exists.

Let β be any fixpoint of F ; we need to show that α ≤ β.

By induction, F n(β) = β, for all n.

We have ⊥ ≤ β, hence F n(⊥) ≤ F n(β) = β.

The definition of α then ensures α ≤ β.

Yih-Kuen Tsay (IM.NTU) Ordered Sets and Fixpoints Automatic Verification 2015 29 / 31



Proof of CPO Fixpoint Theorem I (2)

It suffices to show that α ∈ fix(F ).

We have

F (
⊔

n≥0 F n(⊥)) =
⊔

n≥0 F (F n(⊥)) (F continuous)
=

⊔
n≥1 F n(⊥)

=
⊔

n≥0 F n(⊥) (⊥ ≤ F n(⊥) for all n)
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Another Fixpoint Theorem for CPOs

Theorem (CPO Fixpoint Theorem II)

Let P be a CPO and F : P → P an order-preserving map. Then F
has a least fixpoint.
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