
Automatic Verification
Introduction

(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 1 / 10



The Context

Computer systems are increasingly used in applications where
failure is unacceptable: electronic commerce, air traffic control,
medical instruments, etc.

Problem: validation/verification of design/program correctness

A major challenge in developing complex systems
Approaches to design validation/verification:

Simulation and testing: effective when there are many bugs,
non-exhaustive, hopeless to scale up
Formal verification: exhaustive (find subtle bugs), hard to scale
up

Approaches to formal verification:

deductive: time-consuming, by experts
algorithmic (automatic): computational limitation

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 2 / 10



Example 1: Peterson’s Algorithm for Two Processes

/* P0 */
· · ·
Q[0] := true;
TURN := 0;
await ¬Q[1] ∨ TURN 6= 0;
critical section;
Q[0] := false;
· · ·

/* P1 */
· · ·
Q[1] := true;
TURN := 1;
await ¬Q[0] ∨ TURN 6= 1;
critical section;
Q[1] := false;
· · ·

Note: Q[0] and Q[1] are false initially.

Question: How can its correctness be verified?

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 3 / 10



Example 1: Peterson’s Algorithm for Two Processes

/* P0 */
· · ·
Q[0] := true;
TURN := 0;
await ¬Q[1] ∨ TURN 6= 0;
critical section;
Q[0] := false;
· · ·

/* P1 */
· · ·
Q[1] := true;
TURN := 1;
await ¬Q[0] ∨ TURN 6= 1;
critical section;
Q[1] := false;
· · ·

Note: Q[0] and Q[1] are false initially.

Question: How can its correctness be verified?

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 3 / 10



Example 2: Which Day of the Year

year = ORIGIN;
while (days > 365) {

if (isLeapYear(year)) {
if (days > 365) {

days −= 366;
year += 1;

}
}
else {

days −= 365;
year += 1;

}
}

Question: What’s wrong with the program?

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 4 / 10



Example 2: Which Day of the Year

year = ORIGIN;
while (days > 365) {

if (isLeapYear(year)) {
if (days > 365) {

days −= 366;
year += 1;

}
}
else {

days −= 365;
year += 1;

}
}

Question: What’s wrong with the program?
Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 4 / 10



Example 3: The Collatz Conjecture

...
int x = N; /* N is some positive integer. */
while (x > 1) {

if (x % 2 == 0) {
x = x / 2;

}
else

x = 3 * x + 1;
}
...

Question: Will the while loop terminate?

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 5 / 10



Example 3: The Collatz Conjecture

...
int x = N; /* N is some positive integer. */
while (x > 1) {

if (x % 2 == 0) {
x = x / 2;

}
else

x = 3 * x + 1;
}
...

Question: Will the while loop terminate?

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 5 / 10



Course Subjects

Model checking algorithms/tools

Classic/general decision procedures/tools

Reduction and abstraction techniques for scalability

Theoretical foundations

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 6 / 10



Model Checking

Main activity: determining if the specification is true of a
(finite-state concurrent) system, i.e., checking if the system is a
model of the specification

The process:

Modeling: convert a design into a formal model
Main systems considered: finite-state transition systems
(modeling digital circuits, communication protocols, etc.)
Specification: state the properties that the design must satisfy
Typical specification languages: propositional modal/temporal
logics
Verification: is automatic ideally, but often involves human
assistance in practice

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 7 / 10



Model Checking (cont.)

Advantages (over deductive verification methods):

Fully automatic
Providing counterexamples

Main obstacle: the state-explosion problem (the number of
states grows exponentially with the number of components or
variables)

Became practically viable with symbolic encoding

Has been most successful in verifying hardware and
communication protocols

Commercial model checking tools in the market

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 8 / 10



Early History of Model Checking

Introduction of temporal logic to concurrent programs [Pnueli
1977]

Temporal logic model checking algorithms [Clarke and Emerson
1981] [Queille and Sifakis 1982]

Linear-time algorithm for CTL [Clarke, Emerson, and Sistla 1983]

PSPACE-complete for LTL [Sistla and Clarke 1985][Pnueli and
Lichtenstein 1985]

PSPACE-complete for CTL∗ [Clarke, Emerson, and Sistla 1983]

Automata-theoretical approach: model checking as language
containment [Aggarwal, Kurshan, and Sabnani 1983][Vardi and
Wolper 1986]

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 9 / 10



Alleviating State Explosion

Symbolic algorithms [McMillan 1993]: concise representations
and efficient manipulation of boolean functions by binary
decision diagrams [Bryant 1986]

Partial order reduction [Katz and Peled 1988][Valmari 1990]
[Godefroid 1990][Peled 1994]: equivalent computations from
different orderings of independent events need not be
distinguished; sufficient to keep just one representative
computation

Other techniques

Abstraction
Compositional reasoning
Symmetry reduction
Induction (for infinite families of systems)

Yih-Kuen Tsay (IM.NTU) Introduction Automatic Verification 2019 10 / 10


	The Context
	Course Subjects
	Model Checking
	Early History
	Alleviating State Explosion

