Systems Modeling
 (Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management
National Taiwan University

Introduction

- First two steps in correctness verification:

1. Specify the desired properties
2. Construct a formal model (with the desired properties in mind)
(Capture the necessary properties and leave out the irrelevant
(2) Example: gates and boolean values vs. voltage levels
(Example: exchange of messages vs. contents of messages

- Description of a formal model
, Graphs (state-transition diagrams)
, Logic formulae

Concurrent Reactive Systems

- Interact frequently with the environment and may not terminate
- Arise from digital circuits, communication protocols, etc.
- Temporal (not just input-output) behaviors are most important
- Modeling elements:

State: a snapshot of the system at a particular instance

* Transition:
(2) how the system changes its state as a result of some action
(2) described by a pair of the state before and the state after the action
* Computation: an infinite sequence of states resulted from transitions

Kripke Structures

- Kripke structures are one of the most popular types of formal models for concurrent systems.
Let $A P$ be a set of atomic propositions (representing things you want to observe).
A Kripke structure M over $A P$ is a tuple $\left\langle S, S_{0}, R, L\right\rangle$:
翻 S is a finite set of states,
$S_{0} \subseteq S$ is the set of initial states,
$R \subseteq S \times S$ is a total transition relation, and
$L: S \rightarrow 2^{A P}$ is a function labeling each state with a subset of propositions (which are true in that state).
- A computation or path of M from a state s is an infinite sequence of states $\sigma=s_{0}, s_{1}, s_{2}, \cdots$ such that $s_{0} \in S_{0}$ and $\left(s_{i}, s_{i+1}\right) \in R$, for all $i \geq 0$.

First-Order Representations

First-order formulae serve as a unifying formalism for describing concurrent systems.
Elements of first-order logic:
Logical connectives ($\wedge, \vee, \neg, \rightarrow$, etc.) and quantifiers (\forall and \exists)
Predicate and function symbols (with predefined meanings)

- Variables range over a finite domain D.

A valuation for a set V of variables is a map from the variables in V to the values in the domain D.
A state of a system is a valuation for the system variables.
A set of states can be described by a first-order formula.
The set of initial states of a system will typically be described by $\mathcal{S}_{0}(V)$.

First-Order Representations (cont.)

To describe transitions by logic formulae, we create a second copy of variables V^{\prime}.

- Each variables v in V has a corresponding primed version v^{\prime} in V^{\prime}.
The variables in V are present state variables, while the variables in V^{\prime} are next state variables.A valuation for V and V^{\prime} can be seen as designating a pair of states or a transition.
- A set of transitions or transition relation R can then be described by a first-order formula $\mathcal{R}\left(V, V^{\prime}\right)$.
- Be careful about the issue of granularity.

From Formulae to Kripke Structures

Given $\mathcal{S}_{0}(V)$ and $\mathcal{R}\left(V, V^{\prime}\right)$ that represent a concurrent system, a Kripke structure $M=\left\langle S, S_{0}, R, L\right\rangle$ may be derived:
, S is the set of all valuations for V.
The set of initial states S_{0} is the set of all valuations for V satisfying \mathcal{S}_{0}.
, $R\left(s, s^{\prime}\right)$ holds if \mathcal{R} evaluates to true when each $v \in V$ is assigned the value $s(v)$ and each $v^{\prime} \in V^{\prime}$ is assigned the value $s^{\prime}(v)$.
清 L is defined such that $L(s)$ is the set of atomic propositions true in s.
To make R total, for every state s that does not have a successor, (s, s) is added into R.

Varieties of Concurrent Systems

A concurrent system consists of a set of components that execute together.

- Modes of execution:
, Asynchronous
Synchronous
- Modes of communication:

Shared variables
Message-passing
(\%) Handshaking (or joint events)

A Synchronous Modulo 8 Counter

Source: redrawn from [Clarke et al. 1999, Fig 2.1]

A Synchronous Modulo 8 Counter (cont.)

First-Order Representations (Circuit)

Let V be $\left\{v_{0}, v_{1}, v_{2}\right\}$.

- The transitions of the modulo 8 counter are

$$
\begin{aligned}
& v_{0}^{\prime}=\neg v_{0} \\
& v_{1}^{\prime}=v_{0} \oplus v_{1} \\
& v_{2}^{\prime}=\left(v_{0} \wedge v_{1}\right) \oplus v_{2}
\end{aligned}
$$

- In terms of formulae, they are

$$
\begin{aligned}
& \mathcal{R}_{0}\left(V, V^{\prime}\right) \triangleq v_{0}^{\prime} \Leftrightarrow \neg v_{0} \\
& \mathcal{R}_{1}\left(V, V^{\prime}\right) \triangleq v_{1}^{\prime} \Leftrightarrow v_{0} \oplus v_{1} \\
& \mathcal{R}_{2}\left(V, V^{\prime}\right) \triangleq v_{2}^{\prime} \Leftrightarrow\left(v_{0} \wedge v_{1}\right) \oplus v_{2}
\end{aligned}
$$

Conjoining the formulae, we obtain

$$
\mathcal{R}\left(V, V^{\prime}\right) \triangleq \mathcal{R}_{0}\left(V, V^{\prime}\right) \wedge \mathcal{R}_{1}\left(V, V^{\prime}\right) \wedge \mathcal{R}_{2}\left(V, V^{\prime}\right)
$$

Programs

Concurrent programs are composed of sequential programs/statements.

- A sequential program consists of statements sequentially composed with each other.
We assume that all statements of a program have a unique entry point and a unique exit point (they are structured).
To obtain a first-order representation of a program, it is convenient to label each statement of the program.

Labeling a Sequential Statement

Given a sequential statement P, the labeled statement P^{L} is defined as follows, assuming all labels are unique:
. If P is not composite, then $P^{L}=P$.
If $P=P_{1} ; P_{2}$, then $P^{L}=P_{1}^{L} ; I: P_{2}^{L}$.
識 If $P=$ if b then P_{1} else $P_{2} \mathbf{f i}$, then
$P^{L}=$ if b then $I_{1}: P_{1}^{L}$ else $I_{2}: P_{2}^{L}$ fi.
, If $P=$ while b do P_{1} od, then $P^{L}=$ while b do $l_{1}: P_{1}^{L}$ od.

- The above labeling procedure may be extended to treat other statement types.

First-Order Representations (Sequential)

Consider a labeled program P, with the entry labeled m and exit labeled m^{\prime}.
Let V denote the set of program variables.

- We postulate a special variable pc called the program counter that ranges over the set of program labels plus the undefined value \perp (bottom).
Let $\operatorname{same}(Y)$ abbreviate $\bigwedge_{y \in Y}\left(y^{\prime}=y\right)$.
- Given some condition pre(V) on the initial values, the set of initial states is

$$
\mathcal{S}_{0}(V, p c) \triangleq \operatorname{pre}(V) \wedge p c=m
$$

First-Order Representations (cont.)

The transition relation $C\left(I, P, I^{\prime}\right)$ for a statement P with entry I and exit l^{\prime} is defined recursively as follows:

- Assignment:

$$
C\left(I, v:=e, l^{\prime}\right) \triangleq p c=I \wedge p c^{\prime}=I^{\prime} \wedge v^{\prime}=e \wedge \operatorname{same}(V \backslash\{v\}) .
$$

Skip:

$$
C\left(I, s k i p, I^{\prime}\right) \triangleq p c=I \wedge p c^{\prime}=I^{\prime} \wedge \operatorname{same}(V) .
$$

- Sequential Composition:

$$
C\left(I, P_{1} ; I^{\prime \prime}: P_{2}, I^{\prime}\right) \triangleq C\left(I, P_{1}, I^{\prime \prime}\right) \vee C\left(I^{\prime \prime}, P_{2}, I^{\prime}\right) .
$$

First-Order Representations (cont.)

Conditional:
$C\left(I\right.$, if b then $I_{1}: P_{1}$ else $\left.I_{2}: P_{2} \mathbf{f i}, I^{\prime}\right)$ is the disjunction of the following:

- $p c=I \wedge p c^{\prime}=I_{1} \wedge b \wedge \operatorname{same}(V)$
- $p c=I \wedge p c^{\prime}=I_{2} \wedge \neg b \wedge \operatorname{same}(V)$
- $C\left(I_{1}, P_{1}, I^{\prime}\right)$
- $C\left(l_{2}, P_{2}, l^{\prime}\right)$
- While:
$C\left(I\right.$, while b do $I_{1}: P_{1}$ od,$\left.I^{\prime}\right)$ is the disjunction of the following:
- $p c=I \wedge p c^{\prime}=I_{1} \wedge b \wedge \operatorname{same}(V)$
$p c=I \wedge p c^{\prime}=I^{\prime} \wedge \neg b \wedge \operatorname{same}(V)$
- $C\left(I_{1}, P_{1}, l\right)$

Concurrent Programs

Concurrent programs are composed of sequential processes (programs/statements).

- We consider only asynchronous concurrent programs, where exactly one process can make a transition at any time.
A concurrent program P has the following form:

$$
\operatorname{cobegin} P_{1}\left\|P_{2}\right\| \cdots \| P_{n} \text { coend }
$$

where P_{i} 's are processes.
Let V be the set of all program variables and V_{i} the set of variables that can be changed by P_{i}.
Let $p c$ be the program counter of P and $p c_{i}$ that of P_{i}; let $P C$ be the set of all program counters.

Labeling Concurrent Programs

Given $P=$ cobegin $P_{1}\left\|P_{2}\right\| \cdots \| P_{n}$ coend, then $P^{L}=$ cobegin $I_{1}: P_{1}^{L} l_{1}^{\prime}\left\|I_{2}: P_{2}^{L} l_{2}^{\prime}\right\| \cdots \| I_{n}: P_{n}^{L} l_{n}^{\prime}$ coend.

Note that each process P_{i} has a unique exit label l_{i}^{\prime}.

First-Order Representations (Concurrent)

Assume the entry is labeled m and exit labeled m^{\prime}.
Given some condition pre(V) on the initial values, the set of initial states is

$$
\mathcal{S}_{0}(V, P C) \triangleq \operatorname{pre}(V) \wedge p c=m \wedge \bigwedge_{i=1}^{n}\left(p c_{i}=\perp\right)
$$

where $p c_{i}=\perp$ indicates that P_{i} is not active.
$C\left(I\right.$, cobegin $I_{1}: P_{1} l_{1}^{\prime}\left\|I_{2}: P_{2} I_{2}^{\prime}\right\| \cdots \| I_{n}: P_{n} I_{n}^{\prime}$ coend, $\left.I^{\prime}\right)$ is the disjunction of the following:

```
\(p c=I \wedge p c_{1}^{\prime}=I_{1} \wedge \cdots \wedge p c_{n}^{\prime}=I_{n} \wedge p c^{\prime}=\perp\) (initialization)
\(p c=\perp \wedge p c_{1}=I_{1}^{\prime} \wedge \cdots \wedge p c_{n}=I_{n}^{\prime} \wedge p c^{\prime}=I^{\prime} \bigwedge_{i=1}^{n}\left(p c_{i}^{\prime}=\perp\right)\)
(termination)
, \(\bigvee_{i=1}^{n}\left(C\left(I_{i}, P_{i}, l_{i}^{\prime}\right) \wedge \operatorname{same}\left(V \backslash V_{i}\right) \wedge \operatorname{same}\left(P C \backslash\left\{p c_{i}\right\}\right)\right.\)
(interleaving)
```


Synchronization Statements

Assume the statement belongs to P_{i}.

- Wait (or await):
$C\left(I\right.$, wait $\left.(b), I^{\prime}\right)$ is the disjunction of the following:

$$
\begin{aligned}
& p c_{i}=I \wedge p c_{i}^{\prime} \\
& p l \wedge \neg b \wedge \operatorname{same}\left(V_{i}\right) \\
& p c_{i}=I \wedge p c_{i}^{\prime}
\end{aligned}=I^{\prime} \wedge b \wedge \operatorname{same}\left(V_{i}\right) .
$$

Lock (or test-and-set):
$C\left(I, \operatorname{lock}(v), l^{\prime}\right)$ is the disjunction of the following:

$$
\begin{aligned}
p c_{i} & =I \wedge p c_{i}^{\prime}=l \wedge v=1 \wedge \operatorname{same}\left(V_{i}\right) \\
p c_{i} & =I \wedge p c_{i}^{\prime}=I^{\prime} \wedge v=0 \wedge v^{\prime}=1 \wedge \operatorname{same}\left(V_{i} \backslash\{v\}\right)
\end{aligned}
$$

- Unlock:
$C\left(I\right.$, unlock $\left.(v), I^{\prime}\right) \triangleq p c_{i}=I \wedge p c_{i}^{\prime}=I^{\prime} \wedge v^{\prime}=0 \wedge \operatorname{same}\left(V_{i} \backslash\{v\}\right)$.

A Mutual Exclusion Program

$$
P_{M X}=m: \text { cobegin } P_{0} \| P_{1} \text { coend } m^{\prime}
$$

$P_{0}=$
I_{0} : while true do
$N C_{0}$: wait $T=0 ;$
$C R_{0}: T:=1 ;$
od;
I_{0}^{\prime}

$$
P_{1}=
$$

I_{1} : while true do
$N C_{1}$: wait $T=1 ;$
$C R_{1}: T:=0 ;$
od;
l_{1}^{\prime}
$V=V_{0}=V_{1}=\{T\} ; P C=\left\{p c, p c_{0}, p c_{1}\right\}$.

- The $p c$ of $P_{M X}$ may take m, \perp, or m^{\prime}.
- The $p c_{0}$ of $P_{0}: \perp, l_{0}, N C_{0}, C R_{0}$, or l_{0}^{\prime}.
- The $p c_{1}$ of $P_{1}: \perp, l_{1}, N C_{1}, C R_{1}$, or l_{1}^{\prime}.

First-Order Representation of $P_{M X}$

- Initial states $\mathcal{S}_{0}(V, P C): p c=m \wedge p c_{0}=\perp \wedge p c_{1}=\perp$.
- Transition relation $\mathcal{R}\left(V, P C, V^{\prime}, P C^{\prime}\right)$ is the disjunction of

$$
\begin{aligned}
& p c=m \wedge p c_{0}^{\prime}=I_{0} \wedge p c_{1}^{\prime}=I_{1} \wedge p c^{\prime}=\perp \\
& p c_{0}=I_{0}^{\prime} \wedge p c_{1}=I_{1}^{\prime} \wedge p c^{\prime}=m^{\prime} \wedge p c_{0}^{\prime}=\perp \wedge p c_{1}^{\prime}=\perp \\
& C\left(l_{0}, P_{0}, I_{0}^{\prime}\right) \wedge \operatorname{same}\left(V \backslash V_{0}\right) \wedge \operatorname{same}\left(P C \backslash\left\{p c_{0}\right\}\right) \\
& C\left(l_{1}, P_{1}, I_{1}^{\prime}\right) \wedge \operatorname{same}\left(V \backslash V_{1}\right) \wedge \operatorname{same}\left(P C \backslash\left\{p c_{1}\right\}\right)
\end{aligned}
$$

- For each $P_{i}, C\left(l_{i}, P_{i}, l_{i}^{\prime}\right)$ is the disjunction of

$$
\begin{aligned}
& p c_{i}=I_{i} \wedge p c_{i}^{\prime}=N C_{i} \wedge \operatorname{true} \wedge \operatorname{same}(T) \\
& p c_{i}=N C_{i} \wedge p c_{i}^{\prime}=C R_{i} \wedge T=i \wedge \operatorname{same}(T) \\
& p c_{i}=C R_{i} \wedge p c_{i}^{\prime}=I_{i} \wedge T=(1-i) \\
& p c_{i}=N C_{i} \wedge p c_{i}^{\prime}=N C_{i} \wedge T \neq i \wedge \operatorname{same}(T) \\
& p c_{i}=l_{i} \wedge p c_{i}^{\prime}=l_{i}^{\prime} \wedge \text { false } \wedge \operatorname{same}(T)
\end{aligned}
$$

A Kripke Structure for $P_{M X}$

Source: redrawn from [Clarke et al. 1999, Fig 2.2]

