

Systems Modeling

(Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Introduction

- First two steps in correctness verification:
 - 1. Specify the desired *properties*
 - 2. Construct a *formal model* (with the desired properties in mind)
 - Capture the necessary properties and leave out the irrelevant
 - Example: gates and boolean values vs. voltage levels
 - Example: exchange of messages vs. contents of messages
- Description of a formal model
 - 🌞 Graphs (state-transition diagrams)
 - Logic formulae

Concurrent Reactive Systems

- Interact frequently with the environment and may not terminate
- Arise from digital circuits, communication protocols, etc.
- Temporal (not just input-output) behaviors are most important
- Modeling elements:
 - 🌻 State: a snapshot of the system at a particular instance
 - Transition:
 - how the system changes its state as a result of some action
 - described by a pair of the state before and the state after the action
 - Computation: an infinite sequence of states resulted from transitions

3 / 23

Kripke Structures

- Kripke structures are one of the most popular types of formal models for concurrent systems.
- Let AP be a set of atomic propositions (representing things you want to observe).
- \bullet A *Kripke structure M* over *AP* is a tuple $\langle S, S_0, R, L \rangle$:
 - $ilde{*}$ S is a finite set of states,
 - $ilde{*} \ S_0 \subseteq S$ is the set of initial states,
 - $ilde{*} \; R \subseteq S imes S$ is a total transition relation, and
 - * $L: S \to 2^{AP}$ is a function labeling each state with a subset of propositions (which are true in that state).
- A computation or path of M from a state s is an infinite sequence of states $\sigma = s_0, s_1, s_2, \cdots$ such that $s_0 \in S_0$ and $(s_i, s_{i+1}) \in R$, for all $i \geq 0$.

First-Order Representations

- First-order formulae serve as a unifying formalism for describing concurrent systems.
- Elements of first-order logic:
 - Logical connectives $(\land, \lor, \neg, \rightarrow, \text{ etc.})$ and quantifiers $(\forall \text{ and } \exists)$
 - Predicate and function symbols (with predefined meanings)
- Variables range over a finite domain D.
- A valuation for a set V of variables is a map from the variables in V to the values in the domain D.
- A state of a system is a valuation for the system variables.
- A set of states can be described by a first-order formula.
- The set of initial states of a system will typically be described by $S_0(V)$.

First-Order Representations (cont.)

- To describe transitions by logic formulae, we create a second copy of variables V'.
- \odot Each variables v in V has a corresponding primed version v' in V'.
- The variables in V are present state variables, while the variables in V' are next state variables.
- lacktriangle A valuation for V and V' can be seen as designating a pair of states or a transition.
- A set of transitions or transition relation R can then be described by a first-order formula $\mathcal{R}(V, V')$.
- Be careful about the issue of granularity.

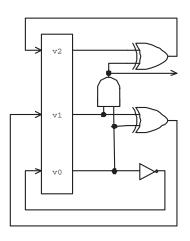
From Formulae to Kripke Structures

- Given $S_0(V)$ and $\mathcal{R}(V, V')$ that represent a concurrent system, a Kripke structure $M = \langle S, S_0, R, L \rangle$ may be derived:
 - $ilde{*}$ S is the set of all valuations for V.
 - * The set of initial states S_0 is the set of all valuations for V satisfying S_0 .
 - * R(s, s') holds if \mathcal{R} evaluates to *true* when each $v \in V$ is assigned the value s(v) and each $v' \in V'$ is assigned the value s'(v).
 - L is defined such that L(s) is the set of atomic propositions true in s.
- To make R total, for every state s that does not have a successor, (s, s) is added into R.

Varieties of Concurrent Systems

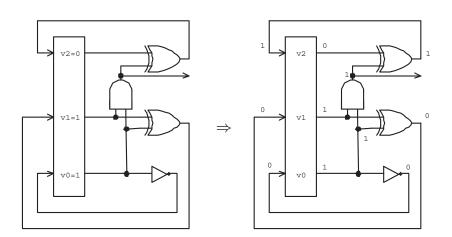
- A concurrent system consists of a set of components that execute together.
- Modes of execution:
 - Asynchronous
 - Synchronous
- Modes of communication:
 - Shared variables
 - 🌞 Message-passing
 - 🌞 Handshaking (or joint events)

A Synchronous Modulo 8 Counter



Source: redrawn from [Clarke et al. 1999, Fig 2.1]

A Synchronous Modulo 8 Counter (cont.)



Automatic Verification 2019

First-Order Representations (Circuit)

- Let V be $\{v_0, v_1, v_2\}$.
- The transitions of the modulo 8 counter are
 - $v_0' = \neg v_0$
 - $v_1' = v_0 \oplus v_1$
 - $v_2' = (v_0 \wedge v_1) \oplus v_2$
- 📀 In terms of formulae, they are
 - \mathscr{N} $\mathcal{R}_0(V,V') \stackrel{\Delta}{=} v_0' \Leftrightarrow \neg v_0$
 - $\stackrel{\clubsuit}{=} \mathcal{R}_1(V,V') \stackrel{\Delta}{=} v_1' \Leftrightarrow v_0 \oplus v_1$
 - $\overset{\$}{\gg} \mathcal{R}_2(V,V') \stackrel{\Delta}{=} v_2' \Leftrightarrow (v_0 \wedge v_1) \oplus v_2$
- Conjoining the formulae, we obtain

$$\mathcal{R}(V,V') \stackrel{\Delta}{=} \mathcal{R}_0(V,V') \wedge \mathcal{R}_1(V,V') \wedge \mathcal{R}_2(V,V')$$

Programs

- Concurrent programs are composed of sequential programs/statements.
- A sequential program consists of statements sequentially composed with each other.
- We assume that all statements of a program have a unique entry point and a unique exit point (they are structured).
- To obtain a first-order representation of a program, it is convenient to *label* each statement of the program.

Labeling a Sequential Statement

- Given a sequential statement P, the labeled statement P^L is defined as follows, assuming all labels are unique:
 - If P is not composite, then $P^L = P$.
 - $P = P_1; P_2, \text{ then } P^L = P_1^L; I : P_2^L$
 - # If $P = \mathbf{if} \ b \ \mathbf{then} \ P_1 \ \mathbf{else} \ P_2 \ \mathbf{fi}$, then
 - $P^L = \text{if } b \text{ then } l_1 : P_1^L \text{ else } l_2 : P_2^L \text{ fi.}$ \Rightarrow If $P = \text{while } b \text{ do } P_1 \text{ od, then } P^L = \text{while } b \text{ do } l_1 : P_1^L \text{ od.}$
- The above labeling procedure may be extended to treat other statement types.

First-Order Representations (Sequential)

- \bullet Consider a labeled program P, with the entry labeled m and exit labeled m'.
- \odot Let V denote the set of program variables.
- We postulate a special variable pc called the *program counter* that ranges over the set of program labels plus the *undefined* value \perp (bottom).
- Let same(Y) abbreviate $\bigwedge_{y \in Y} (y' = y)$.
- Given some condition pre(V) on the initial values, the set of initial states is

$$S_0(V,pc) \stackrel{\Delta}{=} pre(V) \wedge pc = m.$$

First-Order Representations (cont.)

The transition relation C(I, P, I') for a statement P with entry I and exit I' is defined recursively as follows:

- Assignment:
 - $C(I, v := e, I') \stackrel{\Delta}{=} pc = I \wedge pc' = I' \wedge v' = e \wedge same(V \setminus \{v\}).$
- Skip:

$$C(I, skip, I') \stackrel{\Delta}{=} pc = I \wedge pc' = I' \wedge same(V).$$

Sequential Composition:

$$C(I, P_1; I'': P_2, I') \stackrel{\Delta}{=} C(I, P_1, I'') \vee C(I'', P_2, I').$$

First-Order Representations (cont.)

Conditional:

 $C(I, \mathbf{if} \ b \ \mathbf{then} \ I_1 : P_1 \ \mathbf{else} \ I_2 : P_2 \ \mathbf{fi}, I')$ is the disjunction of the following:

- $\red pc = I \wedge pc' = I_1 \wedge b \wedge same(V)$
- $ilde{*}$ $pc = l \wedge pc' = l_2 \wedge \neg b \wedge same(V)$
- * $C(I_1, P_1, I')$
- \mathscr{P} $C(I_2, P_2, I')$
- While:

 $C(I, \mathbf{while} \ b \ \mathbf{do} \ I_1 : P_1 \ \mathbf{od}, I')$ is the disjunction of the following:

- $ilde{*}$ $pc = l \land pc' = l_1 \land b \land same(V)$
- $ilde{*}\hspace{0.1cm}$ $pc=l\wedge pc'=l'\wedge
 eg b\wedge same(V)$
- $\mathscr{P} C(I_1, P_1, I)$

Concurrent Programs

- Concurrent programs are composed of sequential processes (programs/statements).
- We consider only asynchronous concurrent programs, where exactly one process can make a transition at any time.
- \bigcirc A concurrent program P has the following form:

cobegin
$$P_1 \parallel P_2 \parallel \cdots \parallel P_n$$
 coend

where P_i 's are processes.

- Let V be the set of all program variables and V_i the set of variables that can be changed by P_i .
- Let pc be the program counter of P and pc_i that of P_i ; let PC be the set of all program counters.

Labeling Concurrent Programs

- Given P =cobegin $P_1 \parallel P_2 \parallel \cdots \parallel P_n$ coend, then $P^L =$ cobegin $I_1 : P_1^L \mid I_1' \parallel I_2 : P_2^L \mid I_2' \parallel \cdots \parallel I_n : P_n^L \mid I_n'$ coend.
- \bigcirc Note that each process P_i has a unique exit label I'_i .

First-Order Representations (Concurrent)

- Assume the entry is labeled m and exit labeled m'.
- Given some condition pre(V) on the initial values, the set of initial states is

$$S_0(V, PC) \stackrel{\Delta}{=} pre(V) \wedge pc = m \wedge \bigwedge_{i=1}^{m} (pc_i = \bot)$$

where $pc_i = \bot$ indicates that P_i is not active.

- $C(I, \mathbf{cobegin} \ I_1 : P_1 \ I'_1 \ \| \ I_2 : P_2 \ I'_2 \ \| \cdots \ \| \ I_n : P_n \ I'_n \ \mathbf{coend}, I')$ is the disjunction of the following:
 - $\red pc = I \wedge pc'_1 = I_1 \wedge \cdots \wedge pc'_n = I_n \wedge pc' = \bot$ (initialization)
 - * $pc = \bot \land pc_1 = l'_1 \land \cdots \land pc_n = l'_n \land pc' = l' \land_{i=1}^n (pc'_i = \bot)$ (termination)
 - $\overset{*}{\gg} \bigvee_{i=1}^{n} (C(I_i, P_i, I_i') \land same(V \setminus V_i) \land same(PC \setminus \{pc_i\})$ (interleaving)

Automatic Verification 2019

Synchronization Statements

- \bigcirc Assume the statement belongs to P_i .
- Wait (or await):

 $C(I, \mathbf{wait}(b), I')$ is the disjunction of the following:

- $ilde{*}$ $pc_i = l \land pc_i' = l' \land b \land same(V_i)$
- Lock (or test-and-set): C(I, lock(v), I') is the disjunction of the following:
 - $\red pc_i = I \land pc_i' = I \land v = 1 \land same(V_i)$
 - $ilde{*}$ $pc_i = l \land pc_i' = l' \land v = 0 \land v' = 1 \land same(V_i \setminus \{v\})$
- Unlock:

$$C(I, \mathbf{unlock}(v), I') \stackrel{\Delta}{=} pc_i = I \wedge pc'_i = I' \wedge v' = 0 \wedge same(V_i \setminus \{v\}).$$

A Mutual Exclusion Program

 $P_{MX} = m$: cobegin $P_0 \parallel P_1$ coend m'

- $V = V_0 = V_1 = \{T\}; PC = \{pc, pc_0, pc_1\}.$
- igoplus The pc of P_{MX} may take m, \perp , or m'.
- \bigcirc The pc_0 of P_0 : \perp , I_0 , NC_0 , CR_0 , or I_0' .
- The pc_1 of P_1 : \perp , I_1 , NC_1 , CR_1 , or I'_1 .

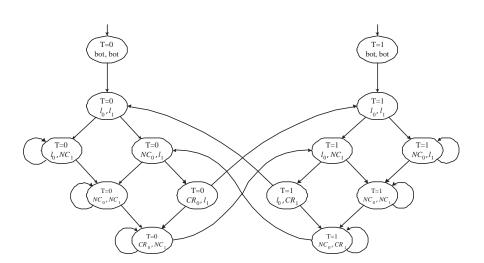
First-Order Representation of P_{MX}

- igoplus Initial states $\mathcal{S}_0(V,PC)$: $pc=m \land pc_0=\bot \land pc_1=\bot$.
- lacktriangle Transition relation $\mathcal{R}(V,PC,V',PC')$ is the disjunction of
 - $pc = m \wedge pc'_0 = l_0 \wedge pc'_1 = l_1 \wedge pc' = \bot$

 - $ilde{*} \ \ C(\mathit{I}_0, \mathit{P}_0, \mathit{I}'_0) \land \mathit{same}(V \setminus \mathit{V}_0) \land \mathit{same}(\mathit{PC} \setminus \{\mathit{pc}_0\})$
 - $ilde{*} \ \ C(\mathit{I}_1,\mathit{P}_1,\mathit{I}'_1) \land \mathit{same}(V \setminus V_1) \land \mathit{same}(\mathit{PC} \setminus \{\mathit{pc}_1\})$
- \bullet For each P_i , $C(I_i, P_i, I'_i)$ is the disjunction of
 - $\red pc_i = l_i \wedge pc_i' = NC_i \wedge true \wedge same(T)$
 - $ilde{*}$ $pc_i = NC_i \land pc_i' = CR_i \land T = i \land same(T)$

 - t * $pc_i = \mathsf{NC}_i \land pc_i' = \mathsf{NC}_i \land T
 eq i \land same(T)$
 - $ilde{*}$ $pc_i = l_i \land pc_i' = l_i' \land false \land same(T)$

A Kripke Structure for P_{MX}



Source: redrawn from [Clarke et al. 1999, Fig 2.2]