

Model Checking μ -Calculus

(Based on [Clarke et al. 1999])

Yih-Kuen Tsay (with help from Kai-Fu Tang and Jinn-Shu Chang)

> Dept. of Information Management National Taiwan University

Outline

- Introduction
- igoplus The Propositional μ -Calculus
- 😚 Evaluating Fixpoint Formulae
- lacktriangle Representing μ -Calculus Formulae Using OBDDs
- igoplus Translating CTL into the μ -Calculus
- Complexity Considerations

Introduction

- The propositional μ-calculus is a powerful language for expressing properties of transition systems by using least and greatest fixpoint operators.
- 👽 It has gained much attention for two reasons:
 - Many temporal and program logics can be encoded into the μ -calculus.
 - There exist efficient model checking algorithms for this formalism.
- Widespread use of BDDs made fixpoint-based algorithms even more important.

Introduction (cont.)

- Model checking algorithms for the μ -calculus fall into two categories:
 - Local procedures:
 - •• for proving that a specific state satisfies the given formula
 - onot having been combined with BDDs
 - 🌞 Global procedures:
 - •• for proving that all states in a set satisfy the given formula
 - those based on BDDs prove to be very efficient in practice
- Here, we consider only global model checking.

Extended Kripke Structures

- lacktriangledown Formulae in the μ -calculus are interpreted relative to a transition system.
- To distinguish between different transitions in a system, we modify the definition of a Kripke structure slightly.
- \odot An extended Kripke structure M over AP is a tuple (S, T, L):

 - 🤴 T is a set of transition relations, and
 - $\red{black} L: S
 ightarrow 2^{AP}$ gives the set of atomic propositions true in a state.
- We will refer to each $a \in T$, $a \subseteq S \times S$, as a *transition* (instead of a transition relation).

μ -Calculus: Syntax

- Let $VAR = \{Q, Q_1, Q_2, ...\}$ be a set of *relational variables* (representing unary predicates).
- lacktriangle Each relational variable $Q \in \mathit{VAR}$ can be assigned a subset of S.
- lacktriangle The μ -calculus formulae are constructed as follows:

 - 🌻 A relational variable is a formula.
 - $ilde{*}$ If f and g are formulae, then $\neg f, f \land g, f \lor g$ are formulae.
 - \red If f is a formula and $a \in T$, then $\langle a \rangle f$ and [a]f are formulae.
 - If Q ∈ VAR and f is a syntactically monotone formula in Q, then $\mu Q.f$ and $\nu Q.f$ are formulae.

Syntactically Monotone Formulae

- A formula f is syntactically monotone in Q if all occurrences of Q within f fall under an even number of negations in f.
- Consider these formulae:

$$f_1 = \neg((p \lor \neg Q_1) \land \neg \langle a \rangle Q_1)$$

$$f_2 = (Q_1 \land \langle a \rangle Q_1) \lor \neg(p \land [a]Q_2)$$

- igotimes f_1 is syntactically monotone in Q_1 .
- f_2 is syntactically monotone in Q_1 , but not syntactically monotone in Q_2 .

Intuitive Meaning of μ -Calculus Formulae

- The formula $\langle a \rangle f$ means that f holds in at least one state reachable in one step by making an a-transition.
- The formula [a]f means that f holds in all states reachable in one step by making an a-transition.
- lacktriangle The formula $\mu Q.f(Q)$ expresses the least fixpoint of f.
- ightharpoonup The formula u Q.f(Q) expresses the greatest fixpoint of f.
- The fixpoint operator behaves like a quantifier in first-order logic.
- Variables can be *free* or *bound* by a fixpoint operator.
- We write $f(Q_1, Q_2, ..., Q_n)$ to emphasize that a formula f contains free relational variables $Q_1, Q_2, ..., Q_n$.

μ -Calculus: Semantics

- We write $s \stackrel{a}{\rightarrow} s'$ to mean $(s, s') \in a$.
- The *environment* $e: VAR \rightarrow 2^S$ is an interpretation for free variables.
- We denote by $e[Q \leftarrow W]$ a new environment that is the same as e except that $e[Q \leftarrow W](Q) = W$.
- A formula f is interpreted as a set of states in which f is true, denoted $[\![f]\!]_M e$, where
 - M is a transition system and
 - 🌞 e is an environment.

μ -Calculus: Semantics (cont.)

- $\llbracket \nu Q.f \rrbracket_{M}e$ is the greatest fixpoint of the predicate transformer $\tau: 2^S \to 2^S$, where $\tau(W) = \llbracket f \rrbracket_{M}e [Q \leftarrow W]$

An Example

Let $f = p \wedge [a]Q$. Formula f defines a predicate transformer τ as follows.

$$\tau(W) = \llbracket f \rrbracket_{M} e[Q \leftarrow W]$$

$$= \llbracket p \land [a]Q \rrbracket_{M} e[Q \leftarrow W]$$

$$= \llbracket p \rrbracket_{M} e[Q \leftarrow W] \cap \llbracket [a]Q \rrbracket_{M} e[Q \leftarrow W]$$

$$= \{ s \mid p \in L(s) \} \cap \{ s \mid \forall t (s \xrightarrow{a} t \text{ implies } t \in \llbracket Q \rrbracket_{M} e[Q \leftarrow W]) \}$$

$$= \{ s \mid p \in L(s) \} \cap \{ s \mid \forall t (s \xrightarrow{a} t \text{ implies } t \in W) \}$$

A CTL Formula in μ -Calculus

- Consider **EG** f with fairness constraint k.
- Recall that this property can be expressed as a fixpoint:

$$\nu Z$$
 . $f \wedge \mathbf{EX} \mathbf{E}[f \mathbf{U} (Z \wedge k)]$.

🕟 Using the fixpoint characterization of **EU**, we obtain

$$\mathbf{E}[f \ \mathbf{U} \ (Z \wedge k)] = \mu Y \ . \ (Z \wedge k) \vee (f \wedge \mathbf{EX} \ Y).$$

 Substituting the right-hand side of the second formula in the first one gives

$$\nu Z$$
 . $f \wedge \mathbf{EX} (\mu Y \cdot (Z \wedge k) \vee (f \wedge \mathbf{EX} Y))$.

A CTL Formula in μ -Calculus (cont.)

- Suppose the system under consideration has just one transition
 a.
- ightharpoonup Replace **EX** by $\langle a \rangle$, we obtain the μ -calculus formula

$$\nu Z$$
 . $f \wedge \langle a \rangle (\mu Y \cdot (Z \wedge k) \vee (f \wedge \langle a \rangle Y))$.

Negation and Monotonicity

• All negations can be pushed down to the atomic propositions:

$$\neg[a]f \equiv \langle a \rangle \neg f
\neg \langle a \rangle f \equiv [a] \neg f
\neg \mu Q. f(Q) \equiv \nu Q. \neg f(\neg Q)
\neg \nu Q. f(Q) \equiv \mu Q. \neg f(\neg Q)$$

- Servery logical connective except negation is monotonic.
- Bound variables are under an even number of negations, thus they can be made negation-free.
- Therefore, each possible formula in a fixpoint operator is monotonic.
- This ensures the existence of the fixpoints.

Fixpoint Reviewed

- Let $\tau: 2^S \to 2^S$ be a monotonic function.
- **③** If S is finite and τ is monotonic, then τ is also ∪-continuous and ∩-continuous.
- $\mu Q.\tau(Q) = \bigcup_i \tau^i(False)$, i.e., $\mu Q.\tau(Q)$ is the union of the following ascending chain of approximations:

$$False \subseteq \tau(False) \subseteq \tau^2(False) \subseteq \cdots \subseteq \tau^n(False) \subseteq \cdots$$

• $\nu Q.\tau(Q) = \bigcap_i \tau^i(\mathit{True})$, i.e., $\nu Q.\tau(Q)$ is the intersection of the following descending chain of approximations:

True
$$\supseteq \tau(\mathit{True}) \supseteq \tau^2(\mathit{True}) \supseteq \cdots \supseteq \tau^n(\mathit{True}) \supseteq \cdots$$

Naive Algorithm

1 **function** Eval(f, e)

```
2 if f = p then return \{s \mid p \in L(s)\};
 3 if f = Q then return e(Q);
 4 if f = g_1 \wedge g_2 then
            return Eval(g_1, e) \cap \text{Eval}(g_2, e);
 6 if f = g_1 \vee g_2 then
            return Eval(g_1, e) \cup \text{Eval}(g_2, e);
 8 if f = \langle a \rangle g then
            return \{s \mid \exists t (s \stackrel{a}{\rightarrow} t \text{ and } t \in \text{Eval}(g, e))\};
   if f = [a]g then
            return \{s \mid \forall t(s \stackrel{a}{\rightarrow} t \text{ implies } t \in \text{Eval}(g, e))\};
11
     if f = \mu Q.g(Q) then return Lfp(g, e, Q);
13 if f = \nu Q.g(Q) then return Gfp(g, e, Q);
14 end function
```

Naive Least Fixpoint Procedure


```
1 function Lfp(g, e, Q)
2 Q_{\text{val}} \leftarrow False;
3 repeat
4 Q_{\text{old}} \leftarrow Q_{\text{val}};
5 Q_{\text{val}} \leftarrow \text{Eval}(g, e[Q \leftarrow Q_{\text{val}}]);
6 until Q_{\text{val}} = Q_{\text{old}};
7 return Q_{\text{val}};
8 end function
```

Naive Greatest Fixpoint Procedure


```
1 function Gfp(g, e, Q)

2 Q_{val} \leftarrow True;

3 repeat

4 Q_{old} \leftarrow Q_{val};

5 Q_{val} \leftarrow Eval(g, e[Q \leftarrow Q_{val}]);

6 until Q_{val} = Q_{old}

7 return Q_{val};

8 end function
```

A Run Sketch

- \P Consider the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$.
- $ightharpoonup
 ightharpoonup
 m We start with the initial approximation <math>Q_1^0 = {\it False}$.
 - ** Compute the inner fixpoint starting from $Q_2^{00} = False$ until we reach the fixpoint $Q_2^{0\omega}$.
- $ightharpoonup Q_1$ is increased to $Q_1^1=g_1(Q_1^0,Q_2^{0\omega}).$
 - * Compute the inner fixpoint starting from $Q_2^{10}=False$ until we reach the fixpoint $Q_2^{1\omega}$.
- $ightharpoonup Q_1$ is increased to $Q_1^2=g_1(Q_1^1,Q_2^{1\omega}).$
- lacktriangle This continues until we reach the fixpoint Q_1^ω .

A Run Sketch (cont.)

Summary of the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$:

Q_1^0	Q_2^{00}	Q_2^{01}	• • •	$Q_2^{0\omega}$
= False	= False;	$=g_2(Q_1^0,Q_2^{00});$		
Q_1^1	Q_2^{10}	Q_2^{11}		$Q_2^{1\omega}$
$=g_{1}(\mathit{Q}_{1}^{0},\mathit{Q}_{2}^{0\omega})$	= False;	$=g_2(Q_1^1,Q_2^{10});$		
:	:			
$Q_1^{\omega-2}$	$Q_2^{(\omega-2)0}$	- 2		$Q_2^{(\omega-2)\omega}$
$= g_1(Q_1^{\omega-3}, Q_2^{(\omega-3)\omega})$	= False;	$=g_2(Q_1^{\omega-2},Q_2^{(\omega-2)0});$		
$Q_1^{\omega-1}$	$Q_2^{(\omega-1)0}$	$Q_2^{(\omega-1)1}$		$Q_2^{(\omega-1)\omega}$
$= g_1(Q_1^{\omega-2}, Q_2^{(\omega-2)\omega})$	= False;	$=g_2(Q_1^{\omega-1},Q_2^{(\omega-1)0});$		
Q_1^ω				
$=g_1(Q_1^{\omega-1},Q_2^{(\omega-1)\omega})$				

Complexity Analysis

- lacktriangle Let k be the maximum nesting depth of fixpoint operators.
- The naive algorithm runs in $O(|M| \cdot |f| \cdot n^k)$ time, where M is the Kripke structure and n the number of states. (Note: for $M = (S, T, L), |M| = |S| + \sum_{a \in T} |a|$ and n = |S|.)
 - $\stackrel{*}{=}$ The innermost fixpoint will be evaluated $O(n^k)$ times.
 - ***** Each individual iteration takes $O(|M| \cdot |f|)$ steps.

Alternation Depth

- Top-level ν -subformula of f: a subformula $\nu Q.g$ that is not contained within any other greatest fixpoint subformula of f.
- ightharpoonup The top-level μ -subformula of f is defined analogously.
- The alternation depth of a formula f is the number of alternations in the nesting of least and greatest fixpoints (relative to a same variable) in f, denoted d(f):
 - * d(p) = d(Q) = 0

 - * $d(\mu Q.f) = \max(1, d(f), 1 + \max(\{d(g) \mid g \text{ is a top level } \nu\text{-subformula of } f \text{ with } Q \text{ as a free variable}\}))$
 - $d(\nu Q.f) = \max(1, d(f), 1 + \max(\{d(g) \mid g \text{ is a top level } \mu\text{-subformula of } f \text{ with } Q \text{ as a free variable}\})$

Alternation Depth (cont.)

- Examples:
 - $\overset{\text{\tiny{\$}}}{}$ $d(p \land [a]Q) = 0$

 - $\stackrel{\text{\scriptsize\#}}{=} d(\nu Q_1.(\mu Q_2.(p \vee \langle a \rangle Q_2)) \wedge \langle a \rangle Q_1) = 1$
- Recall that, for a system with a single transition a and fairness constraint k, the μ -calculus formula corresponding to **EG** f is

$$\nu Z$$
 . $f \wedge \langle a \rangle (\mu Y \cdot (Z \wedge k) \vee (f \wedge \langle a \rangle Y))$.

This formula has an alternation depth of two.

A Better Algorithm

- An algorithm by Emerson and Lei demonstrates that the value of a fixpoint formula can be computed with $O((|f| \cdot n)^d)$ iterations, where d is the alternation depth of f.
- The basic idea exploits sequences of fixpoints that have the same type to reduce the complexity of the algorithm.
- It is unnecessary to re-initialize computations of inner fixpoints with *False* or *True*.
- Instead, to compute a least fixpoint, it is enough to start iterating with any approximation known to be below the fixpoint.

Lemma 22

- Let $\tau: 2^S \to 2^S$ be monotonic and S be finite.
- ightharpoonup If $W\subseteq \bigcup_i au^i(\mathit{False})$, then $\bigcup_i au^i(W)=\bigcup_i au^i(\mathit{False})$.
- Proof:
 - " $\bigcup_i \tau^i(W) \subseteq \bigcup_i \tau^i(False)$:

$$W \subseteq \bigcup_{i} \tau^{i}(False)$$

$$\tau(W) \subseteq \tau(\bigcup_{i} \tau^{i}(False)) = \bigcup_{i} \tau^{i}(False)$$

$$\vdots$$

$$\tau^{n}(W) \subseteq \bigcup_{i} \tau^{i}(False)$$

$$\vdots$$

Lemma 22 (cont.)

 \bigcirc $\bigcup_i \tau^i(False) \subseteq \bigcup_i \tau^i(W)$:

$$False \subseteq W = \tau^{0}(W)$$

$$\tau(False) \subseteq \tau(W)$$

$$\vdots$$

$$\tau^{n}(False) \subseteq \tau^{n}(W)$$

$$\vdots$$

$$\bigcup_{i} \tau^{i}(False) \subseteq \bigcup_{i} \tau^{i}(W)$$

So, to compute a least fixpoint, it is enough to start iterating with any approximation below the fixpoint.

A Better Run Sketch

- \bigcirc Consider the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$.
- lacktriangledown We start with the initial approximation $Q_1^0 = \mathit{False}$.
- $ightharpoonup When computing <math>\mathit{Q}_{2}^{i\omega}$, we always begin with $\mathit{Q}_{2}^{i0}=\mathit{Q}_{2}^{(i-1)\omega}$.
 - * Compute the inner fixpoint starting from $Q_2^{00}=False$ until we reach the fixpoint $Q_2^{0\omega}$.
 - $ilde{*}\hspace{0.1cm} Q_1$ is increased to $Q_1^1=g_1(Q_1^0,Q_2^{0\omega}).$
 - * Compute the inner fixpoint starting from $Q_2^{10}=Q_2^{0\omega}$ until we reach the fixpoint $Q_2^{1\omega}$.

 - ٠.
- \odot This continues until we reach the fixpoint $\mathit{Q}_{1}^{\omega}.$

A Better Run Sketch (cont.)

Summary of the calculation of $\mu Q_1.g_1(Q_1, \mu Q_2.g_2(Q_1, Q_2))$:

Q_1^0	Q_2^{00}	Q_2^{01}		$Q_2^{0\omega}$	
= False	= False;	$=g_2(Q_1^0,Q_2^{00});$			
Q_1^1	Q_2^{10}	Q_2^{11}		$Q_2^{1\omega}$	
$=g_{1}(\mathit{Q}_{1}^{0},\mathit{Q}_{2}^{0\omega})$	$=Q_2^{0\omega};$	$=g_2(Q_1^1,Q_2^{10});$			
:	:				
$Q_1^{\omega-2}$	$Q_2^{(\omega-2)0}$	$Q_2^{(\omega-2)1}$		$Q_2^{(\omega-2)\omega}$	
$= g_1(Q_1^{\omega-3}, Q_2^{(\omega-3)\omega})$		$= g_2(Q_1^{(\omega-2)}, Q_2^{(\omega-2)0});$			
$\overline{Q_1^{\omega-1}}$	$Q_2^{(\omega-1)0}$	$Q_2^{(\omega-1)1}$		$Q_2^{(\omega-1)\omega}$	
$=g_1(Q_1^{\omega-2},Q_2^{(\omega-2)\omega})$	$=Q_2^{(\omega-2)\omega};$	$= g_2(Q_1^{(\omega-1)}, Q_2^{(\omega-1)0});$			
Q_1^ω					
$=g_1(Q_1^{\omega-1},Q_2^{(\omega-1)\omega})$					
$Q_2^{0\omega} = g_2(Q_1^0,Q_2^{0\omega}) \subseteq g_2(Q_1^1,Q_2^{0\omega})$					

Emerson-Lei Algorithm

1 **function** EL-Eval(f, e)

```
2 if f = p then return \{s \mid p \in L(s)\};
 3 if f = Q then return e(Q);
 4 if f = g_1 \wedge g_2 then
           return EL-Eval(g_1, e) \cap \text{EL-Eval}(g_2, e);
    if f = g_1 \vee g_2 then
           return EL-Eval(g_1, e) \cup EL-Eval(g_2, e);
 8 if f = \langle a \rangle g then
           return \{s \mid \exists t(s \stackrel{a}{\rightarrow} t \text{ and } t \in EL\text{-Eval}(g, e))\};
   if f = [a]g then
           return \{s \mid \forall t(s \stackrel{a}{\rightarrow} t \text{ implies } t \in \text{EL-Eval}(g, e))\};
11
     if f = \mu Q_i g(Q_i) then return EL-Lfp(g, e, Q_i);
12
    if f = \nu Q_i g(Q_i) then return EL-Gfp(g, e, Q_i);
13
14
    end function
```

Emerson-Lei Algorithm (cont.)

- \bullet The algorithm uses an array A[1..N] to store the approximations to the fixpoints.
- Initially, A[i] is set to False if the i^{th} fixpoint formula is a least fixpoint and to True otherwise.
- The approximation values A[i] are not reset when evaluating the subformula μQ_i . $g(Q_i)$ or νQ_i . $g(Q_i)$.

Emerson-Lei Lfp

- 1 function EL-Lfp(g, e, Q_i)
- forall top-level greatest fixpoint subformulae $u Q_j.g'(Q_j)$ of g
- 3 **do** $A[j] \leftarrow True$;
- 4 repeat
- 5 $Q_{old} \leftarrow A[i]$;
- 6 $A[i] \leftarrow \text{EL-Eval}(g, e[Q_i \leftarrow A[i]]);$
- 7 **until** $A[i] = Q_{old}$
- 8 **return** A[i];
- 9 end function

Emerson-Lei Gfp

- 1 **function** EL-Gfp(g, e, Q_i)
- **forall** top-level least fixpoint subformulae $\mu Q_j.g'(Q_j)$ of g
- 3 **do** $A[j] \leftarrow False$;
- 4 repeat
- 5 $Q_{old} \leftarrow A[i]$;
- 6 $A[i] \leftarrow \text{EL-Eval}(g, e[Q_i \leftarrow A[i]]);$
- 7 until $A[i] = Q_{old}$
- 8 **return** A[i];
- 9 end function

Complexity Analysis

- In the naive algorithm, the innermost fixpoint requires $O(n^k)$ iterations, where k is the maximum nesting depth of fixpoint operators.
- The number of iterations of Emerson-Lei algorithm is $O((|f| \cdot n)^d)$.
 - |f| is an upper bound on the number of consecutive fixpoints of the same type in f.
 - The number of iterations for each such sequence is $O(|f| \cdot n)$, each fixpoint requiring at most n iterations.
 - $ilde{*}$ With d alternating sequences, we have $O((|f| \cdot n)^d)$ iterations.

Representing Formulae Using OBDDs

- The domain S is encoded by the vector \vec{x} .
- Search atomic proposition p has an OBDD associated with it, denoted $OBDD_p(\vec{x})$.
 - $ightharpoonup ec{y} \in \{0,1\}^n$ satisfies $OBDD_p$ iff $p \in L(\vec{y})$.
- Search transition a has an OBDD associated with it, denoted $OBDD_a(\vec{x}, \vec{x}')$.
 - $ilde{*} \ (\vec{y}, \vec{z}) \in \{0, 1\}^{2n}$ satisfies $OBDD_a$ iff $(\vec{y}, \vec{z}) \in a$.
- The environment is represented by a function assoc; $assoc[Q_i]$ gives the OBDD corresponding to the set of states associated with Q_i .
- assoc $\langle Q \leftarrow B_Q \rangle$ creates a new association by associating an OBDD B_Q with Q.

Representing Formulae Using OBDDs (cont.)

- The procedure B given below takes a μ -calculus formula f and an association list assoc and returns an OBDD corresponding to the semantics of f.
 - $\stackrel{\text{\ensuremath{\not{\circ}}}}{=} B(p, assoc) = OBDD_p(\vec{x})$
 - \gg B(Q_i , assoc) = assoc[Q_i]
 - $\gg B(\neg f, assoc) = \neg B(f, assoc)$
 - $ilde{*}$ $\mathrm{B}(f \wedge g, assoc) = \mathrm{B}(f, assoc) \wedge \mathrm{B}(g, assoc)$
 - $> B(f \lor g, assoc) = B(f, assoc) \lor B(g, assoc)$

 - \gg B([a]f, assoc) = B($\neg \langle a \rangle \neg f$, assoc)
 - $\# B(\mu Q.f, assoc) = FIX(f, assoc, OBDD_{False})$
 - # B($\nu Q.f$, assoc) = FIX(f, assoc, $OBDD_{True}$)

Representing Formulae Using OBDDs (cont.)


```
1 function FIX(f, assoc, B_Q)
2 bdd_{result} \leftarrow B_Q;
3 repeat
4 bdd_{old} \leftarrow bdd_{result};
5 bdd_{result} \leftarrow B(f, assoc\langle Q \leftarrow bdd_{old}\rangle);
6 until equal(bdd_{old}, bdd_{result})
7 return bdd_{result};
8 end function
```

An example

- Let the state space S be encoded by n boolean variables x_1, x_2, \ldots, x_n .
- ightharpoonup Let $OBDD_q(ec{x})$ be the interpretation for q.
- The *OBDD* corresponding to the transition a is $OBDD_a(\vec{x}, \vec{x}')$.
- Given an association list assoc that pairs the OBDD $B_Y(\vec{x})$ with Y.
- Consider the following formula:

$$f = \mu Z \cdot ((q \wedge Y) \vee \langle a \rangle Z)$$

An example (cont.)

In the execution of FIX, bdd_{result} is initially set to:

$$N^0(\vec{x}) = OBDD_{False}$$
.

At the end of the i-th iteration, the value of bdd_{result} is given by:

$$N^{i+1}(\vec{x}) = (OBDD_q(\vec{x}) \land B_Y(\vec{x})) \lor \exists \vec{x}' (OBDD_a(\vec{x}, \vec{x}') \land N^i(\vec{x}')).$$

• The iteration stops when $N^i(\vec{x}) = N^{i+1}(\vec{x})$.

Translating CTL into the μ -Calculus

- Consider systems with just one transition a.
- The algorithm Tr takes as its input a CTL formula and outputs an equivalent μ -calculus formula:
 - \mathscr{P} Tr(p) = p
 - $\operatorname{Tr}(\neg f) = \neg \operatorname{Tr}(f)$
 - $ilde{*} \ \operatorname{Tr}(f \wedge g) = \operatorname{Tr}(f) \wedge \operatorname{Tr}(g)$
 - $ilde{*}$ $\operatorname{Tr}(\mathsf{EX}\ f) = \langle a
 angle \operatorname{Tr}(f)$

 - $ilde{*}$ $\operatorname{Tr}(\operatorname{\textbf{EG}}\ f) =
 u Y.(\operatorname{Tr}(f) \wedge \langle a \rangle Y)$

Translating CTL into the μ -Calculus (cont.)

Example:

$$Tr(\mathbf{EG} \ \mathbf{E}[p \ \mathbf{U} \ q])$$

$$= \nu Y.(Tr(\mathbf{E}[p \ \mathbf{U} \ q]) \wedge \langle a \rangle Y)$$

$$= \nu Y.(\mu Z.(q \vee (p \wedge \langle a \rangle Z)) \wedge \langle a \rangle Y)$$

- lacktriangle Any resulting μ -calculus formula is closed.
- We can omit the environment e from the translation.

NP and co-NP

- lacktriangle We will see model checking μ -calculus is in NP \cap co-NP.
- A language L is in NP if there exists a polynomial-time nondeterministic algorithm M such that:
 - $ilde{*}$ if $x\in L$, then M(x)= "yes" for some computation path, and
 - \red if $x \notin L$, then M(x) = "no" for all computation paths.
- ♠ A language L is in co-NP if there exists a polynomial-time nondeterministic algorithm M such that:
 - \bullet if $x \in L$, then M(x) = "yes" for all computation paths, and
 - # if $x \notin L$, then M(x) = ``no'' for some computation path.
- co-NP = $\{L \mid \overline{L} \in NP\}$.

Relations between P, NP, and co-NP

- Current consensus (still open):
 - $P \neq NP$
 - $NP \neq co-NP$
 - $P \neq NP \cap co-NP$
- ightharpoonup If an NP-complete problem is in co-NP, then NP = co-NP.
 - % Suppose L is an NP-complete problem that is also in co-NP.
 - 🌞 Let NTM M decide L.
 - For any L' ∈ NP, there is a reduction R from L' to L.
 - $ilde{*}$ $L'\in\mathsf{co} ext{-}\mathsf{NP}$ as it is decided by NTM $M(R(\cdot))$.
 - ₱ Hence NP ⊆ co-NP.
 - $ilde{*}$ The other direction co-NP \subseteq NP is symmetric.

Complexity of Model Checking μ -Calculus

- Problem: Given a finite model M, a state s, and a μ -calculus formula f, does M, $s \models f$?
- \odot Best known upper bound for this problem is NP \cap co-NP.

Model Checking μ -Calculus Is in NP

- Consider the following nondeterministic algorithm:
 - Guess the greatest fixpoints and compute the least fixpoints by iteration.
 - The guess for a greatest fixpoint is checked to see that it really is a fixpoint.
 - Finally, check if the resulting set contains the given state.
- The greatest fixpoint must contain any verified guess.
- By monotonicity, this nondeterministic algorithm computes a subset of the real interpretation of the formula.
- There is a run of the algorithm which calculates the set of states satisfying the μ -calculus formula.
- Consequently, the problem is in NP.

Model Checking μ -Calculus Is in co-NP

- Recall that co-NP = $\{L \mid \overline{L} \in NP\}$.
- Consider the following nondeterministic algorithm:
 - Negate the input formula.
 - Apply the algorithm on the previous slide.
- Consequently, the problem is in co-NP.
- Hence, the problem is in NP ∩ co-NP.

Open Problem

- **Open Problem:** Is there a polynomial model checking algorithm for the μ -calculus?
- 😚 It is a long standing open problem.
- 😚 Clarke *et al.* conjecture NO in the book.
- If the problem was NP-complete, then NP = co-NP, which is believed to be unlikely.
- This suggests that it would be very difficult to prove the conjecture.