Model Checking u-Calculus
(Based on [Clarke et al. 1999])

Yih-Kuen Tsay
(with help from Kai-Fu Tang and Jinn-Shu Chang)

Dept. of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 1/ 46

QOutline

Introduction

The Propositional p-Calculus

Evaluating Fixpoint Formulae

Representing p-Calculus Formulae Using OBDDs
Translating CTL into the p-Calculus

Complexity Considerations

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 2 /46

Introduction

The propositional j-calculus is a powerful language for
expressing properties of transition systems by using and
operators.

It has gained much attention for two reasons:

Many temporal and program logics can be encoded into the
p-calculus.

There exist efficient model checking algorithms for this
formalism.

Widespread use of BDDs made fixpoint-based algorithms even
more important.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 3/46

Introduction (cont.)

Model checking algorithms for the p-calculus fall into two
categories:
Local procedures:

w for proving that a specific state satisfies the given formula
w not having been combined with BDDs

Global procedures:

w for proving that all states in a set satisfy the given formula
w those based on BDDs prove to be very efficient in practice

Here, we consider only global model checking.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 4 /46

Extended Kripke Structures

Formulae in the p-calculus are interpreted relative to a transition
system.

To distinguish between different transitions in a system, we
modify the definition of a Kripke structure slightly.

An extended Kripke structure M over AP is a tuple (S, T, L):

S is a nonempty set of states,
T is a set of transition relations, and
L : S — 24P gives the set of atomic propositions true in a state.

We will refer to each a€ T, aC S x S, as a transition (instead
of a transition relation).

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 5 /46

pi-Calculus: Syntax

Let VAR ={Q, Q1, Q,, ...} be a set of relational variables
(representing unary predicates).

Each relational variable Q@ € VAR can be assigned a subset of S.
The p-calculus formulae are constructed as follows:

If p € AP, then p is a formula.

A relational variable is a formula.

If f and g are formulae, then =f, f A g, f \V g are formulae.
If fis a formula and a € T, then (a)f and [a]f are formulae.
If @ € VAR and f is a syntactically monotone formula in Q,
then puQ.f and vQ.f are formulae.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 6 /46

Syntactically Monotone Formulae

A formula f is syntactically monotone in Q if all occurrences of
@ within f fall under an even number of negations in f.

Consider these formulae:

i = ((pV-Qi)A—(a)Q)
fh = (1A (a)Q1)V(pAlaQe)

f1 is syntactically monotone in Q;.

f> is syntactically monotone in @y, but not syntactically
monotone in Q.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 7 /46

Intuitive Meaning of ;-Calculus Formulae

The formula (a)f means that f holds in at least one state
reachable in one step by making an a-transition.

The formula [a]f means that f holds in all states reachable in
one step by making an a-transition.

The formula pQ.f(Q) expresses the least fixpoint of f.

The formula vQ.f(Q) expresses the greatest fixpoint of f.

The fixpoint operator behaves like a quantifier in first-order logic.
Variables can be free or bound by a fixpoint operator.

We write f(Q1, @, ..., Q,) to emphasize that a formula f
contains free relational variables Q1, Q., ..., Q,.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 8 /46

p-Calculus: Semantics

We write s - s’ to mean (s,s’) € a.
The environment e : VAR — 2° is an interpretation for free
variables.

We denote by e[Q <~ W] a new environment that is the same as
e except that e[Q + W](Q) = W.

A formula f is interpreted as a set of states in which f is true,
denoted [f]me, where

M is a transition system and
e is an environment.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 9 /46

. |M_.;,;(\'~1{.NTU
p-Calculus: Semantics (cont.))

[plme = {s | p < L(s)}

[Qlme = €(Q)

[=flme =S\ [f]me

[f A glme = [flme N [glme

[fVelme = [flme U [glme

[(a)flme = {s | 3t[s > t and t € [f]me]}

[[alflme = {s | Vt[s > t implies t € [f]me]}

[1Q.f]me is the least fixpoint of the predicate transformer
7:2% — 25 where 7(W) = [f]me[@ «+ W]

[vQ.f]me is the greatest fixpoint of the predicate transformer
7:2% =25 where 7(W) = [f]ne[Q + W]

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 10 / 46

IM ZZNTU
An Example @

Let f = p A [a]Q. Formula f defines a predicate transformer 7 as
follows.

(W) = [flme[]Q < W]
[p A [a]QIme[Q « W]
[PlmelQ < W]N [[a]QIme[@ « W]
= {slpells)tn
{s | Vt(s > t implies t € [Q]me[@ + W])}
— {slpel(s)}n
{s | Vt(s > t implies t € W)}

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 11 / 46

IM ZERyNTU

A CTL Formula in p-Calculus)

Consider EG f with fairness constraint k.

Recall that this property can be expressed as a fixpoint:
vZ . f NEXE[f U (Z A Kk)].
Using the fixpoint characterization of EU, we obtain
E[f U(ZAK)]=pnY .(ZANk)V(f NEXY).

Substituting the right-hand side of the second formula in the
first one gives

vZ . f NEX (1Y . (ZAK)V (f ANEX Y)).

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 12 / 46

A CTL Formula in p-Calculus (cont.)

Suppose the system under consideration has just one transition
a.

Replace EX by (a), we obtain the pu-calculus formula

vZ . fA@(pY . (ZAK)V(FA(Q)Y)).

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 13 / 46

Negation and Monotonicity

All negations can be pushed down to the atomic propositions:

—[alf = (a)~f

—(a)f = [a]-f
—uQ.f(Q) = vQ.-f(—Q)
VvQR.f(Q) = pQ.—f(—Q)

Every logical connective except negation is monotonic.

Bound variables are under an even number of negations, thus
they can be made negation-free.

Therefore, each possible formula in a fixpoint operator is
monotonic.

This ensures the existence of the fixpoints.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 14 / 46

Fixpoint Reviewed

Let 7 : 2° — 2° be a monotonic function.

If S is finite and 7 is monotonic, then 7 is also U-continous and
M-continuous.

pQ.7(Q) =, 7'(False), i.e., uQ.7(Q) is the union of the
following ascending chain of approximations:

False C 7(False) C 7°(False) C --- C 7"(False) C - - -

vQ.7(Q) =N, 7' (True), i.e., vQ.7(Q) is the intersection of the
following descending chain of approximations:

True D 7(True) O 7°(True) D --- D 7"(True) D - - -

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 15 / 46

Naive Algorithm

1

O ~NO OB~ N

9
10
11
12
13
14

function Eval(f, e)

if f = pthenreturn {s|pc L(s)};
if f = Q then return ¢(Q);
if f = 81 /\g2 then
return Eval(gy, e) N Eval(g,e);
if f = gV e then
return Eval(gy, e) U Eval(g, e);
if f = (a)g then
return {s | 3t(s > t and t € Eval(g, e))};
if f = [a]g then
return {s | Vt(s > t implies t € Eval(g,e))};
if f=pQ.g(Q) then return Lfp(g, e, Q);
if f =vQ.g(Q) then return Gfp(g,e, Q);
end function

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 16 / 46

Naive Least Fixpoint Procedure

1 function Lfp(g, e, Q)

Qua1 < False;
repeat
Qo1a — Qua1;
Quar < Eval(g, e[Q < Qua1]);
until Qval - Qold;
return Q,.1;
end function

O ~NO o1~ W

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 17 / 46

Naive Greatest Fixpoint Procedure

1 function Gfp(g, e, Q)

Qa1 — True;
repeat
Qo1a — Qua1;
Quar < Eval(g, e[Q < Qua1]);
until Qval - Qold
return Q,.1;
end function

O ~NO o1~ W

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 18 / 46

A Run Sketch

Consider the calculation of 11Q;.g1(Q1, 1t Q2.82(Q1, @2)).
We start with the initial approximation Q% = False.

Compute the inner fixpoint starting from QS° = False until we
reach the fixpoint QJ“.

Q; is increased to Qf = g1(Q?, Q).

Compute the inner fixpoint starting from Q3% = False until we
reach the fixpoint Q3*.

Q; is increased to Q? = g1(Qf, Q3).

This continues until we reach the fixpoint Q5.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 19 / 46

A Run Sketch (cont.)

Summary of the calculation of 1Q;.g1(Q1, tQ2.82(Q1, @2)):

@ - F
= False = False; = g>(QY, Q3°);
@ - F
= g1(QY, Q%) = False; = g»(Qf, Q3°);
w— . w—2)0 w—2)1 w—2)w
' 2 (w=3) 2(| é) (w—2)0 Qé |
= &1(Q7 3, &) = False; = g(QF %, &),
w—1 (w—1)0 (w-1)1 . Q(w—l)w
! 2 Alw—2)w ? ? -1 lw—=1)0 :
= g1(Q° % Q) = False; = g(Q7 1, &),
QY
w— w—1)w
=g (@ Q)

Yih-Kuen Tsay (IM.NTU)

Model Checking p-Calculus

Automatic Verification 2019

20 / 46

Complexity Analysis

Let k be the maximum nesting depth of fixpoint operators.

The naive algorithm runs in O(|M| - |f| - n*) time, where M is
the Kripke structure and n the number of states. (Note: for
M= (S, T.L), [M| = |S|+ s |a] and n = |S])

The innermost fixpoint will be evaluated O(n*) times.

Each individual iteration takes O(|M]| - |f|) steps.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 21 / 46

NTU

Alternation Depth

Top-level v-subformula of f: a subformula ¥Q.g that is not
contained within any other greatest fixpoint subformula of f.
The top-level p-subformula of f is defined analogously.
The alternation depth of a formula f is the number of
alternations in the nesting of least and greatest fixpoints
(relative to a same variable) in f, denoted d(f):
d(p) = d(Q) = 0
d(f ng) = d(f Vv g) = max(d(f),d(g))
d((a)f) = d([a]f) = d(f)
d(pQ.f) = max(1,d(f), 1+ max({d(g) |
g is a top level v-subformula of f with Q as a free variable}))
d(vQ.f) = max(1,d(f),1 + max({d(g) |
g is a top level p-subformula of £ with Q as a free variable}))

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 22 / 46

IM ZZR\NTU

Alternation Depth (cont.) Wy
Examples:
d(pA[a]Q) =0
d(pQ.pVvi{a)Q) =1
d(vQi.(vQ2.(p A [a]@2)) A (a) Q1) =1
d(vQ.(n@-(pV (a)@Q)) A (a)Q1) =1
d(vQu.pQz.(p A (a)Q1) V (a)@2) = 2

Recall that, for a system with a single transition a and fairness
constraint k, the p-calculus formula corresponding to EG f is

vZ . FA@(Y . (ZAK)V(fA(3)Y)).

This formula has an alternation depth of two.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 23 / 46

A Better Algorithm

An algorithm by Emerson and Lei demonstrates that the value of
a fixpoint formula can be computed with O((|f| - n)9) iterations,
where d is the alternation depth of f.

The basic idea exploits sequences of fixpoints that have the
same type to reduce the complexity of the algorithm.

It is unnecessary to re-initialize computations of inner fixpoints
with False or True.

Instead, to compute a least fixpoint, it is enough to start
iterating with any approximation known to be below the fixpoint.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 24 / 46

Lemma 22

Let 7 : 2° — 2° be monotonic and S be finite.
If W C |, 7(False), then |J, 7/(W) = |, 7' (False).
Proof:

U; /(W) C U, 7'(False):

w C UiTi(False)
T(UiTi(Fa/SG)) = U’_ 7' (False)

A
2
N

\]
=
3
N

Ui 7! (False)

[
\‘~ .
3
N

U’_ 7' (False)

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 25 / 46

NTU

Lemma 22 (cont.)

U, 7' (False) C U, 7' (W):

False C W =1%(W)
T(False) C 1(W)
7"(False) < 7"(W)

. 7/(False) c U r(w)

So, to compute a least fixpoint, it is enough to start iterating
with any approximation below the fixpoint.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 26 / 46

A Better Run Sketch

Consider the calculation of 1 Q;.g1(Q1, tQ2.82(Q1, @2)).

We start with the initial approximation Q° = False.

When computing Q. we always begin with Qi° = Qéi_l)w.
Compute the inner fixpoint starting from ng = False until we
reach the fixpoint QJ9~.

Q1 is increased to Qil = gl(Q?, QS“’).
Compute the inner fixpoint starting from 0210 = Qg“ until we
reach the fixpoint Q3*.

Q1 is increased to Q7 = g1(Qf, Q3¥).

This continues until we reach the fixpoint Q5.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 27 / 46

A Better Run Sketch (cont.)
Summary of the calculation of uQ;.g1(Q1, tQ2.82(Q1, @2)):

a T o L oF
= False = False; = g(QY, @),
a v Qb oF
= g1(QY, 3~) = Q¥ =g(Qf, 0,
: w— : w—2)0 w—2)1 w—2)w
" (o-3) é()3) - 2) 20 e
=g1(Q7 3 Qw)— 2w v—g(Qlw Qw)i
w—1 (w—l)O (w 1)1 (w—l)w
' (w 2)w 2 (w—2)w w—1) (w—1)0 o ?
= g1 (Q¢ 2, V=@ ,—g(Ql , Q)
Q7
w— w—1
S po i)

—gz(Qp) Cg2(Qla)
= MQ2'g2(Qla Q) € MQz-gz(Qll» Q) =

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 28 / 46

Emerson-Lei Algorithm

1

O ~NO OB~ N

9
10
11
12
13
14

function EL-Eval(f, e)

if f = pthenreturn {s|pec L(s)};
if f = Q then return ¢(Q);
if f = 81 /\g2 then

return EL-Eval(gi, e) N EL-Eval(gy, e);
if f = gV e then

return EL-Eval(g, e) UEL-Eval(gp, e);
if f = (a)g then

return {s | 3t(s > t and t € EL-Eval(g,e))};
if f = [a]g then

return {s | Vt(s > t implies t € EL-Eval(g, e))};
if f=pQ;.g(Q;) then return EL-Lfp(g, e, Q;);
if f =vQ;.g(Q;) then return EL-Gfp(g, e, Q;);
end function

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 29 / 46

Emerson-Lei Algorithm (cont.)

The algorithm uses an array A[1..N] to store the approximations
to the fixpoints.

Initially, A[/] is set to False if the it fixpoint formula is a least
fixpoint and to True otherwise.

The approximation values A[i] are not reset when evaluating the
subformula 1Q; . g(@;) or vQ; . g(Q;).

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 30 / 46

NTU

Emerson-Lei Lfp

1 function EL-Lfp(g, e, Q;)

forall top-level greatest fixpoint subformulae v Q;.g'(Q;) of g
do A[j] «+ True;

repeat
Qoid < A[il;
A[i] < EL-Eval(g, e[Q; < A[{]]);

until A[i] = Qo

return A[/];

end function

O© 00 NO 1~ Wi

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 31/ 46

Emerson-Lei Gfp

—

function EL-Gfp(g, e, Q;)

forall top-level least fixpoint subformulae 1Q;.g"(Q;) of g
do A[j] + False;

repeat
Qoid < Alil;
A[i] < EL-Eval(g, e[Q; < A[{]]);

until A[i] = Qo

return A[f];

end function

O© 00 NO 1k~ WD

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 32 /46

Complexity Analysis

In the naive algorithm, the innermost fixpoint requires O(n*)
iterations, where k is the maximum nesting depth of fixpoint
operators.
The number of iterations of Emerson-Lei algorithm is
O((If] - n)).

|f| is an upper bound on the number of consecutive fixpoints of

the same type in f.

The number of iterations for each such sequence is O(|f] - n),
each fixpoint requiring at most n iterations.

With d alternating sequences, we have O((|f| - n)9) iterations.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 33 /46

Representing Formulae Using OBDDs

The domain S is encoded by the vector x.

Each atomic proposition p has an OBDD associated with it,
denoted OBDD,(X).

y € {0,1}" satisfies OBDD,, iff p € L(y).
Each transition a has an OBDD associated with it, denoted
OBDD,(X, X").

(v, 2) € {0,1}?" satisfies OBDD, iff (¥, Z) € a.
The environment is represented by a function assoc; assoc|[Q]

gives the OBDD corresponding to the set of states associated
with Q,‘.

assoc{@ < Bg) creates a new association by associating an
OBDD Bg with Q.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 34 / 46

Representing Formulae Using OBDDs (cont.)

The procedure B given below takes a p-calculus formula f and
an association list assoc and returns an OBDD corresponding to
the semantics of f.

B(p, assoc) = OBDD,(x)
B(Qj, assoc) = assoc[Qj]
B(—f, assoc) = —B(f, assoc)
(f N g, assoc) = B(f, assoc) A B(g, assoc)
(f Vv g, assoc) = B(f, assoc) V B(g, assoc)
((a)f, assoc) = Ix'(OBDD,(x,x") A B(f, assoc)(x"))
(
(
(

o W o

B([a]f, assoc) = B(—(a)—f, assoc)
B(uQ.f, assoc) = FIX(f, assoc, OBDDE,s.)
B(vQ.f, assoc) = FIX(f, assoc, OBDD 1y,)

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 35/ 46

Representing Formulae Using OBDDs (cont.) lM

1 function FIX(f, assoc, Bg)

bddresult — BQ;
repeat
bddold < bddresult;
bdd,esui: < B(f, assoc{Q < bddy));
until equal(bddo/d, bddres,_,/t)
return bdd,eq,:;
end function

O ~NO O~ W

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 36 / 46

An example

Let the state space S be encoded by n boolean variables

X1, X205+ oy Xn.

Let OBDD(X) be the interpretation for g.

The OBDD corresponding to the transition a is OBDD,(x, X").

Given an association list assoc that pairs the OBDD By (x) with
Y.

Consider the following formula:

f=uZ. ((gAY)V(a)2Z)

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 37 / 46

ANTU

An example (cont.)

In the execution of FIX, bdd,es,; is initially set to:

N°(X) = OBDDF,se.
At the end of the i-th iteration, the value of bdd,es,; is given by:
N™1(X) = (OBDD4(X) A By(x)) V 3 (OBDD,(%,x') A N'(X')).

The iteration stops when N'(x) = N'1(X).

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 38 / 46

ANTU

Translating CTL into the p-Calculus

Consider systems with just one transition a.

The algorithm Tr takes as its input a CTL formula and outputs
an equivalent p-calculus formula:

Tr(p) p

Tr(~f) = ~Tx(f)

Tr(f A g) = Tr(f) A Tx(g)

Tr(EX f) = (a >Tr(f)

Tr(E[f U g]) = nY.(Tr(g) V (Tr(f) A (a)Y))
Tr(EG f) =vY. (r(f)A{(a)Y)

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 39 / 46

Translating CTL into the ;-Calculus (cont.)

Example:

Tr(EG E[p U q])
= vY.(Tr(E[p U q]) A (a >;/

)
= vY.(uZ(qV (pA(a)Z)) A(a)Y)

Any resulting p-calculus formula is closed.

We can omit the environment e from the translation.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 40 / 46

NP

and co-NP

We will see model checking p-calculus is in NP N co-NP.

A language L is in NP if there exists a polynomial-time
nondeterministic algorithm M such that:
if x € L, then M(x) = "yes" for some computation path, and
if x ¢ L, then M(x) = “no” for all computation paths.
A language L is in co-NP if there exists a polynomial-time
nondeterministic algorithm M such that:
if x € L, then M(x) = "yes" for all computation paths, and
if x ¢ L, then M(x) = “no” for some computation path.

co-NP = {L| L € NP}.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 41 / 46

Relations between P, NP, and co-NP

Current consensus (still open):
P # NP
NP # co-NP
P £ NP N co-NP
If an NP-complete problem is in co-NP, then NP = co-NP.
Suppose L is an NP-complete problem that is also in co-NP.
Let NTM M decide L.
For any L’ € NP, there is a reduction R from L’ to L.
L’ € co-NP as it is decided by NTM M(R(-)).
Hence NP C co-NP.
The other direction co-NP C NP is symmetric.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 42 / 46

Complexity of Model Checking u-Calculus

Problem: Given a finite model M, a state s, and a p-calculus
formula f, does M, s |= f?

Best known upper bound for this problem is NP N co-NP.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 43 / 46

Model Checking p-Calculus Is in NP

Consider the following nondeterministic algorithm:

Guess the greatest fixpoints and compute the least fixpoints by
iteration.

The guess for a greatest fixpoint is checked to see that it really
is a fixpoint.

Finally, check if the resulting set contains the given state.

The greatest fixpoint must contain any verified guess.

By monotonicity, this nondeterministic algorithm computes a
subset of the real interpretation of the formula.

There is a run of the algorithm which calculates the set of states
satisfying the p-calculus formula.

Consequently, the problem is in NP.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 44 / 46

Model Checking p-Calculus Is in co-NP

Recall that co-NP = {L | L € NP}.
Consider the following nondeterministic algorithm:

Negate the input formula.
® Apply the algorithm on the previous slide.

Consequently, the problem is in co-NP.
Hence, the problem is in NP N co-NP.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 45 / 46

Open Problem

Open Problem: Is there a polynomial model checking algorithm
for the p-calculus?

It is a long standing open problem.
Clarke et al. conjecture NO in the book.

If the problem was NP-complete, then NP = co-NP, which is
believed to be unlikely.

This suggests that it would be very difficult to prove the
conjecture.

Yih-Kuen Tsay (IM.NTU) Model Checking p-Calculus Automatic Verification 2019 46 / 46

	Introduction
	The Propositional Mu-Calculus
	Evaluating Fixpoint Formulae
	Representing Mu-Calculus Formulae Using OBDDs
	Translating CTL into the Mu-Calculus
	Complexity Considerations

