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Boolean Satisfiability Problem(SAT Problem)

Given a Boolean formula, find a assignment such that the function
evaluates to 1, or prove that no such assignment exists (UNSAT).

EX. F = (a ∨ b) ∧ (ā ∨ b̄ ∨ c)
This function is SAT when a = 1, b = 1, c = 1
EX. F = (a) ∧ (ā ∨ b) ∧ (ā ∨ b̄)
This function is UNSAT

For n variables, there are 2n possible truth assignments to be checked.

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1

First proved NP-Complete problem.

S. A. Cook, The complexity of theorem proving procedures,
Proceedings, Third Annual ACM Symp. on the Theory of Computing,
1971.
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Bolean Reasoning

The central idea in Boolean reasoning, first given by Boole, is to
reduce a given system of logical equations, and then to carry out the
desired reasoning on that equation.

e.g. Model checking A |= f : L(A) ∩ L(B¬f ) = ∅
Fundamental tradeoff

canonical data structure (e.g. truth table, ROBDD)

data structure uniquely represents function
decision procedure is trivial(pointer comparison, DFS)
size of data structure is in general exponential

item non-canonical data structure (e.g. AIG, CNF)

size of data structure is in general linear
systematic search for for satisfying assignment
decision may take an exponential amount of time
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Boolean Satisfiability Solvers

Boolean SAT solvers have been very successful recent years in the
verification area, due to various nice heuristics

Support up to 10k variables, much more scalable than BDDs
Applications: equivalence checking and model checking
Applicable even for million-gate designs in EDA

Popular SAT Solvers

MiniSat (2008 winner, the most popular one)
CryptoMiniSat (2011 winner)
glucose
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Conjunctive Normal Form (CNF)

A Boolean formula is represented as a CNF (i.e. Product of Sum).

Linear structure for lots of variables and easy to add extra constraints

Literal is a variable or its negation.

CNF formula is a conjunction of clauses, where a clause is a
disjunction of literals.

For example:
(a ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c)

Variable: a, b, c in this CNF formula.
Literals: ā, b̄, c are literals in (ā ∨ b̄ ∨ c).
Clauses: (a ∨ b ∨ c), (ā ∨ b̄ ∨ c) are clauses in this CNF formula.
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The Timeline of the SAT Solver
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CNF-Based SAT Algorithms

Davis-Putnam (DP), 1960.

Explicit resolution based
May explode in memory

Davis-Putnam-Logemann-Loveland (DPLL), 1962.

Search based
Most successful, basis for almost all modern SAT solvers

GRASP, 1996

Conflict driven learning and non-chronological backtracking

zChaff, 2001.

Efficient Boolean constraint propagation (BCP) algorithm
(two watched literals)
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Davis-Putnam Algorithm

M.Davis, H.Putnam, ”A computing procedure for quantification
theory” J. of ACM, 1960

By repeating three satisfiability-preserving rules:

Unit propagation rule
Pure literal rule
Resolution rule

eventually obtain:

⊥ ∈ F indicates UNSAT
F = > (a formula with no clauses indicates SAT)
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DP Algorithm

DP Pseudo Code

Function DP(F , A)
forever

if ⊥ ∈ F then

return UNSAT;

if F = > then

return SAT;

A ← Unit − Propagation(F , A);
A ← Pure − Literal(F , A);
A ← Resolution(F , A);
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Unit Propagation Rule

Suppose (a) is a unit clause, i.e. a clause contains only one literal.

Remove any instances of ā from the formula.
Remove all clauses containing a.

Example:

(a) ∧ (ā ∨ b ∨ c) ∧ (a ∨ b̄ ∨ c) ∧ (ā ∨ c̄ ∨ d)
≈ (b ∨ c) ∧ (c̄ ∨ d)
(a) ∧ (a ∨ b) ≈ satisfiable
(a) ∧ (ā) ≈ ( ) unsatisfiable
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Pure Literal Rule

If a literal appears only positively or only negatively, delete all clauses
containing that literal.

Example:
(ā ∨ b ∨ c) ∧ (ā ∨ b̄ ∨ c) ∧ (b̄ ∨ c ∨ d) ∧ (ā ∨ c̄ ∨ d̄)
≈ (b̄ ∨ c ∨ d)
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Resolution Rule

For a single pair of clauses, (a ∨ l1 ∨ · · · ∨ lm) and (ā ∨ k1 ∨ · · · ∨ kn),
resolution on a forms the new clause (l1 ∨ · · · ∨ lm ∨ k1 ∨ · · · ∨ kn).

Example:
(a ∨ b) ∧ (ā ∨ c) ≈ (b ∨ c)

If a is True, then for the formula to be True, c must be True.
If a is False, then for the formula to be True, b must be True.
So regardless of a, for the formula to be True, b ∨ c must be True.
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Resolution Rule (cont.)

Choose a propositional variable p which occurs positively in at least
one clause and negatively in at least one other clause.

Let P be the set of all clauses in which p occurs positively.

Let N be the set of all clauses in which p occurs negatively.

Replace the clauses in P and N with those obtained by resolving each
clause in P with each clause in N.
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Example 1

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (c ∨ d) ∧ (ā ∨ c̄) ∧ (d)

(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(a) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

(c) ∧ (c̄)

( )

KS
Unit Propagation Rule
��

%%
Resolution Rule

zz

KS
Unit Propagation Rule
��

��
Resolution Rule

��
Unsatisfiable
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Example 2

Solve (a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)

Wrong resolution:
(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄) Use resolution rule
≈ (b ∨ c) ∧ (b̄ ∨ c̄) Use resolution rule
≈ (c ∨ c̄) No rule can be used and no clause is empty!
≈ SAT → Wrong result!

We have to resolve each clause in P with each clause in N.

Correct resolution:

Choose a to do resolution
P = {(a ∨ b), (a ∨ b̄)}
N = {(ā ∨ c), (ā ∨ c̄)}
R = {(b ∨ c), (b ∨ c̄), (b̄ ∨ c), (b̄ ∨ c̄)}
(a ∨ b) ∧ (a ∨ b̄) ∧ (ā ∨ c) ∧ (ā ∨ c̄)
≈ (b ∨ c) ∧ (b ∨ c̄) ∧ (b̄ ∨ c) ∧ (b̄ ∨ c̄) Replace P, N with R!
≈ ...

Potential memory explosion problem (n → n2/4)
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DPLL Algorithm

M. Davis, G. Logemann and D. Loveland, “A Machine Program for
Theorem-Proving”, Communications of ACM, 1962. (New York
Univ.)

The basic framework for many modern SAT solvers.

Main strategy

Decision Making
Unit Clause Rule
Implication
Conflict Detection
Backtracking
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DPLL Algorithm

DPLL Pseudo Code

Function DPLL(F, A)

A ← Unit − Propagation(F , A);
if A is inconsistent then

return UNSAT;

if A assigns a value to every variable then

return SAT;

v ← a variable not assigned a value by A;
if DPLL(F , A ∪ { v = False }) = SAT

return SAT;

else

return DPLL(F , A ∪ { v = True });

a

b b

c c c c

0 1

0 0

00 001

1 1

1 1 1
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Boolean Constraint Propagation(a.k.a. Unit Propagation)

Iteratively apply the unit clause rule until there is no unit clause
available.

Unit clause rule

A rule for elimination of one-literal clauses
An unsatisfied clause is a unit clause if it has exactly one unassigned
literal.
The only unassigned literal, e.g. c̄ , is implied.

Workhorse of DPLL based algorithms.
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Basic DPLL Procedure - DFS
Caution: The graph on the right is drawn for the purpose of lecture. It is
not seen in the algorithm implementation.

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a
0

⇐Decision
zz
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph

a

b

0
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0
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Implication Graph
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b

0
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c

0

��

⊥
0
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a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)
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Implication Graph
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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Basic DPLL Procedure - DFS
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(ā∨b̄∨c) //

::
(b̄∨c̄∨d) //

44
ks

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 44 / 106



Features of DPLL

Eliminate the potential memory explosion of DP

Exponential time is still a problem

Very limited size of problems are allowed

32K word memory
Problem size limited by total size of clauses (about 1300 clauses)
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GRASP

Marques-Silva and Sakallah [SS96,SS99] (Univ. of Michigan)

J. P. Marques-Silva and K. A. Sakallah, ”GRASP – A New Search
Algorithm for Satisfiability”, Proc.ICCAD, 1996.
J. P. Marques-Silva and Karem A. Sakallah, ”GRASP: A Search
Algorithm for Propositional Satisfiability”, IEEE Trans. Computers,
1999.

Incorporate conflict driven learning and non-chronological
backtracking.

Practical SAT problem instances can be solved in reasonable time.
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SAT Improvements

Conflict driven learning

Once we encounter a conflict, figure out the cause(s) of this conflict
and prevent to see this conflict again.
Add learned clause (conflict clause) which is the negative proposition of
the conflict source.

Non-chronological backtracking

After getting a learned clause from the conflict analysis, we backtrack
to the “next-to-the-last” variable in the learned clause.
Instead of backtracking one decision at a time.
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Conflict Driven Learning

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 49 / 106



Conflict Driven Learning

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c) Learned clause

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#
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Non-Chronological Backtracking
(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c) Learned clause

a

b

0

zz

c

0

��

⊥
0
��

⇐ Backtrack

‘a’ is the next-to-the-last variable in the (current) learned clause.
c is the last (assigned) variable in this learned clause so a is called the
next-to-the-last variable
Because of this learned clause, when a is assigned 0 then c will be
implied and we don’t have to make decision for c

After doing non-chronological backtracking, we will not forgive the
path a = 0, b = 0... if needed.
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

Conflict source

a
0

zz

a = 0 c = 1

d = 1

d = 0

(a∨c) //

a∨c̄∨d
++

a∨c̄∨d̄ 33

44

**

KS

Conflict

��

+3
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a) Learned clause

Since there is only one variable in the learned clause, no one is the
next-to-the-last variable.

Backtrack all decisions
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a)

Conflict source

b
0

⇐Decision
zz

a = 1

b = 0

c = 1

c = 0

(ā∨b∨c) //

$$(ā∨b∨c̄) //

:: KS

Conflict

�� (
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Non-Chronological Backtracking

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)
(a ∨ c)

(a)

(b) Learned clause

SATa = 1

b = 1

c = 1 d = 1
(ā∨b̄∨c) //

::
(b̄∨c̄∨d) //

44
ks
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More on Implication Graph

How to determine the conflict source?

(ā ∨ b ∨ c)

(a ∨ c ∨ d)

(a ∨ c ∨ d̄)
(a ∨ c̄ ∨ d)

(a ∨ c̄ ∨ d̄)

(b̄ ∨ c̄ ∨ d)
(ā ∨ b ∨ c̄)

(ā ∨ b̄ ∨ c)

Conflict source

a

b

0

zz

c

0

��

⊥
0
��

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

;C

�#
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More on Implication Graph (cont.)

How to determine the conflict source?

We need to find a Cut on the Implication Graph, such that every path
from the decision nodes to the conflict nodes must pass through it.

Decision nodes are the variables assigned to value in each decision
process
Implication nodes are the variables assigned to value by implication
Conflict nodes are where the conflict shows up

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 57 / 106



More on Implication Graph(cont.)

Take all decision nodes to form a cut (technique used by Rel Sat, [R.
Bayardo R. Shrag, 1997])

In this case, the cut consists of a=0 c=0.

a = 0

c = 0

d = 1

d = 0

(a∨c∨d) //

$$(a∨c∨d̄) //

:: KS

Conflict

��
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Unique Implication Point(UIP)

Taking all decision nodes to form a cut may result in less valuable
learnt clause.

How about learning a clause that is close related to the conflict?

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄ )

(d̄ ∨ h ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<
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Unique Implication Point(UIP)

A UIP is any node at the current decision level (@4) such that any
path from decision variable (a=0@4) to the conflict nodes must pass
through it.

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄ )

(d̄ ∨ h ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<
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Unique Implication Point(UIP)

First-UIP Learning Scheme: used by MiniSAT and zChaff

Set the cut right before the first UIP is encountered on the path
leading from the conflict nodes.

(a ∨ b)

(a ∨ c ∨ g)

(b̄ ∨ c̄ ∨ d)

(d̄ ∨ e ∨ h)

(d̄ ∨ f ∨ i)

(ē ∨ f̄ )

(d̄ ∨ h ∨ i)
(h ∨ d ∨ i)

h = 0@2

b = 1@4 e = 1@4

a = 0@4 d = 0@4 e = 0@4

c = 1@4 f = 0@4

g = 0@1 i = 0@3

c4

""

c1
<<

c3

""
c4

<< ^f
Conflict

�&

c2

""
c3

<<
c5

""
c6

<<

c2
<<

c5
<<
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What’s the big deal?

We can know learn the related clause to each conflict we encountered.

Significantly prune the search space because learned clause is useful
forever!

x2

x1

x4

x3

x4

x3

x5x5x5x5

Conflict clause: x1’+x3+x5’

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 62 / 106



Search Completeness

With conflict driven learning, SAT search is still guaranteed to be
complete.

SAT search becomes a decision stack instead of a binary decision tree.

When encountering a conflict, the conflict analysis does the following
tasks:

Learned clause
Indicate where to backtrack
Learned implication
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SAT Becomes Practical

Conflict driven learning greatly increases the capacity of SAT solvers
(several thousand variables) for structured problems.

Realistic applications became plausible.

Usually thousands and even millions of variables
Typical EDA applications can make use of SAT including circuit
verification, FPGA routing and many other applications

Research direction changes towards more efficient implementations.
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zChaff

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik,”Chaff:
Engineering an Efficient SAT Solver” Proc. DAC 2001. (UC Berkeley,
MIT and Princeton Univ.)

Make the core operations fast.

After profiling, the most time-consuming parts are Boolean Constraint
Propagation (BCP) and Decision.

As always, pruning search space (i.e. conflict driven learning) is
important.
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BCP Algorithm

When can BCP (Unit propagation, implication) occur ?

All literals but one are assigned to False in a clause.

The implied cases of (v1 ∨ v2 ∨ v3) :

(0 ∨ 0 ∨ v3) or (0 ∨ v2 ∨ 0) or (v1 ∨ 0 ∨ 0)

For an N-literal clause, this can only occur after N − 1 literals have
been assigned to False.
So, (theoretically) we could completely ignore the first N − 2
assignments to this clause.
Two watched Literals:
In reality, we pick two literals in each clause to ”watch” and thus can
ignore any assignments to the other literals in the clause.
This is not a pruning technique, but saves time while performing BCP.
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BCP Algorithm

Heuristically start with watching two unassigned literals in each
clause.

When one of the two watched literals is assigned True, this clause
becomes True.

When one of the two watched literals is assigned False, we send the
clause into an Update-Watch queue to do one of the followings:

1. Updating (there exists another unassigned literal)
2. BCP (only one watched literal unassigned)
3. Conflict handling (all literals are False)

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 68 / 106



BCP Algorithm

Initially, pick any two literals in each clause as the watched literals.

Green: watched literals

Clauses with only one literal are detected at the mean time.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending :
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BCP Algorithm

We begin by processing the assignment v1 = F

Implied by the unit clause v1

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :
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BCP Algorithm

Need not process clauses where watched literals are set to True.

Because those clauses are now satisfied.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2

⇒ v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :
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BCP Algorithm

Need not process clauses where neither watched literal is assigned.

Because those clause are definitely not a unit clause.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :
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BCP Algorithm

Only examine clauses where a watched literal is set to False due to
the assignment.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒ v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3

⇒ v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒ Pending :
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BCP Algorithm

For the second clause, we replace v1 with v3 as a new watched literal
because v3 is not assigned to False.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒ v1 ∨ v2 ∨ v3 =⇒ v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending :

=⇒

Pending :
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BCP Algorithm

The third clause is a unit clause.

We record the new implication of v2, and add it to the queue of
assignments to process.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒

v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3
⇒ v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

State : v1 = F

, v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending : (v2 = F )
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BCP Algorithm

Next, for v2, only the first two clauses are examined.

For the first clause, replace v2 with v4 as a new watched literal.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5 =⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒ v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F

,

v3 = F

, v4 = T

State : v1 = F , v2 = F

,

v3 = F

, v4 = T

Pending : =⇒ Pending : (v3 = F )
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BCP Algorithm

Next, for v3, only the first clause is examined.

For the first clause, replace v3 with v5 as a new watched literal.
Since there are no pending assignments, and no conflict,
BCP terminates and we make a decision. Both v4 and v5 are
unassigned. Let’s say we assign v4 = True and proceed.

⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5 =⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

⇒

v1 ∨ v2 ∨ v3

=⇒

v1 ∨ v2 ∨ v3

⇒

v1 ∨ v2 v1 ∨ v2

⇒

v1 ∨ v4 v1 ∨ v4

v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F ,

v3 = F

, v4 = T

State : v1 = F , v2 = F ,

v3 = F

, v4 = T

Pending :

=⇒

Pending :
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BCP Algorithm

Next, for v4, all clauses are satisfied.

Depend on implementation, it may continue and assign value to v5.

The instance is SAT, and we are done.

⇒

v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5

=⇒ v2 ∨ v3 ∨ v1 ∨ v4 ∨ v5
⇒

v1 ∨ v2 ∨ v3

=⇒ v1 ∨ v2 ∨ v3
⇒

v1 ∨ v2

v1 ∨ v2
⇒

v1 ∨ v4

v1 ∨ v4
v1←−−−−−−−−− Detect unit clause

State : v1 = F , v2 = F ,

v3 = F , v4 = T

State : v1 = F , v2 = F ,

v3 = F , v4 = T

Pending :

=⇒ Pending :

Shao-Wei Chu (GIEE.NTU) Satisfiability Solving and Tools Fall 2019 69 / 106



BCP Algorithm Summary

During forward progress: Decisions and Implications

Only need to examine clauses where watched literal is set to F
Can ignore any assignments of literals to T
Can ignore any assignments of non-watched literals

During backtrack: Unwind Assignment Stack

No action is required at all to unassigned variables
But it is computation-intensive part in SATO (SATO: an Efficient
Propositional Prover. Hantao Zhang*. Department of Computer
Science. The University of Iowa. Iowa City, IA 52242-1419, USA)

Overall minimize clause access
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Make Decision

Because we want to prove that the target Boolean formula is
satisfiable or not, we should start with guessing the state (True or
False) of a variable until the proof is done.

Some strategy:

Random
Dynamic Largest Individual Sum (DLIS)
Variable State Independent Decaying Sum (VSIDS)
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RAND and DLIS

Random

Simply select an unassigned variable and a value randomly
for the next decision.

Dynamic Largest Individual Sum (DLIS)

At each decision simply choose the assignment that satisfies
the most unsatisfied clauses.
Simple and intuitive.
However, considerable work is required to maintain the statistics.
The total effort required is much more than the effort for the BCP
algorithm in zChaff.
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VSIDS

Variable State Independent Decaying Sum (VSIDS)

Each variable in each polarity has a counter which is initialized to zero.
When a new clause is added to the database, the counter associated
with each literal in this clause is incremented.
The (unassigned) variable and polarity with the highest counter is
chosen at each decision.
Ties are broken randomly by default configuration.
Periodically, all the counters are divided by a constant.
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VSIDS (cont.)

VSIDS attempts to satisfy the conflict clauses but particularly
attempts to satisfy recent learned clauses.

Difficult problems generate many conflicts (and therefore many
conflict clauses), the conflict clauses dominate the problem in terms
of literal count.

Since it is independent of the variable state, it has very low overhead.

The average rum time overhead in zChaff:

BCP: about 80%
Decision: about 10%
Conflict analysis: about 10%
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BerkMin

E. Goldberg, and Y. Novikov, ”BerkMin: A Fast and Robust
Sat-Solver”, Proc. DATE 2002. (Cadence Berkeley Labs and
Academy of Sciences in Belarus)

BerkMin tries to satisfy the most recent clause.

The clause database is organized as a stack.

The clauses of the original Boolean formula are located at the bottom
of the stack and each new conflict clause is added to the top of the
stack.

The current top clause is the an unsatisfied clause which is the closest
to the top of the stack.

When making decision, choose the most active unassigned variable in
the current top clause by using VSIDS.
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Restart Motivation

Best time to restart:
when algorithm spends too much time under a wrong branch
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Restart

Motivation: avoid spending too much time in “bad” branches.

no easy-to-find satisfying assignment
no opportunity for fast learning of strong clauses.

All modern SAT solvers use a restart policy.

Following various criteria, the solver is forced to backtrack to level 0.
Abandon the current search tree and reconstruct a new one.
The clauses learned prior to the restart are still there after the restart
and can help pruning the search space.

Restarts have crucial impact on performance.

Reduce variance - increase robustness in the solver.
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The Basic Measure for Restarts

All existing techniques use the number of conflicts learned as of the
previous restart.

The difference is only in the method of calculating the threshold.
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Restarts strategies
Arithmetic (or fixed) series

Used in Berkmin, Eureka, zChaff, Siege

Geometric series
Used in Minisat 2007
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Restarts strategies

Inner-Outer Geometric series

Used in Picosat
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Other Issues

Incremental SAT
Take apart the clause database.

Solve the first part and record the learned information.
If it is UNSAT, then stop.
If it is SAT, then add the next part to solve.
And so on...

Add Constraints according to the previous results

Since relevant learnt clauses are preserved, we speed up the later
exploration.
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Other Issues

Reducing Learnt Clause

Large CNF can result in large amount of learnt clauses, and some of
them may not be useful until later
They slow down BCP

Remove learnt clauses periodically

Keep a certain number of learnt clauses
Minisat removes half of the learnt clauses if the number of clauses
reaches threshold (which grows geometrically)
Glucose keeps short learnt clauses forever, but removes long ones if if
the number of clauses reaches threshold (which grows arithmetically)
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Other Issues

Refutation proof, i.e., proof of UNSAT (Ex.Resolution Proof)

Parallel computation

Memory management

etc...
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SAT competitions

From March to June

The international SAT Competitions (Starting from 2002)
http://www.satcompetition.org/

Three main categories of benchmarks:
Application(Industrial), Hard Combinatorial(Crafted), Random
Three Evaluation in each category:
SAT, UNSAT, ALL(SAT + UNSAT)
Separate sequential and parallel since 2011

SAT-Race (2015, 2010, 2008, 2006)
http://baldur.iti.kit.edu/sat-race-2015/

SAT Challenge 2012
http://baldur.iti.kit.edu/SAT-Challenge-2012/
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Famous SAT Solvers

MiniSat, http://minisat.se/

Silver in 2005, Gold in 2006 and 2008
Well-known for its compact and simple implementation
Originally only 600 lines of C code in total
but contains most algorithms mentioned in the slide!!
A category since 2009 called Minisat Hack

SATzilla, http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

Gold in 2007, 2009, and 2012
Evaluate the problem instance first
Select an appropriate solver to solve
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Famous SAT Solvers

ppfolio, http://www.cril.univ-artois.fr/˜roussel/ppfolio/

Win a total of 16 medals in 2011
Assign cores to the five solvers in use.

Winners of recent years

glucose, http://www.labri.fr/perso/lsimon/glucose/
Lingeling, http://fmv.jku.at/lingeling
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The Usage of the MiniSat (Static Build)

MiniSat Page: http://minisat.se/

The newest version: 2.2.0

Use MiniSat to find a solution of F = (x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2).

Go to MiniSat Page to download it.
Tar the .gz file tar -zxvf minisat-2.2.0.tar.gz
Change to directory “core” cd core
Modify path export MROOT=../
Make and compile in directory “core” make
Build DIMACS CNF file for problem you want to solve
http://www.satcompetition.org/2009/format-benchmarks2009.html
Run the minisat to solve problem ./minisat CnfFileName
ResultFileName
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DIMACS CNF Format

It is a standard format for the input files (CNF files) of SAT solvers.

Use c to write comments
Start with p cnf VarialbeNumber ClauseNumber
Write the clause with integer(with/without “-”) for representing the
literals
Use “0” to mark the end of a clause

Example: (x0 ∨ x1 ∨ x2) ∧ (x1 ∨ x2)
c this is a simple DIMACS cnf, use 1, 2, 3 for x0, x1, x2 respectively
p cnf 3 2
1 2 3 0
-2 3 0

What if we want yet another solution?
Add block clauses and solve again!
Problem: starting from scratch, file I/O
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The Usage of the MiniSat (C++ API)

MiniSat Page: http://minisat.se/

MiniSat fork with CMake Integration:
https://github.com/master-keying/minisat/

MiniSat provides elegant c++ API
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The Usage of the MiniSat (C++ API)

Usage

Unzip the package unzip minisat-master.zip
Build minisat to target directory (If you would like a static build of
MiniSat, do not build under the recent directory because of naming
alias) cmake -S . -B path
Make and compile minisat build make
Write your code(details in later slides) vim main.cpp
Provide CMakeLists.txt(details in later slides vim CMakeLists.txt
Make and compile your program cmake; make; ./demo
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API Usage

Solver.h class Solver

newVar(bool polarity, bool dvar)
addClause(vec< Lit > ps)
addClause(Lit p)
addEmptyClause()
simplify()
solve()

Your program

Construct Solver Solver s;
Add all constraints(clauses) s.addClause(ps)
solve s.solve();
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CMake Guide

Trivial CMakeList.txt

Identify CMake version
cmake minimum required(VERSION 3.5)
Project name
project (projectname LANGUAGES CXX)
Include all codes
add executable(exename main.cpp)
Add subdirectory
add subdirectory(dir)
Link to libminisat.a
target link libraries(exename MiniSat::libminisat)

Of course, you can build on your own, but the previous five lines is
enough for now.
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Demo 1 - Simple case

Solve (A ∨ B ∨ C ) ∧ (Ā ∨ B ∨ C ) ∧ (A ∨ B̄ ∨ C ) ∧ (A ∨ B ∨ C̄ )

What if we need more than one solution? Add code!
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Demo 2 - Equivalence Checking

Check if the two circuits in the yellow boxes are equivalent?
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How to write CNF for circuits?
Tseytin transformation

A→ B (Ā ∨ B)

A↔ B (Ā ∨ B) ∧ (A ∨ B̄)
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Equivalence Checking

Miter: Link the output of the two circuits with an XOR

If the circuits are equivalent, signal O should always be False.

By asserting O as a unit clause, the CNF formula should be UNSAT if
the circuits are equivalent.
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Optional: Bounded Model Checking

We want to check property AG(p) for a given sequential circuit. See
whether it has bugs!
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Optional: Timeframe Expansion Model

Iterative timeframe expansion model: sequential SAT becomes a
combinational problem.

Comb. 
ckt 

Comb. 
ckt 

Comb. 
ckt 

FF FF 

PI PI PI 

PO PO PO 

Initial 
States 

P P !P 
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Optional: BMC Algorithm

Let C be the set of constraints on the combinational circuit

For an iterative model that unfolds the circuit for n times, let Ci

correspond to the i-th iteration of the circuit constraint(0 5 i 5 k−1)

Let I0 be the initial state value

Let P be the property to prove

Following is the BMC algorithm:

BMC(P)

Let k=1
loop:

if (SAT(I0 ∧ C0 ∧ ... ∧ Ck−1∧!Pk−1))
return Find a counter-example at time (k-1)

k=k+1
go to loop
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Optional: BMC Algorithm

In other words ...

Comb. 
ckt 

Comb. 
ckt 

Comb. 
ckt 

FF FF 

PI PI PI 

PO PO PO 

Initial 
States 

P P !P 

Comb. 
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SAT 
Cex @ t0 

Comb. 
ckt 

Comb. 
ckt 

FF FF 

PI PI 

PO PO 

Initial 
States 

P !P 

UNSAT 

SAT 
Cex @ t1 

UNSAT 
UNSAT 

SAT 
Cex @ t2 

Continued for t3 
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Solving Various Problems

We now know how to use SAT.

For many NP problems, SAT is a powerful tool. All you need is to
develop proper SAT formulation, i.e. encoding your constraints into
CNF formula

Small Toy: online CNF generators
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