

Temporal Logic Model Checking (Based on [Clarke et al. 1999])

Yih-Kuen Tsay

Dept. of Information Management National Taiwan University

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 1 / 50

イロト イポト イヨト イヨト

About Temporal Logic

- Temporal logic is a formalism for describing temporal ordering (or dependency) between occurrences of "events" (represented by propositions).
- It provides such expressive features by introducing temporal/modal operators into classic logic.
- These temporal operators usually do not explicitly mention time points.
- There are two principal views of the structure of time:
 inear-time: occurrences of events form a sequence
 - branching-time: occurrences of events form a tree

・ロト ・得ト ・ヨト ・ヨト 三日

Outline

훳 Temporal Logics

- CTL* (generalized Computation Tree Logic)
- CTL (Computation Tree Logic; subset of CTL*)
- LTL (Linear Temporal Logic; subset of CTL*)
- 😚 Fairness
- 📀 Algorithmic Temporal Logic Verification
 - 👏 CTL Model Checking
 - 🔅 LTL Model Checking
 - 🌻 CTL* Model Checking

イロト 不得下 イヨト イヨト

CTL*

- CTL* formulae describe properties of a computation tree (generated from a Kripke structure).
- They are composed of path quantifiers and temporal operators.
- 😚 Path quantifiers:
 - 👏 E (for some path)
 - 🏓 🗛 (for all paths)
- Temporal operators:
 - 🏓 🗙 (next)
 - F (eventually or sometime in the future)
 - 🖲 G (always or globally)
 - 🖲 **U** (until)
 - 🏓 R (release)

イロト イポト イヨト イヨト

Syntax of CTL*

- Let AP be a set of atomic propositions.
- 😚 The syntax of state formulae:
 - is a state formula. $p \in AP$, then p is a state formula.
 - * If f_1 and f_2 are state formulae, then so are $\neg f_1$, $f_1 \lor f_2$ and $f_1 \land f_2$.
 - If g is a path formula, then **E**g and **A**g are state formulae.
- Substitution The syntax of path formulae:
 - If f is a state formula, then f is also a path formula.
 - If g_1 and g_2 are path formulae, then so are $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Fg_1 , Gg_1 , $g_1 U g_2$, and $g_1 R g_2$.

CTL* is the set of state formulae generated by the above rules.

- Formula: AG(Req → AFAck). Intended meaning: every request will eventually be granted.
- Formula: AG(EFRestart). Intended meaning: it is always possible at any time to get to the Restart state.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kripke Structures

- Let AP be a set of atomic propositions.
- A *Kripke structure* M over AP is a tuple (S, S_0, R, L) :
 - S is a finite set of states,
 - ${\statestimes}~S_0\subseteq S$ is the set of initial states,
 - \circledast $R \subseteq S imes S$ is a total transition relation, and
 - * $L: S \rightarrow 2^{AP}$ is a function labeling each state with a subset of propositions (which are true in that state).
- A computation or path π of M from a state s is an infinite sequence s_0, s_1, s_2, \cdots of states such that $s_0 = s$ and $(s_i, s_{i+1}) \in R$, for all $i \ge 0$.
- In the sequel, π^i denotes the *suffix* of π starting at s_i .

Semantics of CTL*

- When f is a state formula, $M, s \models f$ means that f holds at state s in the Kripke structure M.
- When f is a path formula, $M, \pi \models f$ means that f holds along the path π in the Kripke structure M.
- Assuming that f_1 and f_2 are state formulae and g_1 and g_2 are path formulae, the semantics of CTL* is as follows:

$$\begin{array}{l} \bullet & M, s \models p \Longleftrightarrow p \in L(s) \\ \bullet & M, s \models \neg f_1 \Longleftrightarrow M, s \nvDash f_1 \\ \bullet & M, s \models f_1 \lor f_2 \Longleftrightarrow M, s \models f_1 \text{ or } M, s \models f_2 \\ \bullet & M, s \models f_1 \land f_2 \Longleftrightarrow M, s \models f_1 \text{ and } M, s \models f_2 \\ \bullet & M, s \models \mathbf{E}g_1 \iff \text{for some path } \pi \text{ from } s, M, \pi \models g_1 \\ \bullet & M, s \models \mathbf{A}g_1 \iff \text{for every path } \pi \text{ from } s, M, \pi \models g_1 \\ \end{array}$$

Yih-Kuen Tsay (IM.NTU)

Semantics of CTL* (cont.)

Yih-Kuen Tsay (IM.NTU)

Minimalistic CTL*

- The operators ∨, ¬, X, U, and E are sufficient to express any other CTL* formula (in an equivalent way).
- 📀 In particular,
 - 🌻 **F**f = true **U** f

$$\mathbf{I}$$
 G $f = \neg \mathbf{F} \neg f$

$$f \mathbf{R} g = \neg (\neg f \mathbf{U} \neg g)$$

- \bullet **A** $f = \neg$ **E** \neg f
- $\neg(\neg f \cup \neg g)$ says that it is not the case that in some state g becomes *false* and until then f has never been *true*.
- This is the same as saying that only after f becomes true, g may become false (or f "releases" g), namely f R g.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019

CTL and LTL

- OTL and LTL are restricted subsets of CTL*.
- 😚 CTL is a branching-time logic, while LTL is linear-time.
- In CTL, each temporal operator X, F, G, U, or R must be immediately preceded by a path quantifier E or A.
- The syntax of path formulae in CTL is more restricted:
 - if f_1 and f_2 are state formulae, then $\mathbf{X} f_1$, $\mathbf{F} f_1$, $\mathbf{G} f_1$, $f_1 \mathbf{U} f_2$, and $f_1 \mathbf{R} f_2$ are path formulae.
- The syntax of state formulae remains the same:
 - if $p \in AP$, then p is a state formula.
 - If f_1 and f_2 are state formulae, then so are $\neg f_1$, $f_1 \lor f_2$ and $f_1 \land f_2$.
 - If g is a path formula, then E_g and A_g are state formulae.

Yih-Kuen Tsay (IM.NTU)

- LTL consists of formulae that have the form Af, where f is a path formula in which atomic propositions are the only permitted state formulae.
- The syntax of path formulae in LTL is as follows:
 - $\stackrel{\text{\tiny{\bullet}}}{=}$ If $p \in AP$, then p is a path formula.
 - If g_1 and g_2 are path formulae, then so are $\neg g_1$, $g_1 \lor g_2$, $g_1 \land g_2$, Xg_1 , Fg_1 , Gg_1 , g_1 U g_2 , and g_1 R g_2 .

イロト イポト イヨト イヨト 二日

- CTL, LTL, and CTL* have distinct expressive powers.
- Some discriminating examples:
 - A(FGp) in LTL, not expressible in CTL.
 - AG(EFp) in CTL, not expressible in LTL.
 - Both $\mathbf{A}(\mathbf{FG}_p)$ and $\mathbf{AG}(\mathbf{EF}_p)$ are expressible in CTL*.
- So, CTL* is strictly more expressive than CTL and LTL, the two of which are incomparable.

イロト 不得下 イヨト イヨト

Fair Kripke Structures

A fair Kripke structure is a 4-tuple M = (S, R, L, F), where S, L, and R are defined as before and F ⊆ 2^S is a set of fairness constraints. (Generalized Büchi acceptance conditions)

📀 Let
$$\pi= extsf{s}_0, extsf{s}_1, \dots$$
 be a path in M .

- Define $\inf(\pi) = \{s \mid s = s_i \text{ for infinitely many } i\}.$
- 😚 We say that π is *fair* iff, for every $P \in F$, $\inf(\pi) \cap P \neq \emptyset$.

イロト 不得下 イヨト イヨト

Fair Semantics

- We write $M, s \models_F f$ to indicate that the state formula f is true in state s of the fair Kripke structure M.
- $M, \pi \models_F g$ indicates that the path formula g is true along the path π in M.
- Only the following semantic rules are different from the original ones:
 - * $M, s \models_F p \iff$ there exists a fair path starting from s and $p \in L(s)$.
 - *M*, *s* ⊨_{*F*} **E***g*₁ ⇔ there exists a fair path *π* starting from *s* s.t. *M*, *π* ⊨_{*F*} *g*₁.
 - * $M, s \models_F Ag_1 \iff$ for every fair path π starting from s, $M, \pi \models_F g_1$.

Yih-Kuen Tsay (IM.NTU)

CTL Model Checking

- Let M = (S, R, L) be a Kripke structure.
- We want to determine which states in S satisfy the CTL formula f.
- The algorithm will operate by labelling each state s with the set label(s) of sub-formulae of f which are true in s.
 - initially, label(s) is just L(s).
 - During the *i*-th stage, sub-formulae with *i* 1 nested CTL operators are processed.
 - When a sub-formula is processed, it is added to the labelling of each state in which it is true.
 - Solution Once the algorithm terminates, we will have that $M, s \models f$ iff $f \in label(s)$.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Handling CTL Operators

- There are ten basic CTL temporal operators: AX and EX, AF and EF, AG and EG, AU and EU, and AR and ER.
- All these operators can be expressed in terms of EX, EU, and EG:

AX
$$f = \neg \mathbf{EX} \neg f$$

AF $f = \neg \mathbf{E}\mathbf{G}\neg f$

•
$$\mathbf{A}[f \ \mathbf{U} \ g] = \neg \mathbf{E}[\neg g \ \mathbf{U} \ (\neg f \land \neg g)] \land \neg \mathbf{E}\mathbf{G}\neg g$$

(This case is less obvious and will be proven next.)
• $\mathbf{A}[f \ \mathbf{R} \ g] = \neg \mathbf{E}[\neg f \ \mathbf{U} \ \neg g]$ (from $f \ \mathbf{R} \ g = \neg(\neg f \ \mathbf{U} \ \neg g)$)
• $\mathbf{E}[f \ \mathbf{R} \ g] = \neg \mathbf{A}[\neg f \ \mathbf{U} \ \neg g]$

Yih-Kuen Tsay (IM.NTU)

Automatic Verification 2019 17 / 50

(日) (周) (三) (三)

The Case of AU

• To see why $\mathbf{A}[f \ \mathbf{U} \ g] = \neg \mathbf{E}[\neg g \ \mathbf{U} \ (\neg f \land \neg g)] \land \neg \mathbf{E}\mathbf{G}\neg g$, let us introduce yet another temporal operator \mathbf{W} (wait-for).

Solution
$$f \mathbf{W} \ g = f \mathbf{U} \ g \lor \mathbf{G} f$$

📀 It can be shown that

Proof of the rewriting for A[f U g]:

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 18 / 50

イロト 不得下 イヨト イヨト

So, for CTL model checking, it suffices to handle the following six cases: *atomic proposition*, \neg , \lor , **EX**, **EU**, and **EG**.

- Atomic propositions are handled at the beginning of the algorithm (by the initial setting label(s) = L(s)).
- For $\neg f$, we label those states that are not labelled by f.
- For $f_1 \lor f_2$, we label any state that is labelled either by f_1 or by f_2 .
- For EXf, we label every state that has some successor labelled by f.

CTL Model Checking: EU

• To handle formulae of the form $\mathbf{E}[f_1 \ \mathbf{U} \ f_2]$, we follow these steps:

Find all states that are labelled with f_2 .

Work backward using the converse of the transition relation R and find all states that can be reached by a path in which each state is labelled with f₁.

***** Label all such states by $\mathbf{E}[f_1 \ \mathbf{U} \ f_2]$.

• This requires time O(|S| + |R|).

イロト イポト イヨト イヨト

CTL Model Checking: EU (cont.)


```
procedure CheckEU(f_1, f_2)
    T := \{s \mid f_2 \in label(s)\};
    for all s \in T do label(s) := label(s) \cup \{ \mathbf{E}[f_1 \cup f_2] \};
    while T \neq \emptyset do
        choose s \in T:
        T := T \setminus \{s\};
        for all t s.t. R(t,s) do
             if \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \notin label(t) and f_1 \in label(t) then
                 label(t) := label(t) \cup \{ \mathbf{E}[f_1 \ \mathbf{U} \ f_2] \};
                 T := T \cup \{t\};
             end if:
        end for all:
    end while:
end procedure;
```

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 21 / 50

CTL Model Checking: EG

To handle formulae of the form EGf, we need the following lemma:

Let
$$M' = (S', R', L')$$
, where $S' = \{s \in S \mid M, s \models f\}$.

- $M, s \models \mathbf{EG}f$ iff the following two conditions hold:
 - 1. $s \in S'$.
 - There exists a path in M' that leads from s to some node t in a nontrivial strongly connected component (SCC) C of the graph (S', R').
- Note: an SCC is nontrivial if either it contains at least two nodes or it contains only one node with a self loop.

CTL Model Checking: EG(cont.)

With the lemma, we can handle EGf by the following steps:

- 1. Construct the restricted Kripke structure M'.
- 2. Partition the (S', R') into SCCs. (Complexity: O(|S'| + |R'|)).
- 3. Find those states that belong to nontrivial components.
- 4. Work backward using the converse of R' and find all of those states that can be reached by a path in which each state is labelled with f. (Complexity: O(|S| + |R|))

・ロト ・四ト ・ヨト

CTL Model Checking: EG (cont.)

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

CTL Model Checking (cont.)

- We successively apply the state-labelling algorithm to the sub-formulae of f, starting with the shortest, most deeply nested, and work outward to include the whole formula.
- By proceeding in this manner, we guarantee that whenever we process a sub-formula of f all its sub-formulae have already been processed.
- There are at most |f| sub-formulae, and each formula takes at most O(|S| + |R|) time.
- The complexity of this algorithm is $O(|f| \cdot (|S| + |R|))$.

An Example

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 26 / 50

- 3

イロト イポト イヨト イヨト

An Example (cont.)

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 27 / 50

Fairness Constraints

• Let M = (S, R, L, F) be a fair Kripke structure.

• Let
$$F = \{P_1, \ldots, P_k\}$$
.

- We say that a SCC C is *fair* w.r.t F iff for each P_i ∈ F, there is a state t_i ∈ (C ∩ P_i).
- To handle formulae of the form EGf in a fair kripke structure, we need the following lemma:

Let
$$M' = (S', R', L', F')$$
, where $S' = \{s \in S \mid M, s \models_F f\}$.
 $M, s \models_F EGf$ iff the following two conditions holds:

- 1. $s \in S'$.
- There exists a path in S' that leads from s to some node t in a nontrivial fair strongly connected component of the graph (S', R').

Yih-Kuen Tsay (IM.NTU)

Fairness Constraints

- We can create a CheckFairEG algorithm which is very similar to the CheckEG algorithm based on this lemma.
- The complexity of *CheckFairEG* is $O((|S| + |R|) \cdot |F|)$, since we have to check which SCC is fair.
- To check other CTL formulae, we introduce another proposition fair and stipulate that

$$M, s \models fair \text{ iff } M, s \models_F \mathbf{EG}true.$$

- $M, s \models_F p$, for some $p \in AP$, we check $M, s \models p \land fair$.
- $M, s \models_F \mathsf{EX}f$, we check $M, s \models \mathsf{EX}(f \land fair)$.
- $M, s \models_F \mathbf{E}[f_1 \cup f_2]$, we check $M, s \models \mathbf{E}[f_1 \cup (f_2 \land f_3)]$.
- Overall complexity: $O(|f| \cdot (|S| + |R|) \cdot |F|)$.

Yih-Kuen Tsay (IM.NTU)

An Example

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking Automatic Verific

Automatic Verification 2019 30 / 50

- 3

An Example (cont.)

IM

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking Automa

Automatic Verification 2019 31 / 50

The LTL Model Checking Problem

- Let M = (S, R, L) be a Kripke structure with $s \in S$.
 - Let Ag be an LTL formula (so, g is a restricted path formula).
- We want to check if $M, s \models Ag$.

•
$$M, s \models \mathbf{A}g$$
 iff $M, s \models \neg \mathbf{E} \neg g$.

Therefore, it suffices to be able to check $M, s \models \mathbf{E}f$, where f is a restricted path formula.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 32 / 50

イロト イポト イヨト イヨト 二日

Complexity of LTL Model Checking

- 😚 The problem is PSPACE-complete.
- We can more easily show this problem to be NP-hard by a reduction from the Hamiltonian path problem.
- Consider a directed graph G = (V, A) where $V = \{v_1, v_2, \dots, v_n\}.$
- Tetermining whether G has a directed Hamiltonian path is reducible to the problem of determining whether $M, s \models f$, where
 - M is a finite Kripke structure (constructed from G),
 - 🌻 s is a state in M, and
 - *f* is the formula (using atomic propositions p_1, \ldots, p_n):

 $\mathsf{E}[\mathsf{F} p_1 \land \ldots \land \mathsf{F} p_n \land \mathsf{G}(p_1 \to \mathsf{X} \mathsf{G} \neg p_1) \land \ldots \land \mathsf{G}(p_n \to \mathsf{X} \mathsf{G} \neg p_n)].$

Yih-Kuen Tsay (IM.NTU)

Complexity of LTL Model Checking (cont.)

The Kripke structure M = (U, B, L) is obtained from G = (V, A) as follows: $U = V \cup \{u_1, u_2\}$ where $u_1, u_2 \notin V$. $B = A \cup \{(u_1, v_i) \mid v_i \in V\} \cup \{(v_i, u_2) \mid v_i \in V\} \cup \{(u_2, u_2)\}.$ L is an assignment of propositions to states s.t.: p_i is true in v_i for $1 \le i \le n$, p_i is false in v_j for $1 \le i \le n$, p_i is false in u_1, u_2 for $1 \le i \le n$.
Let *s* be u_1 .

• $M, u_1 \models f$ iff there is a directed infinite path in M starting at u_1 that goes through every $v_i \in V$ exactly once and ends in the self loop at u_2 .

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

LTL Model Checking

Here we introduce an algorithm by Lichtenstein and Pnueli.

- The algorithm is exponential in the length of the formula, but linear in the size of the state graph.
- 📀 It involves an implicit tableau construction.
- A tableau is a graph derived from the formula from which a model for the formula can be extracted iff the formula is satisfiable.
- To check whether M satisfies f, the algorithm composes the tableau and the Kripke structure and determines whether there exists a computation of the structure that is a path in the tableau.

Closure

- We need only deal with X and U, since F, G, and R may be defined in terms of U.
- The closure CL(f) of f contains formulae whose truth values can influence the truth value of f.
- It is the smallest set containing f and satisfying:

Yih-Kuen Tsay (IM.NTU)

(日) (周) (三) (三)

Atom

- An *atom* is a pair $A = (s_A, K_A)$ with $s_A \in S$ and $K_A \subseteq CL(f) \cup AP$ s.t.:
 - \flat for each proposition $p\in AP$, $p\in K_A$ iff $p\in L(s_A)$,
 - otin for every $f_1 \in CL(f)$, $f_1 \in K_A$ iff $eg f_1 \notin K_A$,
 - $\overset{ imes}{=}$ for every $f_1 \lor f_2 \in \mathit{CL}(f)$, $f_1 \lor f_2 \in \mathit{K}_A$ iff $f_1 \in \mathit{K}_A$ or $f_2 \in \mathit{K}_A$,
 - $ilde{>}$ for every $\neg X f_1 \in CL(f)$, $\neg X f_1 \in K_A$ iff $X \neg f_1 \in K_A$,
 - ♦ for every f₁ U f₂ ∈ CL(f), f₁ U f₂ ∈ K_A iff f₂ ∈ K_A or f₁, X[f₁ U f₂] ∈ K_A.
 - Solution for every ¬(f₁ U f₂) ∈ CL(f), ¬(f₁ U f₂) ∈ K_A iff ¬f₁, ¬f₂ ∈ K_A or ¬f₂, ¬X[f₁ U f₂] ∈ K_A (the latter disjunct implies X[¬(f₁ U f₂)] ∈ K_A).
- Intuitively, an atom (s_A, K_A) is defined so that K_A is a maximal consistent set of formulae that are also consistent with the labelling of s_A .

Yih-Kuen Tsay (IM.NTU)

Behavior Graph and Self-Fulfilling SCC

- A graph G is constructed with the set of atoms as the set of vertices.
- 📀 (A, B) is an edge of G iff
 - $(s_A, s_B) \in R$ and
 - [★] for every formula $\mathbf{X} f_1 \in CL(f)$, $\mathbf{X} f_1 \in K_A$ iff $f_1 \in K_B$ $(\mathbf{X} f_1 \notin K_A$ iff $f_1 \notin K_B)$.
- A nontrivial SCC *C* of the graph *G* is said to be *self-fulfilling* iff for every atom *A* in *C* and for every $f_1 U f_2 ∈ K_A$ there exists an atom *B* in *C* s.t. $f_2 ∈ K_B$.
- Summa: $M, s \models \mathbf{E}f$ iff there exists an atom (s, K) in G s.t. $f \in K$ and there is a path in G from (s, K) to a self-fulfilling SCC.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Sketch of the Correctness Proof

- A path p in G (generated from M and f) is an eventuality sequence if $f_1 \cup f_2 \in K_A$ for some atom A on ρ , then there exists an atom B, reachable from A along π , such that $f_2 \in K_B$. • Claim: $M, s \models \mathbf{E}f$ iff there exists an eventuality sequence starting from (s, K) such that $f \in K$. (\Leftarrow) If $\pi = s_0(=s), s_1, s_2, \cdots$ corresponds to an eventuality sequence $(s, K) = (s_0, K_0), (s_1, K_1), \cdots$, then for every $g \in CL(f)$ and every $i \geq 0$, $\pi^i \models g$ iff $g \in K_i$. (\Rightarrow) For a path $\pi = s_0(=s), s_1, s_2, \cdots$ such that $M, \pi \models f$, define $K_i = \{g \mid g \in CL(f) \text{ and } \pi^i \models g\}$, then $(s_0, K_0), (s_1, K_1), \cdots$ is an eventuality sequence.
- Claim: there exists an eventuality sequence starting from (s, K) iff there is a path in G from (s, K) to a self-fulfilling SCC.

Yih-Kuen Tsay (IM.NTU)

Automatic Verification 2019 39 / 50

The LTL Model Checking Algorithm

Siven a Kripke structure M = (S, R, L), we want to check if $M, s \models \mathbf{E}f$, where f is a restricted path formula.

- Solution $\in (V, E)$.
- Sind initial atom set $A = \{(s, K) \mid (s, K) \in V \land f \in K\}$.
- Consider nontrivial self-fulfilling SCCs, traverse backward using the converse of E and mark all reachable states.
- if any state in A is marked, $M, s \models \mathbf{E}f$ is true.
- Time complexity: $O((|S| + |R|) \cdot 2^{O(|f|)})$.
- For a fair Kripke structure M' = (S', R', L', F'), we should check if there exists any self-fulfilling and fair SCC.

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

An Example

Yih-Kuen Tsay (IM.NTU)

Temporal Logic Model Checking

Automatic Verification 2019 41 / 50

An Example (cont.)

- Let f denote \neg Heat **U** Close.
- $\ \odot \ CL(\neg f) = \{\neg f, f, Xf, \neg Xf, X\neg f, Heat, \neg Heat, Close, \neg Close\}.$
- ¬Close and ¬Heat in states 1 and 2, so the possible "K"
 includes

 $\{\neg Close, \neg Heat, f, \mathbf{X}f\}, \{\neg Close, \neg Heat, \neg f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$

- Close and \neg Heat in states 3, 5 and 6, so the possible "K" includes $\{Close, \neg Heat, f, \mathbf{X}f\}, \{Close, \neg Heat, f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$
- Close and Heat in states 4 and 7, so the possible "K" includes $\{Close, Heat, f, \mathbf{X}f\}, \{Close, Heat, f, \mathbf{X}\neg f, \neg \mathbf{X}f\}.$

We can construct atoms using the states and the corresponding "K" and then build a graph based on those atoms.

Yih-Kuen Tsay (IM.NTU)

Overview of CTL* Model Checking

- We will study an algorithm developed by Clarke, Emerson, and Sistla.
- The basic idea is to integrate the state labeling technique from CTL model checking into LTL model checking.
- The algorithm for LTL handles formula of the form Ef where f is a restricted path formula.
- The algorithm can be extended to handle formulae in which f contains arbitrary state sub-formulae.

- 4 同 6 4 日 6 4 日 6

Handling CTL* Operators

Again, the operators \neg , \lor , X, U, and E are sufficient to express any other CTL* formula.

• $f \wedge g \equiv \neg(\neg f \vee \neg g)$ • $\mathbf{F}f \equiv true \ \mathbf{U}f$ • $\mathbf{G}f \equiv \neg \mathbf{F}\neg f$ • $f \ \mathbf{R} \ g \equiv \neg(\neg f \ \mathbf{U} \neg g)$ • $\mathbf{A}f \equiv \neg \mathbf{E}\neg f$

One Stage in CTL* Model Checking

- S Let Ef' be an "inner most" formula with E.
- Assuming that the state sub-formulae of f' have already been processed and that state labels have been updated accordingly, proceed as follows:
 - If Ef' is in CTL, then apply the CTL algorithm.
 - Otherwise, f' is a LTL path formula, then apply the LTL model checking algorithm.
 - In both cases, the formula is added to the labels of all states that satisfy it.
- If Ef' is a sub-formula of a more complex CTL* formula, then the procedure is repeated with Ef' replaced by a fresh AP.
- Note: each state sub-formula will be replaced by a fresh AP in both the labeling of the model and the formula.

Levels of State Sub-formulae

- The state sub-formulae of level i are defined inductively as follows:
 - Level 0 contains all atomic propositions.
 - Level i + 1 contains all state sub-formulae g s.t. all state sub-formulae of g are of level i or less and g is not contained in any lower level.
- Let g be a CTL* formula, then a sub-formula Eh₁ of g is maximal iff Eh₁ is not a strict sub-formula of any strict sub-formula Eh of g.

- 4 同 6 4 日 6 4 日 6

State Sub-formulae (Examples)

Sconsider the formula

 $\neg EF(\neg Close \land Start \land E(FHeat \land GError)).$

😚 The levels of the state sub-formulae are:

- 🌻 Level 0: *Close, Start, Heat,* and *Error*

- ***** Level 3: $\neg Close \land Start \land E(FHeat \land GError)$
- Seven 4: $EF(\neg Close \land Start \land E(FHeat \land GError))$
- Level 5: $\neg EF(\neg Close \land Start \land E(FHeat \land GError))$
- Note: this is slightly different from [Clarke *et al.*].

イロト 不得下 イヨト イヨト

CTL* Model Checking

- Let M = (S, R, L) be a Kripke structure, f a CTL* formula, and g a state sub-formula of f of level i.
- The states of *M* have already been labelled correctly with all state sub-formulae of level smaller than *i*.
- In stage i, each such g is added to the labels of all states that make it true.
- For g a CTL* state formula, we proceed as follows:
 - If $g \in AP$, then g is in label(s) iff it is in L(s).
 - If $g = \neg g_1$, then g is in *label*(s) iff g_1 is not in *label*(s).
 - If g = g₁ ∨ g₂, then g is added to *label(s)* iff either g₁ or g₂ are in *label(s)*. (To reduce the number of levels, do analogously for g₁ ∧ g₂.)
 - If $g = \mathbf{E}g_1$ call the *CheckE*(g) procedure.

Yih-Kuen Tsay (IM.NTU)

CheckE(*g*) **Procedure**

procedure CheckE(g)

if g is a CTL formula then

apply CTL model checking for g;

```
return; // next formula or next stage
```

end if;

 $g' := g[a_1/\mathsf{E}h_1, \ldots, a_k/\mathsf{E}h_k]; \ // \ \mathsf{E}h_i$'s are maximal sub-formulae for all $s \in S$

for i = 1, ..., k do

if $Eh_i \in label(s)$ then $label(s) := label(s) \cup \{a_i\}$; end for all:

apply LTL model checking for g'; for all $s \in S$ do if $g' \in label(s)$ then $label(s) := label(s) \cup \{g\}$; end for all;

end procedure;

Yih-Kuen Tsay (IM.NTU)

Complexity of the Algorithm for CTL*

- The complexity depends on the complexity of the algorithm for CTL and that for LTL.
- So, if the previous algorithms are used, the complexity is $O((|S| + |R|) \cdot 2^{O(|f|)}).$
- In real implementation, state sub-formulae need not be replaced by, but just need to be treated as, atomic propositions.

(日) (周) (三) (三)