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About Temporal Logic

Temporal logic is a formalism for describing temporal ordering
(or dependency) between occurrences of “events” (represented
by propositions).

It provides such expressive features by introducing
temporal/modal operators into classic logic.

These temporal operators usually do not explicitly mention time
points.

There are two principal views of the structure of time:

linear-time: occurrences of events form a sequence
branching-time: occurrences of events form a tree

Yih-Kuen Tsay (IM.NTU) Temporal Logic Model Checking Automatic Verification 2019 2 / 50



Outline
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CTL*

CTL* formulae describe properties of a computation tree
(generated from a Kripke structure).

They are composed of path quantifiers and temporal operators.

Path quantifiers:

E (for some path)
A (for all paths)

Temporal operators:

X (next)
F (eventually or sometime in the future)
G (always or globally)
U (until)
R (release)
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Syntax of CTL*

Let AP be a set of atomic propositions.

The syntax of state formulae:

If p ∈ AP, then p is a state formula.
If f1 and f2 are state formulae, then so are ¬f1, f1 ∨ f2 and
f1 ∧ f2.
If g is a path formula, then Eg and Ag are state formulae.

The syntax of path formulae:

If f is a state formula, then f is also a path formula.
If g1 and g2 are path formulae, then so are ¬g1, g1 ∨ g2,
g1 ∧ g2, Xg1, Fg1, Gg1, g1 U g2, and g1 R g2.

CTL* is the set of state formulae generated by the above rules.
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Example CTL* Formulae

Formula: AG(Req → AFAck).
Intended meaning: every request will eventually be granted.

Formula: AG(EFRestart).
Intended meaning: it is always possible at any time to get to the
Restart state.
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Kripke Structures

Let AP be a set of atomic propositions.

A Kripke structure M over AP is a tuple 〈S , S0,R , L〉:
S is a finite set of states,
S0 ⊆ S is the set of initial states,
R ⊆ S × S is a total transition relation, and
L : S → 2AP is a function labeling each state with a subset of
propositions (which are true in that state).

A computation or path π of M from a state s is an infinite
sequence s0, s1, s2, · · · of states such that s0 = s and
(si , si+1) ∈ R , for all i ≥ 0.

In the sequel, πi denotes the suffix of π starting at si .
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Semantics of CTL*

When f is a state formula, M , s |= f means that f holds at state
s in the Kripke structure M .

When f is a path formula, M , π |= f means that f holds along
the path π in the Kripke structure M .

Assuming that f1 and f2 are state formulae and g1 and g2 are
path formulae, the semantics of CTL* is as follows:

M, s |= p ⇐⇒ p ∈ L(s)
M, s |= ¬f1 ⇐⇒ M, s 2 f1
M, s |= f1 ∨ f2 ⇐⇒ M, s |= f1 or M, s |= f2
M, s |= f1 ∧ f2 ⇐⇒ M, s |= f1 and M, s |= f2
M, s |= Eg1 ⇐⇒ for some path π from s, M, π |= g1

M, s |= Ag1 ⇐⇒ for every path π from s, M, π |= g1
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Semantics of CTL* (cont.)

The semantics of CTL* (cont.):

M, π |= f1 ⇐⇒ s is the first state of π and M, s |= f1
M, π |= ¬g1 ⇐⇒ M, π 6|= g1

M, π |= g1 ∨ g2 ⇐⇒ M, π |= g1 or M, π |= g2

M, π |= g1 ∧ g2 ⇐⇒ M, π |= g1 and M, π |= g2

M, π |= Xg1 ⇐⇒ M, π1 |= g1

M, π |= Fg1 ⇐⇒ for some k ≥ 0, M, πk |= g1

M, π |= Gg1 ⇐⇒ for all i ≥ 0, M, πi |= g1

M, π |= g1 U g2 ⇐⇒ for some k ≥ 0, M, πk |= g2 and, for all
0 ≤ j < k ,M, πj |= g1

(g1 remains true until g2 becomes true, which eventually
happens.)
M, π |= g1 R g2 ⇐⇒ for all j ≥ 0, if for every i < j ,
M, πi 6|= g1, then M, πj |= g2

(Only after g1 becomes true, g2 may become false.)
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Minimalistic CTL*

The operators ∨, ¬, X, U, and E are sufficient to express any
other CTL* formula (in an equivalent way).

In particular,

Ff = true U f
Gf = ¬F¬f
f R g = ¬(¬f U ¬g)
Af = ¬E¬f

¬(¬f U ¬g) says that it is not the case that in some state g
becomes false and until then f has never been true.

This is the same as saying that only after f becomes true, g
may become false (or f “releases” g), namely f R g .
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CTL and LTL

CTL and LTL are restricted subsets of CTL*.

CTL is a branching-time logic, while LTL is linear-time.

In CTL, each temporal operator X, F, G, U, or R must be
immediately preceded by a path quantifier E or A.

The syntax of path formulae in CTL is more restricted:

If f1 and f2 are state formulae, then Xf1, Ff1, Gf1, f1 U f2, and
f1 R f2 are path formulae.

The syntax of state formulae remains the same:

If p ∈ AP, then p is a state formula.
If f1 and f2 are state formulae, then so are ¬f1, f1 ∨ f2 and
f1 ∧ f2.
If g is a path formula, then Eg and Ag are state formulae.
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CTL and LTL (cont.)

LTL consists of formulae that have the form Af , where f is a
path formula in which atomic propositions are the only
permitted state formulae.

The syntax of path formulae in LTL is as follows:

If p ∈ AP, then p is a path formula.
If g1 and g2 are path formulae, then so are ¬g1, g1 ∨ g2,
g1 ∧ g2, Xg1, Fg1, Gg1, g1 U g2, and g1 R g2.
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Expressive Powers

CTL, LTL, and CTL* have distinct expressive powers.

Some discriminating examples:

A(FGp) in LTL, not expressible in CTL.
AG(EFp) in CTL, not expressible in LTL.
Both A(FGp) and AG(EFp) are expressible in CTL*.

So, CTL* is strictly more expressive than CTL and LTL, the two
of which are incomparable.
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Fair Kripke Structures

A fair Kripke structure is a 4-tuple M = (S ,R , L,F ), where S , L,
and R are defined as before and F ⊆ 2S is a set of fairness
constraints. (Generalized Büchi acceptance conditions)

Let π = s0, s1, . . . be a path in M .

Define inf(π) = {s | s = si for infinitely many i}.
We say that π is fair iff, for every P ∈ F , inf(π) ∩ P 6= ∅.
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Fair Semantics

We write M , s |=F f to indicate that the state formula f is true
in state s of the fair Kripke structure M .

M , π |=F g indicates that the path formula g is true along the
path π in M .

Only the following semantic rules are different from the original
ones:

M, s |=F p ⇐⇒ there exists a fair path starting from s and
p ∈ L(s).
M, s |=F Eg1 ⇐⇒ there exists a fair path π starting from s s.t.
M, π |=F g1.
M, s |=F Ag1 ⇐⇒ for every fair path π starting from s,
M, π |=F g1.
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CTL Model Checking

Let M = (S ,R , L) be a Kripke structure.

We want to determine which states in S satisfy the CTL formula
f .

The algorithm will operate by labelling each state s with the set
label(s) of sub-formulae of f which are true in s.

Initially, label(s) is just L(s).
During the i-th stage, sub-formulae with i − 1 nested CTL
operators are processed.
When a sub-formula is processed, it is added to the labelling of
each state in which it is true.
Once the algorithm terminates, we will have that M, s |= f iff
f ∈ label(s).
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Handling CTL Operators

There are ten basic CTL temporal operators: AX and EX, AF
and EF, AG and EG, AU and EU, and AR and ER.

All these operators can be expressed in terms of EX, EU, and
EG:

AXf = ¬EX¬f
EFf = E[true U f ]
AFf = ¬EG¬f
AGf = ¬EF¬f
A[f U g ] = ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG¬g
(This case is less obvious and will be proven next.)
A[f R g ] = ¬E[¬f U ¬g ] (from f R g = ¬(¬f U ¬g))
E[f R g ] = ¬A[¬f U ¬g ]
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The Case of AU

To see why A[f U g ] = ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG¬g , let us
introduce yet another temporal operator W (wait-for).

Let f W g = f U g ∨ Gf .

It can be shown that
f U g = (f W g) ∧ Fg
¬(f W g) = ¬g U (¬f ∧ ¬g).

Proof of the rewriting for A[f U g ]:

A[f U g ]
= ¬E¬(f U g)
= ¬E¬((f W g) ∧ Fg)
= ¬E(¬(f W g) ∨ ¬Fg)
= ¬(E¬(f W g) ∨ E¬Fg)
= ¬(E[¬g U (¬f ∧ ¬g)] ∨ EG¬g)
= ¬E[¬g U (¬f ∧ ¬g)] ∧ ¬EG¬g
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CTL Model Checking: AP, ¬, ∨, EX

So, for CTL model checking, it suffices to handle the following six
cases: atomic proposition, ¬, ∨, EX, EU, and EG.

Atomic propositions are handled at the beginning of the
algorithm (by the initial setting label(s) = L(s)).

For ¬f , we label those states that are not labelled by f .

For f1 ∨ f2, we label any state that is labelled either by f1 or by f2.

For EXf , we label every state that has some successor labelled
by f .
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CTL Model Checking: EU

To handle formulae of the form E[f1 U f2], we follow these steps:

Find all states that are labelled with f2.
Work backward using the converse of the transition relation R
and find all states that can be reached by a path in which each
state is labelled with f1.
Label all such states by E[f1 U f2].

This requires time O(|S |+ |R |).
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CTL Model Checking: EU (cont.)

procedure CheckEU(f1, f2)
T := {s | f2 ∈ label(s)};
for all s ∈ T do label(s) := label(s) ∪ {E[f1 U f2]};
while T 6= ∅ do

choose s ∈ T ;
T := T\{s};
for all t s.t. R(t, s) do

if E[f1 U f2] 6∈ label(t) and f1 ∈ label(t) then
label(t) := label(t) ∪ {E[f1 U f2]};
T := T ∪ {t};

end if;
end for all;

end while;
end procedure;
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CTL Model Checking: EG

To handle formulae of the form EGf , we need the following
lemma:

Let M ′ = (S ′,R ′, L′), where S ′ = {s ∈ S | M , s |= f }.
M , s |= EGf iff the following two conditions hold:

1. s ∈ S ′.
2. There exists a path in M ′ that leads from s to some node t in a

nontrivial strongly connected component (SCC) C of the graph
(S ′,R ′).

Note: an SCC is nontrivial if either it contains at least two
nodes or it contains only one node with a self loop.
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CTL Model Checking: EG(cont.)

With the lemma, we can handle EGf by the following steps:

1. Construct the restricted Kripke structure M ′.
2. Partition the (S ′,R ′) into SCCs. (Complexity: O(|S ′|+ |R ′|)).
3. Find those states that belong to nontrivial components.
4. Work backward using the converse of R ′ and find all of those

states that can be reached by a path in which each state is
labelled with f . (Complexity: O(|S |+ |R|))
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CTL Model Checking: EG (cont.)

procedure CheckEG (f )
S ′ := {s | f ∈ label(s)};
SCC := {C | C is a nontrivial SCC of S′};
T :=

⋃
C∈SCC{s | s ∈ C};

for all s ∈ T do label(s) := label(s) ∪ {EGf };
while T 6= ∅ do

choose s ∈ T ;
T := T\{s};
for all t s.t. t ∈ S ′ and R(t, s) do

if EGf 6∈ label(t) and f ∈ label(t) then
label(t) := label(t) ∪ {EGf };
T := T ∪ {t};

end if;
end for all;

end while; end procedure;
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CTL Model Checking (cont.)

We successively apply the state-labelling algorithm to the
sub-formulae of f , starting with the shortest, most deeply
nested, and work outward to include the whole formula.

By proceeding in this manner, we guarantee that whenever we
process a sub-formula of f all its sub-formulae have already been
processed.

There are at most |f | sub-formulae, and each formula takes at
most O(|S |+ |R |) time.

The complexity of this algorithm is O(|f | · (|S |+ |R |)).
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An Example

We want to check CTL formula
AG(Start → AFHeat), or
¬E[true U (Start ∧ EG¬Heat)].
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An Example (cont.)

Spec.: ¬E[true U (Start ∧ EG¬Heat)]
S(Start) = {2, 5, 6, 7}
S(¬Heat) = {1, 2, 3, 5, 6}
Find SCC {{1, 2, 3, 5}} in S ′ = S(¬Heat)
S(EG¬Heat) = {1, 2, 3, 5}
S(Start ∧ EG¬Heat) = {2, 5}
S(E[true U (Start ∧ EG¬Heat]) =
{1, 2, 3, 4, 5, 6, 7}
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Fairness Constraints

Let M = (S ,R , L,F ) be a fair Kripke structure.

Let F = {P1, . . . ,Pk}.
We say that a SCC C is fair w.r.t F iff for each Pi ∈ F , there is
a state ti ∈ (C ∩ Pi).

To handle formulae of the form EGf in a fair kripke structure,
we need the following lemma:

Let M ′ = (S ′,R ′, L′,F ′), where S ′ = {s ∈ S | M , s |=F f }.
M , s |=F EGf iff the following two conditions holds:

1. s ∈ S ′.
2. There exists a path in S ′ that leads from s to some node t in a

nontrivial fair strongly connected component of the graph
(S ′,R ′).
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Fairness Constraints

We can create a CheckFairEG algorithm which is very similar to
the CheckEG algorithm based on this lemma.

The complexity of CheckFairEG is O((|S |+ |R |) · |F |), since we
have to check which SCC is fair.

To check other CTL formulae, we introduce another proposition
fair and stipulate that

M , s |= fair iff M , s |=F EGtrue.

M , s |=F p, for some p ∈ AP , we check M , s |= p ∧ fair .

M , s |=F EXf , we check M , s |= EX(f ∧ fair).

M , s |=F E[f1 U f2], we check M , s |= E[f1 U (f2 ∧ fair)].

Overall complexity: O(|f | · (|S |+ |R |) · |F |).
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An Example

Assume F = {{s | s |= Start∧Close∧¬Error}}.
We want to check CTL formula
AG(Start → AFHeat), or
¬E[true U (Start ∧ EG¬Heat)].
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An Example (cont.)

Spec.: ¬E[true U (Start ∧ EG¬Heat)]
S(Start) = {2, 5, 6, 7}
S(¬Heat) = {1, 2, 3, 5, 6}
There is no fair SCC in S ′ = S(¬Heat)
S(EG¬Heat) = ∅
S(Start ∧ EG¬Heat) = ∅
S(E[true U (Start ∧ EG¬Heat)]) = ∅
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The LTL Model Checking Problem

Let M = (S ,R , L) be a Kripke structure with s ∈ S .

Let Ag be an LTL formula (so, g is a restricted path formula).

We want to check if M , s |= Ag .

M , s |= Ag iff M , s |= ¬E¬g .

Therefore, it suffices to be able to check M , s |= Ef , where f is
a restricted path formula.
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Complexity of LTL Model Checking

The problem is PSPACE-complete.

We can more easily show this problem to be NP-hard by a
reduction from the Hamiltonian path problem.

Consider a directed graph G = (V ,A) where
V = {v1, v2, . . . , vn}.
Determining whether G has a directed Hamiltonian path is
reducible to the problem of determining whether M , s |= f ,
where

M is a finite Kripke structure (constructed from G ),
s is a state in M, and
f is the formula (using atomic propositions p1, . . . , pn):

E[Fp1 ∧ . . . ∧ Fpn ∧ G(p1 → XG¬p1) ∧ . . . ∧ G(pn → XG¬pn)].
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Complexity of LTL Model Checking (cont.)

The Kripke structure M = (U ,B , L) is obtained from
G = (V ,A) as follows:

U = V ∪ {u1, u2} where u1, u2 6∈ V .
B = A ∪ {(u1, vi ) | vi ∈ V } ∪ {(vi , u2) | vi ∈ V } ∪ {(u2, u2)}.
L is an assignment of propositions to states s.t.:

pi is true in vi for 1 ≤ i ≤ n,
pi is false in vj for 1 ≤ i , j ≤ n, i 6= j , and
pi is false in u1, u2 for 1 ≤ i ≤ n.

Let s be u1.

M , u1 |= f iff there is a directed infinite path in M starting at u1

that goes through every vi ∈ V exactly once and ends in the self
loop at u2.
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LTL Model Checking

Here we introduce an algorithm by Lichtenstein and Pnueli.

The algorithm is exponential in the length of the formula, but
linear in the size of the state graph.

It involves an implicit tableau construction.

A tableau is a graph derived from the formula from which a
model for the formula can be extracted iff the formula is
satisfiable.

To check whether M satisfies f , the algorithm composes the
tableau and the Kripke structure and determines whether there
exists a computation of the structure that is a path in the
tableau.
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Closure

We need only deal with X and U, since F, G, and R may be
defined in terms of U.

The closure CL(f ) of f contains formulae whose truth values
can influence the truth value of f .

It is the smallest set containing f and satisfying:

¬f1 ∈ CL(f ) iff f1 ∈ CL(f ),
if f1 ∧ f2 ∈ CL(f ), then f1, f2 ∈ CL(f ),
if Xf1 ∈ CL(f ), then f1 ∈ CL(f ),
if ¬Xf1 ∈ CL(f ), then X¬f1 ∈ CL(f ),
if f1 U f2 ∈ CL(f ), then f1, f2,X[f1 U f2] ∈ CL(f ).

Note: These rules imply that, if ¬(f1 U f2) ∈ CL(f ), then
f1, f2,X[f1 U f2] ∈ CL(f ).
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Atom

An atom is a pair A = (sA,KA) with sA ∈ S and
KA ⊆ CL(f ) ∪ AP s.t.:

for each proposition p ∈ AP, p ∈ KA iff p ∈ L(sA),
for every f1 ∈ CL(f ), f1 ∈ KA iff ¬f1 /∈ KA,
for every f1 ∨ f2 ∈ CL(f ), f1 ∨ f2 ∈ KA iff f1 ∈ KA or f2 ∈ KA,
for every ¬Xf1 ∈ CL(f ), ¬Xf1 ∈ KA iff X¬f1 ∈ KA,
for every f1 U f2 ∈ CL(f ), f1 U f2 ∈ KA iff f2 ∈ KA or
f1,X[f1 U f2] ∈ KA.
for every ¬(f1 U f2) ∈ CL(f ), ¬(f1 U f2) ∈ KA iff ¬f1,¬f2 ∈ KA

or ¬f2,¬X[f1 U f2] ∈ KA

(the latter disjunct implies X[¬(f1 U f2)] ∈ KA).

Intuitively, an atom (sA,KA) is defined so that KA is a maximal
consistent set of formulae that are also consistent with the
labelling of sA.
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Behavior Graph and Self-Fulfilling SCC

A graph G is constructed with the set of atoms as the set of
vertices.

(A,B) is an edge of G iff

(sA, sB) ∈ R and
for every formula Xf1 ∈ CL(f ), Xf1 ∈ KA iff f1 ∈ KB

(Xf1 6∈ KA iff f1 6∈ KB).

A nontrivial SCC C of the graph G is said to be self-fulfilling iff
for every atom A in C and for every f1 U f2 ∈ KA there exists an
atom B in C s.t. f2 ∈ KB .

Lemma: M , s |= Ef iff there exists an atom (s,K ) in G s.t.
f ∈ K and there is a path in G from (s,K ) to a self-fulfilling
SCC.
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Sketch of the Correctness Proof

A path ρ in G (generated from M and f ) is an eventuality
sequence if f1 U f2 ∈ KA for some atom A on ρ, then there
exists an atom B , reachable from A along π, such that f2 ∈ KB .

Claim: M , s |= Ef iff there exists an eventuality sequence
starting from (s,K ) such that f ∈ K .

(⇐) If π = s0(= s), s1, s2, · · · corresponds to an eventuality
sequence (s,K ) = (s0,K0), (s1,K1), · · · , then for every
g ∈ CL(f ) and every i ≥ 0, πi |= g iff g ∈ Ki .
(⇒) For a path π = s0(= s), s1, s2, · · · such that M, π |= f ,
define Ki = {g | g ∈ CL(f ) and πi |= g}, then
(s0,K0), (s1,K1), · · · is an eventuality sequence.

Claim: there exists an eventuality sequence starting from (s,K )
iff there is a path in G from (s,K ) to a self-fulfilling SCC.
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The LTL Model Checking Algorithm

Given a Kripke structure M = (S ,R , L), we want to check if
M , s |= Ef , where f is a restricted path formula.

Construct the behavior graph G = (V ,E ).
Find initial atom set A = {(s,K ) | (s,K ) ∈ V ∧ f ∈ K}.
Consider nontrivial self-fulfilling SCCs, traverse backward using
the converse of E and mark all reachable states.
If any state in A is marked, M, s |= Ef is true.

Time complexity: O((|S |+ |R |) · 2O(|f |)).

For a fair Kripke structure M ′ = (S ′,R ′, L′,F ′), we should check
if there exists any self-fulfilling and fair SCC.
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An Example

We want to check LTL formula
A[¬Heat U Close], or
¬E¬[¬Heat U Close].
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¬Error
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5 6 7
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An Example (cont.)

Let f denote ¬Heat U Close.

CL(¬f ) = {¬f , f ,Xf ,¬Xf ,X¬f ,Heat,¬Heat,Close,¬Close}.
¬Close and ¬Heat in states 1 and 2, so the possible “K”
includes
{¬Close,¬Heat, f ,Xf }, {¬Close,¬Heat,¬f ,X¬f ,¬Xf }.
Close and ¬Heat in states 3, 5 and 6, so the possible “K”
includes {Close,¬Heat, f ,Xf }, {Close,¬Heat, f ,X¬f ,¬Xf }.
Close and Heat in states 4 and 7, so the possible “K” includes
{Close,Heat, f ,Xf }, {Close,Heat, f ,X¬f ,¬Xf }.

We can construct atoms using the states and the corresponding “K”
and then build a graph based on those atoms.
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Overview of CTL* Model Checking

We will study an algorithm developed by Clarke, Emerson, and
Sistla.

The basic idea is to integrate the state labeling technique from
CTL model checking into LTL model checking.

The algorithm for LTL handles formula of the form Ef where f
is a restricted path formula.

The algorithm can be extended to handle formulae in which f
contains arbitrary state sub-formulae.
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Handling CTL* Operators

Again, the operators ¬,∨,X,U, and E are sufficient to express any
other CTL* formula.

f ∧ g ≡ ¬(¬f ∨ ¬g)

Ff ≡ true U f

Gf ≡ ¬F¬f
f R g ≡ ¬(¬f U ¬g)

Af ≡ ¬E¬f
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One Stage in CTL* Model Checking

Let Ef ′ be an “inner most” formula with E.

Assuming that the state sub-formulae of f ′ have already been
processed and that state labels have been updated accordingly,
proceed as follows:

If Ef ′ is in CTL, then apply the CTL algorithm.
Otherwise, f ′ is a LTL path formula, then apply the LTL model
checking algorithm.
In both cases, the formula is added to the labels of all states
that satisfy it.

If Ef ′ is a sub-formula of a more complex CTL* formula, then
the procedure is repeated with Ef ′ replaced by a fresh AP.

Note: each state sub-formula will be replaced by a fresh AP in
both the labeling of the model and the formula.
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Levels of State Sub-formulae

The state sub-formulae of level i are defined inductively as
follows:

Level 0 contains all atomic propositions.
Level i + 1 contains all state sub-formulae g s.t. all state
sub-formulae of g are of level i or less and g is not contained in
any lower level.

Let g be a CTL* formula, then a sub-formula Eh1 of g is
maximal iff Eh1 is not a strict sub-formula of any strict
sub-formula Eh of g .
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State Sub-formulae (Examples)

Consider the formula
¬EF(¬Close ∧ Start ∧ E(FHeat ∧ GError)).

The levels of the state sub-formulae are:

Level 0: Close, Start, Heat, and Error
Level 1: E(FHeat ∧ GError) and ¬Close
Level 2: ¬Close ∧ Start
Level 3: ¬Close ∧ Start ∧ E(FHeat ∧ GError)
Level 4: EF(¬Close ∧ Start ∧ E(FHeat ∧ GError))
Level 5: ¬EF(¬Close ∧ Start ∧ E(FHeat ∧ GError))

Note: this is slightly different from [Clarke et al.].
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CTL* Model Checking

Let M = (S ,R , L) be a Kripke structure, f a CTL* formula, and
g a state sub-formula of f of level i .

The states of M have already been labelled correctly with all
state sub-formulae of level smaller than i .

In stage i , each such g is added to the labels of all states that
make it true.

For g a CTL* state formula, we proceed as follows:

If g ∈ AP, then g is in label(s) iff it is in L(s).
If g = ¬g1, then g is in label(s) iff g1 is not in label(s).
If g = g1 ∨ g2, then g is added to label(s) iff either g1 or g2 are
in label(s). (To reduce the number of levels, do analogously for
g1 ∧ g2.)
If g = Eg1 call the CheckE (g) procedure.
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CheckE (g) Procedure

procedure CheckE (g)
if g is a CTL formula then

apply CTL model checking for g ;
return; // next formula or next stage

end if;
g ′ := g [a1/Eh1, . . . , ak/Ehk ]; // Ehi ’s are maximal sub-formulae

for all s ∈ S
for i = 1, . . . , k do

if Ehi ∈ label(s) then label(s) := label(s) ∪ {ai};
end for all;
apply LTL model checking for g ′;
for all s ∈ S do

if g ′ ∈ label(s) then label(s) := label(s) ∪ {g};
end for all;

end procedure;
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Complexity of the Algorithm for CTL*

The complexity depends on the complexity of the algorithm for
CTL and that for LTL.

So, if the previous algorithms are used, the complexity is
O((|S |+ |R |) · 2O(|f |)).

In real implementation, state sub-formulae need not be replaced
by, but just need to be treated as, atomic propositions.
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