The SPIN Model Checker

[Based on The SPIN Model Checker: Primer and Reference Manual,
Gerard J. Holzmann |

Jo-Chuan Chou
original by Yu, Sheng-Feng

Dept. of Information Management
National Taiwan University

November 20, 2019

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 1/119

Agenda

An Introduction to SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 2/119

Agenda

An Introduction to SPIN

& History of SPIN
¢ What is SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 3/119

History of SPIN

The tool was developed at Bell Labs in the original Unix group of the
Computing Sciences Research Center, starting in 1980 by
Gerard Holzmann and others.

The software has been available freely since 1991, and continues to
evolve to keep pace with new developments in the field.

In April 2002 the tool was awarded the prestigious System Software
Award for 2001 by the ACM.

The current latest version is 6.5.0 compiled at Jul. 2019.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 4/119

What is SPIN

SPIN (Simple PROMELA INterpreter)
@ Is a popular open-source software that can be used for formal
verification of distributed software systems.
& It supports the design and verification of asynchronous process system.
& The verification models of SPIN are focused on proving the correctness
of process interactions, and abstract from internal sequential
computations.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 5/119

What is SPIN (cont.)

As a formal methods tool, SPIN aims to provide:
@ an intuitive, program-like notation for specifying design choices
unambiguously, without implementation detail,
@ a powerful, concise notation for expressing general correctness
requirements,
¢ a methodology for establishing the logical consistency of the design
from above.

The tool supports a high level language to specify system description,
called PROMELA (PROcess MEta LAnguage).

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 6/119

What is SPIN (cont.)

Verifier

XSPIN
Front-End
(Tel/Tk Code)
PROMELA LTL Parser
Parser and Translator
1. 2, 5
Syntax Error Interactive Verifier
Reports Simulation Generator
Optimized
Maodel Checker
(ANSIC code)
Criias Executable
Fxamples On-The-Fly
Fig. 1. The structure of Sein simulation and verification
Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Agenda

An Introduction to SPIN
An Overview of PROMELA

¢ What is PROMELA
¢ PROMELA Model
@ Correctness Claim

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 8/119

What is PROMELA

PROMELA (PROcess MEta-LAnguage)
¢ PROMELA is NOT an implementation language but a system
description language.
® The emphasis is on the modeling of process synchronization and
coordination, not on computation.
¢ resembles the programming language C.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 9/119

What is PROMELA (cont.)

Models that can be specified in PROMELA are required to be
bounded:

@ There can be only finite amount of running processes.

There can be only finite amount of statements in a proctype.
All data types have a finite range.

All message channels have an a bounded capacity.

Enforcing that restriction helps to guarantee that any correctness
property that can be stated in PROMELA is decidable.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 10/119

What is PROMELA (cont.)

A PROMELA model is constructed from three basic types of objects:

@ Processes
& Data objects
& Message channels

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 11/119

Process

Defined by using proctype keyword or init keyword.

There are two ways to instantiate a process:
@ Adding the prefix active to a proctype declaration
@ Using a run operator

Examplel: Hello World

active proctype begin(){
printf ("Hello World\n")
}

Example2: Hello World

proctype begin2(){
printf ("Hello World Again\n")

¥
init{

run begin2()
}

Note: Semicolon is defined as a separator, not terminator.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

12/119

Process (cont.)

By using run operator, we can pass the value to process (passing by
value).
If processes created through active keyword, their parameters are
initialized to zero.

@ active means instantiate one process of this type
proctype means to declare a new process type

Example: varaible passage
proctype value_pass (byte x){
printf(" x = %d\n ",x)
}
init{
run value_pass (0);
run value_pass (1);
}
/* Output will be : x=0 */
/* x=1 */
/* or */
/* Output will be: x=1 */
/* x=0 */)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 13/119

Process (cont.)
We can create multiple instantiations by adding the desired number in
square brackets.
Processes are executes concurrently with all other processes.

They can interleave their statement executions in arbitrary ways with
other processes.

Each running process has a unique process instantiation number, and
can be accessed by local variable _ pid.

Example:Hello World

active [2] proctype main(){

printf ("my pid is: %d\n",_pid)

¥

/* Output will be: my pid is: 0 */
/* my pid is: 1 x/
/% or */
/* Output will be: my pid is: 1 */
/* my pid is: 0 */

v

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 14 /119

Process termination

A process "terminates” when it reaches the end of its code (the
closing curly brace).

A process can only "die” and be removed if all processes instantiated
later than this process have died first.

Process can terminate in any order, but they can only die in the
reverse order of their creation.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 15/119

Data Objects

The default initial value of all data objects is zero.

Type Typical Range Sample Declaration
bit 0,1 bit turn = 1
bool false, true bool flag = true
byte 0..255 byte cnt
chan 1..255 chan q

mtype 1..255 mtype msg
pid 0..255 pid p
short 215,215 1 short s = 100
int 223123t 1 int x =1

unsigned 0.2"—-1,1<n<32 unsignedw: 3 =05

Support array.

unsigned w : 3 = 5 means w ranged from 0 to 7, and initially is 5.
¢ range: 0..23-1(0 to 7)
@ initial value: 5

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 16 /119

Data Objects (cont.)

There are only 2 levels of scope in PROMELA models:

& global (visible in the entire model)
& process local (visible only to the process that contains the declaration)

Example: Variable scope
active proctype main(){
int x;
{
int y;
printf("x = %d,y = %d",x,y); /* x=0 , y=0 */
X++;
y++;
}
printf("x = %d,y = %d",x,y);
/* Error: undeclared variable: y saw '')' = 41' x/
}
”

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 17 /119

Data Objects (cont.)

Enumerated Types is a set of symbolic constants:

mtype stands for message type.

There can be multiple mtype declarations but they are equivalent to a
single mtype declaration that contains the concatenation of all separate
lists of symbolic names.

Example: enumerated type

mtype = { apple, pear, orange, banana };
mtype n = pear;

User defined data type:

Example: user-defined type

typedef record{
short f1;
byte f2 = 4
};

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 18/119

Message Channels

Used to model the exchange of data between processes.

They are declared either locally or globally, but the channel itself is
always a global object.

A locally declared and instantiated channel disappears, when the
process that declare it dies.

chan gname = [16] of { short, byte, bool}
/* 16 message buffers, and each message composed of 3 fieldsx/ J

According to the capacity of channel, there are two types of channel:

¢ capacity > 0: a FIFO buffered channel is initialized (asynchronous).
& capacity = 0: a rendezvous channel is initialized (synchronous).

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 19/119

Asynchronous and Synchronous Message Passing

Synchronous rendezvous

q'm1
1
'l’ q?m1 qiml=====~ >q?m1
I
q'm2 |
I
'll q?m2 qim2===--- >q?m2
1
q'm3”’
q?m3 qm3=-=-==-- >q?m3

Asynchronous rendezvous

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 20/119

Message Passing

/*send message*/
gname ! exprl, expr2, expr3

/*receive messagex/
gname ? varl, var2, var3

Send a message to channel with corresponding values.

Retrieves a message from the channel, and copies the values into
corresponding variables.

The message will be removed from the channel buffer (optional).

It is an error to send or receive either more of fewer message fields
than declared.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 21/119

Message Passing (cont.)

A send statement on buffered channel is executable when the target
channel is non-full.
A send statement on rendezvous channel contains two steps:
a rendezvous offer: can be made at any time.
¢ a rendezvous accept: can be accepted only if another process can
perform the matching receive operation immediately (i.e., with no
intervening steps by any process).
A receive statement is executable if the first message in the channel
match the pattern from the receive statement.

A match of a message is obtained if all message fields that contain
constant values in the receive statement equal the values of the
corresponding message fields in the message.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 22/119

Rendezvous Communication

The size of the channel is set to zero.

That is, the channel can pass, but cannot store messages.

mtype = { msgtypel};
chan name = [0] of {mtype, byte};

active proctype A() {
name ! msgtype,124;
name ! msgtype,121
}

active proctype B() {
byte var;
name?msgtype,var -> printf("msgtype = %d\n", var)

}
V.
output: megtype=124
How to modify?
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 23/119

Rules for executability

Any statement in PROMELA is either executable or blocked.

6 types of basic PROMELA statements: assign, print, assert,
expression, communication (send/receive)

@ Print and assignment are always executable.
& A expression statement is executable iff evaluates to true or to a

non-zero integer value.
@ A statement is blocked iff the statement is unexecutable.

/* In c language we have to write like that: */

while (a!=b) {}

/* But we can achieve the same effect in PROMELA by */

(a==b);

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 24 /119

Control Flow

Atomic sequences, making statements be uninterruptable:
¢ atomic{...}

& d_step{...}

Non-deterministic selection and iteration
o if. fi
¢ do...od

Goto, break and labels
Escape sequences:

& {..} unless {...}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 25/119

Atomic Sequences

atomic { guard -> stmty; stmty; ...; stmt,,; }
& Executable if the guard statement is executable.
¢ Any statement can serve as the guard statement.
@ Executes all statements in the sequence without interleaving with other
processes.
@ If any statement other than the guard blocks, atomicity is lost.
Atomicity can be regained when the statement becomes executable.

atomicq{
/* swap the values of a and b */
tmp = b;
b = a;
a = tmp
}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 26 /119

D_step Sequences

d_step { guard -> stmty; stmtp; ...; stmt,; }

@ Like atomic sequence, but must be deterministic and may not block
anywhere inside the sequence.

¢ It will be an error if any statement except the guard statement in a
d_step sequence be unexecutable.

@ A Goto statement into or out of d_step sequences are forbidden.

@ Atomic and d_step sequences are often used as a model reduction
method, to lower complexity of large models.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 27 /119

Atomic and D_step Sequences Example (1/3)

active proctype A() { s1; s2 }
active proctype B() { t1; t2 }

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Atomic and D_step Sequences Example (2/3)

active proctype A() { atomic{ si1; s2 } }
active proctype B() { t1; t2 }

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Atomic and D_step Sequences Example (3/3)

active proctype A() { d_step{ s1; s2 } }
active proctype B() { t1; t2 }

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Selection

if
:: guard_1 -> stmt_1.1 ; stmt_1.2 ;
:: guard_2 -> stmt_2.1 ; stmt_2.2 ;

:: guard_n -> stmt_n.1 ; stmt_n.2 ;...
fi

The if statement is executable if at least one guard is executable.

If more than one guard is executable, than selected
non-deterministically.

If none of the guard statements is executable, the if statement blocks
until at least one of them can be selected.

Any type of basic or compound statement can be used as a guard.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 31/119

Repetition

do
:: guard_1 -> stmt_1.1 ; stmt_1.2 ;...
: guard_2 -> stmt_2.1 ; stmt_2.2 ;...

: guard_n -> stmt_n.1 ; stmt_n.2 ;...
od

The execution of the repetition structure is repeated.

If there is none executable statement in the do-loop, the entire loop
blocks.

Any type of basic or compound statement can be used as a guard.

Only a break or a goto can exit from a do-loop.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 32/119

Timeout v.s. Else
A special type of statement in selection and repetition is the else
statement.

An else statement become executable only if no other statement
within same process, at the same control-flow point, is executable.

Another similar global variable is timeout.

Timeout becomes true iff there are no executable statements in all of
currently running processes.

byte count;
active proctype counter(){
do
(count !=0) ->
if
:icount++
::count--
::else //redundant
fi
: else -> break
od
}
v

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 33/119

Label

To exit the repetition we can use goto statement and labeling.

Multiple labels may be used to label the same statement.

int x, y

active proctype Euclid(){
do
x>y) >x=x-y

x<y) >y=y-x

:: (x == y) -> goto done

od;

done: printf("answer: %d\n", x)

}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 34 /119

Unless Statement

S unless E

¢ S and E is any PROMELA fragments.

© The statement of S has a lower execution priority than the statement
of E.

& The executability of S is constraint to the non-executability of guard
statements in E.

@ If E ever becomes enabled during the execution of S, then S is aborted
and the execution continues with E.

do
:: bl -> B1
: b2 -> B2
od unless { ¢ -> C };

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 35/119

Correctness Claims

Two types of correctness requirements:

& Safety: the set of properties that the system may not violate.

@ Liveness: the set of properties that the system must satisfy.
Correctness properties can be specified as system or process invariants

(using assertions), as linear temporal logic requirements (LTL), as
formal Biichi Automata in the syntax of never claims.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 36/119

Correctness Claims (cont.)

Correctness properties in PROMELA are formalized with following
constructs:

@ Basic assertions

@ End-state labels

@ Progress-state labels

@ Never claims

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 37/119

Basic assertions

assert (expression) J

Is always executable.
If the expression evaluates to true, then has no effect.

If the expression evaluates to false, an error message will be trigger
during verifications with SPIN.

An assertions statement is the only type of correctness property in
PROMELA that can be checked during simulation runs with SPIN.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 38/119

Basic assertions (cont.)

If SPIN fails to find an assertion violation in simulation runs, this does
not mean that assertions cannot be violated,

Only a verification run with SPIN can assure that assertion wont be
violated.

The assertion statement can be used to check safety properties.

An assertion statement can be used as a system invariant.
@ Because it is in an asynchronous process, this statement may be
executed at any time.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 39/119

End-state labels

The verifier must be able to distinguish valid system end states from
invalid ones (deadlock).

By default, the only valid end states are the end of its code (the
closing curly brace in the proctype body).

But not all PROMELA processes are meant to reach the end of the
code, some may linger in a known wait state or in a valid loop.

We can use end-state label to tell the verifier that these states are
also valid.

Per PROMELA model can be any number of end-state labels, but in
the same process, they should have unique identifers .

Every label name starts with the three-letter prefix end defines an
end-state label.

The following label names are valid: endme, end0, end_of_this_ part.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 40 /119

End-state labels

mtype {p,v};
chan sema = [0] of {mtype};
active proctype Dijkstra(){

byte count = 1;

end: do
(count == 1) ->
sema ! p ; count = O
(count == 0) ->
sema 7 v ; count = 1
od
}
active [3] proctype user() {
do
:: sema 7 p; /*enterx/
skip; /*leavex/
sema ! v;
od

o

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 41/119

End-state labels

Above example is a process type Dijkstra
® The process models a semaphore with the help of a rendevous port
sema.
@ The semaphore guarantees that only one of three user processes can
enter its critical section at a time.
@ The label defines it is not error that the execution of process has not
reached its closing curly brace, but waits at the label.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 42 /119

Progress-state labels

Checking whether a statement is idling or waiting for other process to
make progress.
A progress label states that at least one of the labeled states must be
visited infinitely often in any infinite system execution.
When we add the label of progress,
& if the result of error is 0, means that there is no non-progress cycles are
found.
w no non-progress cycles shows that the label state would be visit infinite
times.
@ if the result of error is over 0,means that there is a non-progress cycle.
w non-progress cycles shows that the label state may not visit infinite
times.
Any violation of this requirement can be reported by verifier as a
non-progress cycle.(possible starvation)

The progress-state label can be used to check liveness properties.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 43 /119

Progress-state labels

active proctype Dijkstra(){ /* modify the last slide's example Dijkstra() */
/* no non-progress cycles are found */
byte count = 1;

end: do
(count == 1) ->
progress: sema ! p ; count = 0
(count == 0) ->
sema 7 v ; count = 1
od

Ask the verifier to make sure that in all infinite executions the
semaphore process reach the progress label infinitely often.

The output tell us that the error count is zero which means that no
non-progress cycles were found.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 44 /119

Progress-state labels (cont.)

byte x = 2;

active proctype A(Q)

{
do

The two processes will cause the value of the global variable x to
alternate between 2 and 1.

No progress labels were used, so every cycle is guaranteed to be a

non-progress cycle.

Every process is possibly not visit infinite times.

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker November 20, 2019 45 /119

Progress-state labels (cont.)

Below is a case where there is a non-progress cycle:

The process of type B will alternate between a progress state and a
non-progress state.

In principle, the process of type B could pause forever in its
non-progress state at the start of the loop.

byte x = 2;

active proctype A(Q)

{
do
iix =3 - x
od
}
active proctype B()
{
do
::x = 3 - X; progress: skip
od
}

v

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 46 /119

Fair cycles

weak fairness:
& if a process reaches a point where an executable statement never
change its executability, it will eventually executing the statement.
@ A process that remains enabled should eventually be executed.
& Above example enforce weak fairness in the search for non-progress

cycles.

strong fairness:
@ if a process reaches a point where a statement become executable
infinitely often, it will eventually executing the statement.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 47 /119

Never Claims

A never claim gives us the capability to check properties just before
and just after each statement execution

Originally, a never claim was meant to match behavior that should
never occur.

That is, the verifier will flag it as an error if the full behavior specified
in the claim be matched by any feasible system execution.

never{ /* if p becomes false, an error occured */
do
: !p -> break
:: else
od

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 48 /119

Never Claims (cont.)

Never claim can either be written by hands or generated mechanically
from LTL formula (SPIN has built-in translator).

”

¢ command: $ spin -f "
To translate an LTL formulae into a never claim, we have to consider
the property:

¢ Positive property (good behavior): we have to negate it at first.

¢ Negative property (bad behavior): just translate it.

For example, we want to check the positive property [] p:
(SPIN LTL syntax)

never { /x '[Ip = <>lp */
do
:: true
:: !p -> break
od

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 49 /119

SPIN's LTL Syntax

| true

| false
()

| f binop f
| unop f

—1 (always)
| <> (eventually)
| ! (logical negation)

binop 1= U (until)
| && (logical and)
|] (logical or)
| -> (implication)
| <-> (equivalence)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

November 20, 2019

50/119

Specifying LTL properties

LTL Formulae examples:

Formula Pronounced Type/Template
e always p invariance
<>p eventually p guarantee
p->(<>q) p implies eventually q response
p->(qUr) p implies q until r precedence
[<>p always, eventually p recurrence (progress)
<>[lp eventually, always p stability (non-progress/
persistence)
correlation

(<> p) -> (<> q) | eventually p implies eventually q

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 51/119

Agenda

An Introduction to SPIN
An Overview of PROMELA

¢ PROMELA Semantic
¢ PROMELA Semantic Engine
& Search algorithms

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 52/119

PROMELA Semantics

SPIN translates each process into a finite automaton.

The global behavior of the concurrent system is obtained by
computing an asynchronous interleaving product of automata, one
automaton per asynchronous process behavior.

The resulting global system behavior is itself again represented by an
automaton.

This interleaving product is often referred to as the state space of the
system, and, because it can easily be represented as a graph, it is also
commonly referred to as the global reachability graph.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 53/119

PROMELA Semantics (cont.)

By simulating the execution of a SPIN model we can generate a
reachability graph.

The PROMELA semantics rules define how the global reachability
graph for any given PROMELA model is to be generated.

Basic correctness claims in PROMELA can be interpreted as the
presence or absence of specific types of nodes or edges.

LTL properties can be interpreted as the presence or absence of
specific types of sub-graph, or paths.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 54 /119

Transition Relation

Every PROMELA proctype defines a finite state automaton,

(S,s0, L, T, F)

Symbol Finite State Automaton PROMELA Model
S Set of states Possible points of control within the proctype
L Transition label set Specific basic statement (six basic types)
T Transition relation Flow of control
F Set of final states End-state

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 55/119

Proctype and Automata(1/2)

Example: modified from Euclidean GCD

active proctype not_euclid(int x , y)

{
if
(x>y) >L: x=x-y
(x<y) >y=y-x
(x == y) -> assert (x !=y); goto L
fi
printf("%d\n'', x)
}
v
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 56 /119

Proctype and Automata(2/2)

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Operational Model(1/8)

To define the semantics of the modeling language, we can define an
operational model in terms of states and state transitions.

& We have to define what a "state” is.

® We have to define what a "transition” is.

)

w i.e., how the 'next-state’ relation is defined.

Global system states are defined in terms of a small number of
primitive objects:

¢ We have to define: variables, messages, message channels, and
processes.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 58 /119

Operational Model(2/8)

State transitions require the definition of 3 things:
@ transition executability rules
@ transition selection rules
@ the effect of transition
We only have to define one-step semantics to define the full language.

The 3 parts of the semantics definition are defined over 4 types of
objects:

@ variables, messages, channels, processes

Well define these first.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 59 /119

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */
active proctype not_euclid(){
S: if /* curval of x at S: 2 */
x>y >Lix=x-y5
X<y ->y=y-x
i x ==y —> assert(x != y); goto L
fi;
E: printf("/%d\n'', x) /* curval of x at E: 1 %/

note: domain is a finite set of integers.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

60/119

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */
active proctype not_euclid(){
S: if /* curval of x at S: 2 */
x>y >Lix=x-y5
X<y ->y=y-x
i x ==y —> assert(x != y); goto L
fi;
E: printf("/%d\n'', x) /* curval of x at E: 1 %/

note: domain is a finite set of integers.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

60/119

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */
active proctype not_euclid(){
S: if /* curval of x at S: 2 */
x>y >Lix=x-y5
X<y ->y=y-x
i x ==y —> assert(x != y); goto L
fi;
E: printf("/%d\n'', x) /* curval of x at E: 1 %/

note: domain is a finite set of integers.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

60/119

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */
active proctype not_euclid(){
S: if /* curval of x at S: 2 */
x>y >Lix=x-y5
X<y ->y=y-x
i x ==y —> assert(x != y); goto L
fi;
E: printf("/%d\n'', x) /* curval of x at E: 1 %/

note: domain is a finite set of integers.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

60/119

Operational Model(3/8)

variables, messages, channels, processes, transitions, global states

A PROMELA variable is defined by a five-tuple
{ name, scope, domain, inival, curval }

short x=2, y=1; /* global */
active proctype not_euclid(){
S: if /x curval of x at S: 2 */
x>y >Lix=x-y5
X<y ->y=y-x
i x ==y —> assert(x != y); goto L
fi;
E: printf("/d\n'', x) /* curval of x at E: 1 */

note: domain is a finite set of integers.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

60/119

Operational Model(4/8)

variables, messages, channels, processes, transitions, global states

A message is a finite, ordered set of variables
(Messages are stored in channels - defined next.)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 61/119

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch_id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.

A ch_id is a positive integer uniquely identifies the channel.
An ordered set of messages with maximally nslots elements:
{ {slotl.field1 ,slotl.field2 }, {slot2.fieldl ,slot2.field2 } }

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 62 /119

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch_id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.

A ch_id is a positive integer uniquely identifies the channel.
An ordered set of messages with maximally nslots elements:
{ {slotl.field1 ,slotl.field2 }, {slot2.fieldl ,slot2.field2 } }

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 62 /119

Operational Model(5/8)

variables, messages, channels, processes, transitions, global states

A message channel is defined by a 3-tuple
{ ch_id, nslots, contents }

chan q = [2] of { mtype, bit };

Channels always have global scope.

A ch_id is a positive integer uniquely identifies the channel.
An ordered set of messages with maximally nslots elements:

{ {slotl.field1 ,slotl.field2 }, {slot2.fieldl ,slot2.field2 } }

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 62 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }

® process instantiation number

@ finite set of local variables

@ a finite set of integers defining local states of a process

@ the initial state

@ the current state

¢ a finite set of transitions (to be defined) between elements of Istates

y ::‘// O\ N
NV

o\

T\

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }
@ process instantiation number
¢ finite set of local variables
@ a finite set of integers defining local states of a process
@ the initial state
@ the current state
¢ a finite set of transitions (to be defined) between elements of Istates

y ::‘// O\ N
NV

o\

T\

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }
@ process instantiation number
¢ finite set of local variables
& a finite set of integers defining local states of a process
@ the initial state
@ the current state
¢ a finite set of transitions (to be defined) between elements of Istates

A
N
Y

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }
@ process instantiation number
@ finite set of local variables
@ a finite set of integers defining local states of a process
& the initial state
@ the current state
¢ a finite set of transitions (to be defined) between elements of Istates

y ::‘// O\ N
NV

o\

T\

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }
@ process instantiation number
@ finite set of local variables
@ a finite set of integers defining local states of a process
@ the initial state
® the current state
¢ a finite set of transitions (to be defined) between elements of Istates

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(6/8)

variables, messages, channels, processes, transitions, global states

A process is defined by a six-tuple
{ pid, Ivars, Istates, inistate, curstate, transitions }

@ process instantiation number

@ finite set of local variables

@ a finite set of integers defining local states of a process

@ the initial state

@ the current state

¢ a finite set of transitions (to be defined) between elements of Istates

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 63 /119

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr_id, source-state, target-state, cond, effect, priority, rv }

v

"
o

@ source-state and target-state are elements from set P.Istates

¢ Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.

A

w if the condition is ture, the effect would be realize.

@ Predefined system variables that are used to define the semantics of
unless and rendezvous.

\

w priority, which is used to enforce the sematics of the unless construct
w rv, to enforce the sematics of the rendezvous operations

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 64 /119

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr_id, source-state, target-state, cond, effect, priority, rv }

®.

<

® source-state and target-state are elements from set P.Istates

¢ Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.

A

w if the condition is ture, the effect would be realize.

@ Predefined system variables that are used to define the semantics of
unless and rendezvous.

\

w priority, which is used to enforce the sematics of the unless construct
w rv, to enforce the sematics of the rendezvous operations

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 64 /119

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr_id, source-state, target-state, cond, effect, priority, rv }

by
ey
& .\/ .
"

A

® source-state and target-state are elements from set P.Istates

¢ Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.

A

w if the condition is ture, the effect would be realize.

@ Predefined system variables that are used to define the semantics of
unless and rendezvous.

\

w priority, which is used to enforce the sematics of the unless construct
w rv, to enforce the sematics of the rendezvous operations

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 64 /119

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr_id, source-state, target-state, cond, effect, priority, rv }

@ source-state and target-state are elements from set P.Istates
¢ Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
@ if the condition is ture, the effect would be realize.

@ Predefined system variables that are used to define the semantics of
unless and rendezvous.

w priority, which is used to enforce the sematics of the unless construct

w rv, to enforce the sematics of the rendezvous operations

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 64 /119

Operational Model(7/8)

variables, messages, channels, processes, transitions, global states

A transition in process P is defined by a seven-tuple
{ tr_id, source-state, target-state, cond, effect, priority, rv }

@ source-state and target-state are elements from set P.Istates
¢ Condition and effect are defined for each basic statement, and they are
typically defined on variable and channel values, possibly also on
process states.
w if the condition is ture, the effect would be realize.

Predefined system variables that are used to define the semantics of
unless and rendezvous.

@ priority, which is used to enforce the sematics of the unless construct

@ rv, to enforce the sematics of the rendezvous operations

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 64 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

@ predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple
{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }
a finite set of global variables
a finite set of processes
a finite set of message channels
predefined integer system variables that are used to define the
semantics of atomic, d_step
@ predefined integer system variables that are used to define the
semantics of rendezvous operations
& predefined boolean system variables: timeout, else, stutter
w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

@ predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

@ predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

® predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

@ predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

@ for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Operational Model(8/8)

variables, messages, channels, processes, transitions, global states

A global system state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter }

a finite set of global variables

a finite set of processes

a finite set of message channels

predefined integer system variables that are used to define the

semantics of atomic, d_step

@ predefined integer system variables that are used to define the
semantics of rendezvous operations

& predefined boolean system variables: timeout, else, stutter

w timeout and else, to enforce the sematics of the matching PROMELA
statements

& for stutter extension rule

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 65 /119

Stutter extension

The reason why we have to use stutter extension is because
PROMELA model is finite.

When we use LTL as a correctness claim, the LTL formula will be
translated into Biichi automaton.

In Biichi automaton acceptance condition, there will be an infinite
cycle pass at least one of the element of accept sets.

If we want to do the interleaving product of the Biichi automaton
with PROMELA model, we have to deal with the infinite execution.

In stutter extension, we make the final state have a transition target
to itself, with label €.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 66 /119

Initial system state

All processes are in their inital state

All global variables have curval=inival

All message channel have contents={} (empty)
exclusive and handshake are zero

timeout, else and stutter all have the initial value false

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 67 /119

One-Step Semantics(1/3)

Given an arbitrary global state of the system, determine the set of
possible immediate successor states.
@ To define a one-step semantics, we have to define 3 more things:

A

w transition executability rules
transition selection rules

)
w the effect of transition

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 68 /119

One-Step Semantics(2/3)

We do so by defining an algorithm: an implementation-independent
"semantics engine” for SPIN.

]

The semantics engine executes the model(system) in a stepwise mnner:
selection and executing one basic statement at a time

In each step, one executable basic statement is selected.

To determine if a statement is executable or not, one of the conditions
that must be evaluated is the corresponding executability clause.

If more than one statement is executable, any one of them can be
selected.

Overview of PROMELA Semantics Engine

@

For the selected statement, the effect clause from the statement is
applied.

The control state of process that executes the statement is updated.
The sematics engine continues executing statements until no
executable statements remain .

No executable statements happens when the number of processes drop
to zero, or when the remaining processes reach a system deadlock state.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 69 /119

One-Step Semantics(3/3)

We do so by defining an algorithm: an implementation-independent
"semantics engine” for SPIN.
@ At the highest level of abstraction, the behavior of this engine is
defined as follows:
w Let E be a set of pairs (p,t), with p a process, and t a transition.
w Let executable(s) be a function(later define), that returns a set of such
pairs, one for each executable transition in system state s.

L
7’

L1,r4\\ / L1, .. Li . Ln

. - W assignment statement
@,/ Lj. ,7~7>,? M assertion statement
Nabhina ¥ | m expression statement
L W print statement
N ® send statement
\"‘\) W receive statement
N -

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 70/119

PROMELA Semantics Engine

1 global states s, s'

2 processes p, p'

& transitions t, t'

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s' = apply(t.effect, s)

9

10 if (handshake == 0)

11

12 s =s8'

13 p.curstate = t.target

14 ¥

15 else

16 {

17 /* try to complete rv handshake */
18 E' = executable(s')

19 /* if E' is {}, s is unchanged */
20

21 for some (p', t') from E'

22 {

23 s = apply(t' .effect, s')
24 p. curstate = t. taregt
25 p'. curstate = t'. target
26 }

27 handshake = 0

28 }

29 }

30 }

31 while (stutter){

32 s=s /* 'stutter' extension*/

33 1}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

November 20, 2019

71/119

PROMELA Semantics Engine(1/4)

global states s, s'
processes p, p'
transitions t, t'

0N U WN -

31
32
33

Jo-Chuan Chou (SVVRL @ IM.NTU)

//E is a set of pairs (p,t)

while ((E = executable(s)) != {}){
for some (p, t) from E{

s' = apply(t.effect, s)

if (handshake == 0)

}
}

/* try to complete rv handshake */

/* if E' is {}, s is unchanged */

s = apply(t' .effect, s')
p. curstate = t. taregt
p'. curstate = t'. target

s =s8'
p.curstate = t.target
s
else
{
E' = executable(s')
for some (p', t') from E'
{
}
handshake = 0
}

while (stutter){

s =

}

s

/* 'stutter' extension*/

The SPIN Model Checker

November 20, 2019

72/119

PROMELA Semantics Engine(1/4)

As long as there are executable transitions, the sematics engine
repeatedly selects one of them at random and executes it.

The function apply applies the effect of the selected transition to the
system state, and modifies system, local variables, the contents of
channels, the values of reserved variable(such as handshake and
execlusive)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 73/119

PROMELA Semantics Engine(2/4)

1 global states s, s'

2 processes p, p'

& transitions t, t'

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s' = apply(t.effect, s)

9

10 if (handshake == 0)

11 {

12 s = s

13 p.curstate = t.target

14 }

15 else

16 {

17 /* try to complete rv handshake */
18 E' = executable(s')

19 /* if E' is {}, s is unchanged */
20

21 for some (p', t') from E'

22 {

23 s = apply(t' .effect, s')
24 p. curstate = t. taregt
25 p'. curstate = t'. target
26 }

27 handshake = 0

28 }

29 }

30 }

31 while (stutter){

32 s=s /* 'stutter' extension*/

33 1}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

November 20, 2019

74 /119

PROMELA Semantics Engine(2/4)

If no rendezvous offer was made(line 10),

¢ the global state change takes effect by an update of the system
state(line 12),

¢ and the current state of the process that executed the transition is
updated(line 13).

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 75/119

PROMELA Semantics Engine(3/4)

global states s, s'
processes p, p'

transitions t, t'

//E is a set of pairs (p,t)

0N U WN -

31
32
33

Jo-Chuan Chou (SVVRL @ IM.NTU)

while ((E = executable(s)) != {}){
for some (p, t) from E{

s' = apply(t.effect, s)

if (handshake == 0)

}
}

while (stutter){
/* 'stutter' extension*/

s =

}

/* try to complete rv handshake */

/* if E' is {}, s is unchanged */

s = apply(t' .effect, s')
p. curstate = t. taregt
p'. curstate = t'. target

p.curstate t.target

s

else

{
E' = executable(s')
for some (p', t') from E'
{
}
handshake = 0

}

s

The SPIN Model Checker

November 20, 2019

76 /119

PROMELA Semantics Engine(3/4)

If a rendezvous offer was made in the last transition,

it cannot result in a global state change unless the offer can also be
accepted
@ (line 18) the transitions that become executable are selected.
The definition of the function exetuable guarantees that this set can
only contain accepting transitions for the given offer.
@ If there are none, the global state change is declined,
@ and execution proceeds with the selection of a new executable
candidate transition from theh original set E.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 77/119

PROMELA Semantics Engine(4/4)

1 global states s, s'

2 processes p, p'

& transitions t, t'

4 //E is a set of pairs (p,t)

5

6 while ((E = executable(s)) != {}){

7 for some (p, t) from E{

8 s' = apply(t.effect, s)

9

10 if (handshake == 0)

11

12 s =s8'

13 p.curstate = t.target

14 ¥

15 else

16 {

17 /* try to complete rv handshake */
18 E' = executable(s')

19 /* if E' is {}, s is unchanged */
20

21 for some (p', t') from E'

22 {

23 s = apply(t' .effect, s')
24 p. curstate = t. taregt
25 p'. curstate = t'. target
26 ¥

27 handshake = 0

28 ¥

29 ¥

30 }

31 while (stutter){

32 s=s /* 'stutter' extension*/

33 1}

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

November 20, 2019

78/119

PROMELA Semantics Engine(4/4)

If the offer can be matched,
@ the global state change takes effect(line 23)
@ In both process, the current control state is now updated from source
to target state(line 24 and line 25).
The definition of the function exetuable guarantees that this set can
only contain accepting transitions for the given offer.
@ If there are none, the global state change is declined,
@ and execution proceeds with the selection of a new executable
candidate transition from theh original set E.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 79/119

Executability Rules

1 Set
2 executable (State s)
3 { new Set E
4 new Set e
5
6 E = {}
7 timeout = false
8 AllProcs:
9 for each active process p
10 { if (exclusive ==
11 or exclusive == p.pid)
12 { for u from high to low /* priority */
13 { e = {}; else = false
14 OneProc: for each transition t in p. tramns
15 { if (t. source == p. curstate
16 and t. prty == u
17 and (handshake 0
18 or handshake == t.rv)
19 and eval(t.cond) == true
20 { add (p, t) to set e
21 } o}
22 if (e !'= {})
23 { add all elements of e to E
24 break /* on to next process */
25 } else if (else == false)
26 { else = true
27 goto OneProc
28 } /* or else lower the priority */
29} } ¥
y
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 80/119

Executability Rules

31 if (E == {} and exclusive != 0)
32 { exclusive =0
33 goto AllProcs

35 if (E == {} and timeout == false)
36 { timeout = true

37 goto AllProcs
38}
39
40 return E
41}
.
Executability Rules is specification of procedure executable()
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 81/119

Executability Rules(1)

1 Set
2 executable (State s)
3 { new Set E
4 new Set e
5
6 E =i}
7 timeout = false
8 AllProcs:
9 for each active process p
10 { if (exclusive == 0
11 or exclusive == p.pid)
12 { for u from high to low /* priority */
13 { e = {}; else = false
14 OneProc: for each transition t in p. tramns
15 { if (t. source == p. curstate
16 and t. prty == u
17 and (handshake == 0
18 or handshake .Tv)
19 and eval(t.cond) == true
20 { add (p, t) to set e
21 } o}
22 if (e !'= {})
23 { add all elements of e to E
24 break /* on to next process */
25 } else if (else == false)
26 { else = true
27 goto OneProc
28 } /* or else lower the priority */
29} } ¥
y
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 82/119

Executability Rules(1)

31 if (E == {} and exclusive != 0)
32 { exclusive =0
33 goto AllProcs

35 if (E == {} and timeout == false)
36 { timeout = true

37 goto AllProcs
38)

39

40 return E

41}

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Executability Rules(1)

(line 10-11) The test checks the value of the reserved system variable
exclusive.

By default it is zero, and the sematics engine itself never changes the
value to non-zero.

Any transition that is part of an atomic sequence sets exclusive to the
value of p.id,

@ to make sure that the sequence is not interrupted by other processes,
unless the sequence itself blocks.

¢ If the sequence itself blocks, the sematics engine restores the
defaults.(line 32)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 84 /119

Executability Rules(2)

1 Set
2 executable (State s)
3 { new Set E
4 new Set e
5
6 E = {}
7 timeout = false
8 AllProcs:
9 for each active process p
10 o if (exclusive ==
11 or exclusive == p.pid)
12 { for u from high to low /* priority */
13 { e = {}; else = false
14 OneProc: for each transition t in p. tramns
15 { if (t. source == p. curstate
16 and t. prty == u
17 and (handshake 0
18 or handshake == t.rv)
19 and eval(t.cond) == true
20 { add (p, t) to set e
21 } o}
22 if (e !'= {})
23 { add all elements of e to E
24 break /* on to next process */
25 } else if (else == false)
26 { else = true
27 goto OneProc
28 } /* or else lower the priority */
29} } ¥
y
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 85/119

Executability Rules(2)

(line 16) The test checks the priority level, set on line 12.

Within each process, the semeatic engine selects the highest priority
transitions that are executable.

Note that priorities can affect the selection of transitions with a
process, not between processes.

Priorities are defined in PROMELA with the unless construct.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 86 /119

Executability Rules(3)

1 Set
2 executable (State s)
3 { new Set E
4 new Set e
5
6 E = {}
7 timeout = false
8 AllProcs:
9 for each active process p
10 { if (exclusive == 0
11 or exclusive == p.pid)
12 { for u from high to low /* priority */
13 { e = {}; else = false
14 OneProc: for each transition t in p. tramns
15 { if (t. source == p. curstate
16 and t. prty == u
17 and (handshake ==
18 or handshake t.rv)
19 and eval(t.cond) == true
20 { add (p, t) to set e
21 } o}
22 if (e !'= {})
23 { add all elements of e to E
24 break /* on to next process */
25 } else if (else == false)
26 { else = true
27 goto OneProc
28 } /* or else lower the priority */
29} } ¥
y
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 87 /119

Executability Rules(3)

(line 15) The test matches the source state of the transition in the
labeles transition system with the current state of the process,
selected on line 9.

(line 17-18) The test makes sure that either no rendezvous offer is
outstanding, or, if one is, that the transition being considered can
accept the offer on the corresponding rendezvous port.

(line 19) The test checks whether the executability condition for the
transition itself is satisfied.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 88/119

Executability Rules(4)

1 Set
2 executable (State s)
3 { new Set E
4 new Set e
5
6 E =i}
7 timeout = false
8 AllProcs:
9 for each active process p
10 { if (exclusive == 0
11 or exclusive == p.pid)
12 { for u from high to low /* priority */
13 { e = {}; else = false
14 OneProc: for each transition t in p. tramns
15 { if (t. source == p. curstate
16 and t. prty == u
17 and (handshake == 0
18 or handshake .rv)
19 and eval(t.cond) == true
20 { add (p, t) to set e
21 } o}
22 if (e !'= {})
23 { add all elements of e to E
24 break /* on to next process */
25 } else if (else == false)
26 { else = true
27 goto OneProc
28 } /* or else lower the priority x*/
29} } ¥
y
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 89/119

Executability Rules(4)

31 if (E == {} and exclusive != 0)
32 { exclusive =0
33 goto AllProcs

35 if (E == {} and timeout == false)
36 { timeout = true

37 goto AllProcs
38 1}

39

40 return E

41}

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Executability Rules(4)

(line 25-28) If no transition are found to be executable with the
default value false for the system variable else, the transitions of the
current process are checked again, this time with else equal to true.
(line 35-38) If no transitions are executable in any process, the value
of system variable timeout is changed to true and the entire selection
is repeated.

(line 7) The new value of timeout sticks for just one step, but it can
cause any number of transitions in any number of processes to
become executable in the current global state.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 91/119

Interpreting PROMELA models

The semantic engine

@ manipulate the basic objects of a PROMELA model.
does not have to know anything about control-flow constructs.
w e.g., if, do, break, and goto

@ merely deals with local states and transitions.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 92 /119

PROMELA Models(1/2)

Here are 3 examples:

chan x = [0] of
chan y = [0] of
active proctype
active proctype

{bit};
{bit};
AQ) {x70
BO {y70

unless
unless

y!0}
x!0}

chan x
chan y
active
active

= [0] of
= [0] of
proctype
proctype

{bit};
{bit};
AQO {x!0
BO {y70

unless
unless

y!0}
x70}

chan x = [0] of
chan y = [0] of
active proctype
active proctype

{bit};
{bit};
AQ) {x!'0
BO {y!o0

unless
unless

y?70}
x70}

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker November 20, 2019 93 /119

PROMELA Models(2/2)

Rendezvous handshakes occur in two parts:
¢ Sender offers

¢ Receiver accepts

Jo-Chuan Chou (SVVRL @ IM.NTU)

The SPIN Model Checker

Example 1:3

chan x
chan y

[0] of {bit};
[0] of {bit};
active proctype A() {x?70 unless y!O}
active proctype B() {y?0 unless x!0}

x10 y!lo
x70 y'0 y?0 x10 handshake =1{ | { Jhandshake =2
x?0 y?0

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

Example 2:3

chan x = [0] of {bit};
chan y = [0] of {bit};
active proctype A() {x!0 unless y!0}
active proctype B() {y?0 unless x70}

\
\

y!
x!10 yl0 y20 x?0 {
y?

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

0

handshake = 2

0

Example 3:3

chan x
chan y

[0] of {bit};
[0] of {bit};
active proctype A() {x!0 unless y?0}
active proctype B() {y!0 unless x70}

x10 y!0
x!0 y?0 y10| |x?0 handshake =1(| { jhandshake =2
x?70 y?0

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

Search algorithms

SPIN uses DFS algorithm for verification.
How to check Safety properies in SPIN?

How to check Liveness properies in SPIN?

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 98 /119

DEPTH-FIRST SEARCH(1/4)

1 Stack D = {}
2 Statespace V = {}
3
4 Start()
5 A
6 Add_Statespace(V, A.s0)
7 Push_Stack(D, A.s0)
8 Search()
9 }
10
11 Search()
12 {
13 s = Top_Stack(D)
14 for each (s.l,s') in A.T
15 if In_Statespace(V, s') == false
16 { Add_Statespace(V, s')
17 Push_Stack(D, s')
18 Search ()
19 }
20 Pop_Stack(D)
21}
y

Consider a finite state automatan A = (S, SO, L, T, F) that is
generated by the PROMELA semantics engine.

The algorithms performs a depth-first search to visit every state in set
A.S that is reachable from the inital state A.s0.

The algorithm uses two data structures: statck D and state space V.,

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 99 /119

DEPTH-FIRST SEARCH(2/4)

1 Stack D = {}
2 Statespace V = {}
3
4 Start()
5 A
6 Add_Statespace(V, A.s0)
7 Push_Stack(D, A.s0)
8 Search()
9 }
10
11 Search()
12 {
13 s = Top_Stack(D)
14 for each (s.l,s') in A.T
15 if In_Statespace(V, s') == false
16 { Add_Statespace(V, s')
17 Push_Stack(D, s')
18 Search ()
19 }
20 Pop_Stack(D)
21}
y

A state space is an unordered set of states.

Some of contents of set A.S is reproduced in state space V, using the
definition of initial state A.sO and transition relation A.T.

Not all elements of A.S will appear in set V because not all these
elements may be reachable from the given initial state.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 100 /119

DEPTH-FIRST SEARCH(3/4)

1 Stack D = {}
2 Statespace V = {}
3
4 Start()
5
6 Add_Statespace(V, A.s0)
7 Push_Stack(D, A.s0)
8 Search()
9 }
10
11 Search()
12 {
13 s = Top_Stack(D)
14 for each (s.l,s') in A.T
15 if In_Statespace(V, s') == false
16 { Add_Statespace(V, s')
17 Push_Stack(D, s')
18 Search ()
19 }
20 Pop_Stack (D)
21}
y

Use two routines to update the contents of state space:
& Add_Statespace(V, s): add state s as an element to state space V
& In_Statespace(V, s): returns true if s is an element of V
A stack is an ordered set of states.
¢ Because of the ordering relation, a stack has an unique top and buttom
element.(FILO)

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 101 /119

DEPTH-FIRST SEARCH(4/4)

The algorithm stores only states in set V, and no transition.

When SPIN executes the DFS algorithm, it constructs both state set
A.S and transition relation A.T on-the-fly,

¢ as an interleaving product of small automata, each one of which
represents an independent thread of control

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 102 /119

Checking Safety properies in SPIN(1/2)

1 Stack D = {}

2 Statespace V = {}

3

4 Start()

5

6 Add_Statespace(V, A.s0)

7 Push_Stack(D, A.s0)

8 Search()

9 }

10

11 Search()

12 {

13 s = Top_Stack(D)

14 if ISafety(s)

15 { Print_Stack(D)

16 I

17 for each (s.1,s') in A.T

18 if In_Statespace(V, s')== false
19 { Add_Statespace(V, s')
20 Push_Stack(D, s')
21 Search()

22 }

23 Pop_Stack(D)

24 })

The DFS algorithm visits every reachable state, and can check
arbitary state or safety properties.
It uses a generic routine for checking the state properties for any

given state s, called Safety(s).
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 103 /119

Checking Safety properies in SPIN(2/2)

The routine can flag the violation of process assertions or system
invariants that should hold at s.

Since the algorithm visit all reachable states, it has the properties
that it can identify all possible assertion violations.
The algorithm can trace how the state property was violated.

® The trace starts in initial state, and end at the property violation.

¢ That information is contained in stack D.
Print_Stack(D) prints out the elements of stack D in order, from the
bottom element up to and including the top element.
When SPIN uses, it prints each state that reached along the
execution path from the inital state to the state where a property
violation was discovered,

@ also adds some details on the transitions from set A.T that generated
each new state in path.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 104 /119

Checking Liveness properies in SPIN(1/4)

1 Stack D = {}

2 Statespace V = {}

3 State seed = nil

4 Boolean toggle = false
6

8

Start() {
Add_Statespace(V, A.sO, toggle)

9 Push_Stack(D, A.sO, toggle)
10 Search()
11}
13 Search() {
15 (s,toggle) = Top_Stack(D)
16 for each (s, 1, s') in A.T
18 { /*check if seed is reachable from ifself*/
19 if s' == seed or On_Stack(D, s' , false)
20 { PrintStack(D)
21 PopStack (D)
22 return
23 }
25 if In_Statespace(V, s', toggle) == false
26 { Add_Statespace(V, s', toggle)
27 Push_Stack(D, A.s', toggle)
28 Search ()
29 } o}
32 if (s in A.F) and (toggle == false)
33 { seed = s /* reachable accepting state */
34 toggle == true
35 Push_Stack(D, s, toggle)
36 Search() /* start 2nd search */
37 PopStack (D)
38 seed = nil
39 toggle == false
40 ¥

41 PopStack(D) }
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019

105 /119

Checking Liveness properies in SPIN(2/4)

An acceptance cycle in the reachability graph of automaton A exists if
and only if two conditions are met.

¢ First, at least one accepting state is reachable from the inital state of
the automaton A.s0O

& Second, at least one of those accepting states is reachable from itself.

The algorithm that is used in SPIN to detect reachable accepting
states that are also reachable form themselves.

The state space and stack structure store pairs of element: a state
and a boolean value toggle.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 106 /119

Checking Liveness properies in SPIN(3/4)

When the algorithm determines they an accepting state has been
reached,

¢ and all successors of that state have also been explored,

© it starts a nested search to see if the state is reachable from itself.
It does so by storing a copy of the accepting state in a global called
seed.
If this seed state can be reached again in the second search, the
accepting state was reachable from itself.
If a successor state s’ appears on the stack of the first search(that
leads to the seed state), we know that there exists a path from s’
back to the seed state.
The path is contained in stack D, starting at the state that is
matched here and ending at the first visit to the seed state, from
which the nested search was started.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 107 /119

Checking Liveness properies in SPIN(4/4)

When the first accepting state that is reachable from itself is
generated the state space cannot contain any previously visited states
with a true toggle attribute from which this state is reachable, and
thus the self-loop is constructed.

This algorithm can only guarantee that if one or more acceptance
cycle exists, at least one of them will be found.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 108 /119

Agenda

An Introduction to SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 109 /119

Embedded C code

SPIN,versions 4.0 and later, support the inclusion of embedded C

code into PROMELA models through the following five new
primitives:

Jo-Chuan Chou (SVVRL @ IM.NTU)

c_expr
c_code
c_decl

c_state
c_track

The SPIN Model Checker

November 20, 2019

110/119

Embedded C code Example 1:2

1 c_decl{
2 typedef struct Coord {
3 int x, y;
4 } Coord;
5 }
6
7 c_state "Coord pt" "Global" /*goes inside state vector*/
8
9 int z = 3; /*standard global declaration*/
10
11 active proctype example()
12 {
13 c_code { now.pt.x = now.pt.y = 0; };
14
15 do
16 :: c_expr { now.pt.x == now.pt.y} ->
17 c_code { now.pt.y++; }
18 :: else —> break
19 od;
20 c_code{
21 printf("values %d: %d, %d,%d\n",
22 Pexample->_pid, now.z, now.pt.x, now.pt.y);
23 };
24 assert(false) /* trigger an error trail */
26 }
4

In c_code and c_expr statments ,referencing to a global variable must use
keyword now,such as "now.z".

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 111 /119

Embedded C code Example 2:2

1 c_decl{
2 typedef struct Coord {
& int x, y;
4 } Coord;
5
6 c_code { Coord pt; } /*embedded declarationx/
7 c_track "&pt" "sizeof(Coord)" /xtrack value of pt*/
8
9 int z = 3; /*standard global declaration*/
10
11 active proctype example()
12 {
13 c_code { pt.x = pt.y = 0; }; /#no 'now.' prefixes */
14
15 do
16 : c_expr { pt.x == pt.y} —>
17 c_code { pt.y++; }
18 :: else -> break
19 od;
20 c_code{
21 printf("values %d: %d, %d,%d\n",
22 Pexample->_pid, now.z, pt.x, pt.y);
23 };
24 assert(false) /* trigger an error trail */
25 }
v
Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 112 /119

Agenda

An Introduction to SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 113 /119

Verification in SPIN

The goal of system verification is to establish what is possible and
what is not.

When performing verification we are interested in whether design
requirements could be violated, not how likely or unlikely such
violations might be.

To perform verification, SPIN takes a correctness claim that is
specified as a LTL, converts that formula into a Biichi automaton,
and computes the synchronous product of this claim and the
automaton representing the global state space.

The result is again a Biichi automaton.

If the language accepted by this automaton is empty, this means that
the original claim is not satisfied for the given system.

If the language is nonempty, it contains precisely those behaviors that
satisfy the original temporal logic formula.

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 114 /119

Agenda

An Introduction to SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 115 /119

DEMO

You can use the SPIN model checker in three types:
Using Command Line
Using XSPIN: old GUI (no longer supported)

Using iSPIN: new Tcl/Tk GUI for Spin version 6 or later.
Using JSPIN

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 116 /119

DEMO

Mutual_Exclusion_2.pml (using assertion)
Mutual_Exclusion_3.pml (using a monitor as invariant)
Mutual_Exclusion_4.pml (using LTL property)

Peterson__Mutual__Exclusion.pml

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 117 /119

Agenda

An Introduction to SPIN

An Overview of PROMELA

PROMELA semantics and search algorithms
Embedded C code

Verification in SPIN

DEMO

References

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker November 20, 2019 118 /119

References

G.J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual, Addison-Wesley, 2003

G.J. Holzmann, The Model Checker SPIN, IEEE Trans. Software Eng.,
vol. 23, no. 5, May 1997.

SPIN Official website

u}
)
I
il
it
5
£

Jo-Chuan Chou (SVVRL @ IM.NTU) The SPIN Model Checker

http://spinroot.com/spin/whatispin.html

	Agenda
	An Introduction to SPIN
	Agenda
	History of SPIN
	What is SPIN

	An Overview of PROMELA
	Agenda
	What is PROMELA
	Three basic objects
	Executability
	Control Flow
	Correctness Claims
	LTL Syntax

	PROMELA semantics and search algorithms
	Agenda
	PROMELA Semantics
	PROMELA Semantics Engine
	PROMELA Models Example
	Search algorithm

	Embedded C code
	Agenda
	Embedded C code
	Embedded C code Example

	Verification in SPIN
	Agenda
	Verification in SPIN

	DEMO
	Agenda
	DEMO

	References
	Agenda
	References

