Data Structures
TA Session #2

By Po-Chuan & Pei-Hsuan

104/11/02

Preface

Few things before we start

When doing you homework

Always write in nice & clear format.
. Please DO indent your code, and use monospaced fonts.

. Answer all requirements one by one. Don't skip them!

~W N R

. Read the problems carefully. Answer what they want!
(Not all problems ask you to write code.)

Assignment #2

Problem 2-1

Recursive function: getSum()

What does this problem want?

® List the criteria of a recursive function
® Gtate how the function meets the criteria
® Refer to your textbook for more information

® This problem doesn’t ask you to write code, nor does it
ask to draw a demonstration graph

Criterion A.

® Define the problem in terms of a smaller problem of the
same type

® One action of getSum() is to call itself

® Calculation of sum is made by adding the first element to
the sum of the remaining array, which is smaller than the
current array

Criterion B.

® How does each recursive call diminish the size of the
problem?

® At each recursive call to getSum(), the size of the array
you need to compute is diminished by 1

Criterion C.

® What instance of the problem can serve as the base case?

® The function handles the sum of x differently from all the
other ones: It does not generate a recursive call. Rather,
you know that getSum(x) is the element itself

(X[lower]). Thus, the base case occurs when

lower=upper.

Criterion D.

® As the problem size diminishes, will you reach this base
case?

® Giventhat@ <= Lower <= upper, criterion B assures
you that you will always reach the base case.

Grading policy

® There are 4 questions you need to ask when writing a
recursive function

® Each accounts for g5 points

Problem 2-g

Digit sum of a given positive integer

Let’s think about recursion

® What's the base case?

® WhenN<10,orN==0

® What's the answer of that?

® The sum is the digit itself

® What's the recursion formula?

N % 10 + getSum(N / 10)

int getSum(int n)

{
if (n< 10) // or if (n == 0)
return n;
else

return n % 10 + getSum(n / 10);

int getSum(int n)

{
return n < 10?2 n : n % 10 + getSum(n / 10);

Grading policy

® The base case
® The answer for the base case

® Other cases

or U1 U1 U

The answer for other cases

Problem 2-16

Box trace of binary search

Box trace

® Please refer to your textbook

® Shows the information during each iteration of the
process

® Target=g5

® First=0

® Last=7

® Mid=3

Target < x[3]
Search the left part

Part A. Box1 &2

Target =5
First=0
Last=2

Mid =1
Target=x[1]

Return 1

® Target =13

® First=0

® Last=7

® Mid=3

Target > x[3]
Search the right part

Part B. Box1& 2

Target =13

First =4

Last=7

Mid =g

Target <x[5]
Search the left part

® Target =13

® First=4

® Last=7

® Mid=g5

Target <x[5]
Search the left part

Part B. Box 2 & 3

Target =13

First =4

Last =4

Mid = 4

Target <x[4]
Search the left part!

® Target =13

® First=4

® Last=4

® Mid =4

Target < x[4]
Search the left part!

Part B. Box3 & 4

Target =13
First =4
Last =3
Mid =3
First > Last

Return -1 (not found)

Grading policy

® Part A: 2 boxes, 5 points each

® Part B: 4 boxes, 2.5 points each (your score is rounded up
to the nearest integer)

Problem 2-19

Indent the rabbit function

How to solve this problem?

® Keep the recursion depth, either as a parameter oras a
global variable

® Print the information of each function call after tabs

int rabbit(int n, string prefix = "")

{

int child = n <= 2;

cout << prefix << "Enter rabbit: n = " << n << endl;

if(n>2)

child += rabbit(n - 1, prefix + '\t') +
rabbit(n - 2, prefix + "\t');

cout << prefix << "Leave rabbit: n = " << n <<
value = " << child << endl;

return child;

Grading policy

Function prototype
Indention

The “enter” statement

The “leave” statement

Base case

Recursive call

Return the answer of rabbit()

Syntax correctness

R W W N

R W W

Problem 2-23

Euclidean algorithm

Part A. the proof

To prove gcd(a, b)=gcd(b, amodb), givenab!=0
Let X =gcd(a, b), thenleta=mX, b=nX.
Leta=bqg+r, gandrareintegers,0<=r<b
a-bg=r

By Common Divisor Divides Integer Combination,

1. all common divisors of aand b divide r (froma—-bqg=r)

2. all common divisors of b and r divide a (from bq + r = a)

https://proofwiki.org/wiki/Common_Divisor_Divides_Integer_Combination

Part A. the proof (cont.)

1. all common divisors of a and b divide r (froma—-bqg=r)
2. all common divisors of b and r divide a (from bqg + r = a)

Every common factor of (a, b) will appear in common
factors of (b, r), or (b, a mod b). (The reverse also holds.)

Therefore, these 2 sets are equal.

gcd(a, b) = gcd(b, a mod b)

Part B. when b > a...

® Supposeb>aingcd(a, b)

® The next recursive call will be
gcd(b, amod b) = gcd(b, a)

® The recursion swaps these 2 numbers and continues as
usual without a problem

Part C-1. Will it end?

® Ifb|a, then b is their GCD, and the function ends
immediately (though the problem excludes such cases)

® Otherwise, the parameters a and b will get smaller each
time

® Also assume that a > b > o (refer to part B when b > a)
® a>b,and b>amod b (by definition)

® Butaandb are both always greater than o, so
termination of the process can be done in finite steps

Part C-2: Why the base case is
appropriate?

® Whenamodb =0, bisthe greatest common divisor of a
and b (by definition.)

® Therefore, no further recursion calls are required, and the
base case is appropriate.

Grading policy

® The proof A
® Whenb>a 10
® Reach the base case 3

Why is base case appropriate 3

Assignment #3

Exercise 1.9

d.

cout << p.coefficient(p.degree());

b.

p.changeCoeffcient(p.coefficient(3) + 8, 3);

Exercise 1.9
C.

polynomial<double> add(polynomial<double> a,
polynomial<double> b)

{
polynomial<double> sum;
int high = max(a.degree(), b.degree());

for (int i = @; i <= high; ++i)
sum.changeCoeffcient(a.coefficient(1)
+ b.coefficient(i), i);

return sum;

Exercise 1.9 - Grading Policy

a(s)

® correctness 1, display result 2, using ADT operation 2
® b(5)

® correctness 3, using ADT operation 2
® c(120)

® correctness 4, syntax correctness 3, using ADT operation 3

Exercise 2.24(a)

C(n) = 0, when n=1
= 1, when n=2
= 2*C(n-1)+1, otherwise

int C(int n)
{
if(n==1) return 0;
else if(n==2) return 1;
else return 2*C(n-1)+1;

Exercise 2.24(b)

C(n) = b(n,n-1)
b(n, m) = 8, when n<1l or m«l
= 1, when n=1 or m=1
= 1+b(n,n-1), when n=m
= b(n-m, m)+b(n,m-1), otherwise

int b(int n, int m)
{
if(n<1||m<1) return 0;
else if(n==1||m==1) return 1;
else if(n==m) return 1+b(n,n-1);
else return b(n-m,m)+b(n,m-1);

Exercise 2.24(b)

® Some reference for you
® OEIS: online encyclopedia of integer sequences

® A000041 number of partitions of n

A000065 -1 + number of partitions of n.

https://oeis.org/
https://oeis.org/A000041
https://oeis.org/A000065

Exercise 2.24 - Grading Policy

® Each has 10 points
® Recursion function, 4

® Definition correctness, 6

Exercise 3.1

Class ArrayBag: public Baglnterface<ItemType>
{

public:

double getAvg() const;
}
double ArrayBag::getAvg() const
{

double avg = 0, sum = 0O;
for (int I = @; I < itemCount; i++)
sum += items[i];

avg = sum / itemCount;

return avg;

Exercise 3.1

® Reference: accumulate() in #include<numeric>

® You can use it to sum up the values

http://www.cplusplus.com/reference/numeric/accumulate/
http://www.cplusplus.com/reference/numeric/

Exercise 3.1 - Grading Policy

® using client function, 4
® function correctness, 4

: syntax correctness, 2

Exercise 3.5

class Inventory {
private:

string name;
int cost, quantity;

public:

Inventory(const string Name, const int Cost,
const int Quantity): name(Name), cost(Cost),
quantity(Quantity) {}

Inventory(): name(""), cost(@), quantity(@) {}

Exercise 3.5 (cont'd)

tring getName() const { return name; }

oid setName(const string val) { name = val; }

int getCost() const { return cost; }

void setCost(const int val) { cost = val; }

int getQuantity() const { return quantity; }

void setQuantity(const int val) { quantity = val; }

Exercise 3.5 - Grading Policy

class, 4
syntax correctness, g
operation (look at, change value), 16

attribute (product, price, quantity, date, rating...), 15

Exercise 3.9

template<typename T>
ArrayBag<T>: :ArrayBag(const int val[], int size)

{
itemCount = std::min(size, DEFAULT_CAPACITY);

maxItems = DEFAULT_CAPACITY,
for (int 1 = 0; i < itemCount; ++i)
items[1] = val[1];

Exercise 3.9

® Reference: copy() in #include<algorithm>

® You can use it to copy the values into the bag

http://www.cplusplus.com/reference/algorithm/copy
http://www.cplusplus.com/reference/algorithm/

Exercise 3.9 - Grading Policy

® template, 2

® constructor function, 2

® initializing itemCount and maxltems, 2
® createabagq, 3

syntax correct, 1

The end~

Hope you did a good job in this assignment.
Average score for assignment #2 & #3is79.7
By the TAs

104/11/02

