Data Structures
TA Session3 — hw4

By Po-Chuan & Pei-Hsuan

1. Exercise 4.2

Write C++ implementations of the pseudocodes written in the previous exercise.

Write an algorithms for adding a node the end of a list, and inserting a node in a
particular position in the list, assuming the list is ordered.

headPtr

prev_node
O

New node

1. Exercise 4.2

Write C++ implementations of the pseudocodes written in the previous exercise.

Write an algorithms for adding a node the end of a list, and inserting a node in a
particular position in the list, assuming the list is ordered.

headPtr
prev node

‘W

New node

1. Exercise 4.2

Write C++ implementations of the pseudocodes written in the previous exercise.

Write an algorithms for adding a node the end of a list, and inserting a node in a
particular position in the list, assuming the list is ordered.

template <class ItemType>
bool LinkedBag<ItemType>::add node(const ItemType& newEntry, ItemType& prev_node)
{

Node<ItemType>* newNodePtr = new Node<ItemType>(); // allocate new node

newNodePtr->setItem(newEntry); // put in the data
newNodePtr->setNext(prev_node->getNext());

// make next of new node as next of prev_node
prev_node->setNext(newNodePtr); // move the next of prev_node as new node

itemCount++;
return true;

Exercise 4.2 - Grading Policy

* itemCount++
* add a node the end of a list
* inserting a node in a particular position in the list

PN

* syntax correctness

2. Exercise 4.3 (use C++)

Suppose that the class LinkedBag did not have the data member itemCount.
Write methods:

a. To count the number of nodes

b. To display the value stored in each node in the linked chain
a.

template <class ItemType>
int LinkedBag<ItemType>::count nodes()
{
int count = ©;
Node<ItemType>* curPtr = headPtr;
while(curPtr != nullptr)
{
count++;
curPtr = curPtr->getNext();
}

return count;

2. Exercise 4.3 (use C++)

Suppose that the class LinkedBag did not have the data member itemCount.
Write methods:

a. To count the number of nodes

b. To display the value stored in each node in the linked chain

b.

template <class ItemType>
int LinkedBag<ItemType>::display()
{

Node<ItemType>* curPtr = headPtr;
while(curPtr != nullptr)

{
cout << curPtr->getItem() << endl;
curPtr = curPtr->getNext();

Exercise 4.3 - Grading Policy

* each question has 10 points
* function correctness 7
* syntax correctness 3

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

prev headPtr

N\
on [0

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

prev current rest

N\
o [T

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

prev current rest

[s

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

current rest

= (T OO e

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

prev current

N
w1 (000 B

3. Exercise 4.4 (use C++)

Specify and define a method reverse that reverses the order of the nodes in a list

headPtr

\
oufb— [T]

3. Exercise 4.4 (use C++)

template <class ItemType>

void LinkedBag<ItemType>::reverse()

{
Node<ItemType>* prev = NULL;
Node<ItemType>* current = headPtr;
Node<ItemType>* rest =NULL;

While (current != NULL)

{
rest = current->getNext(); // set rest equal to the next of current
current->setNext(prev); // set prev is the next node of current
prev = current; // move current node to be next prev node
current = rest; // move rest node to be next current node

}

headPtr = prev; // let prev node be new headPtr

Exercise 4.4 - Grading Policy

* syntax correctness 3

e function correctness 10

e use linked-list to implement 5
* final headPtr value 2

4. Exercise 4.7 (use C++)

Specify and define a method that destroy an entire list and removes the memory
used by the list.

template <class ItemType>

void LinkedBag<ItemType>::destroy list ()

{
Node<ItemType>* temp = headPtr;
while(headPtr != nullptr)

{

headPtr = headPtr->getNext();

delete temp; // destroy it

temp = headPtr; // move headPtr node to next temp
}

itemCount = ©;

Exercise 4.7 - Grading Policy

* syntax correctness 5

* function correctness 10

e use linked-list to implement 5
* itemCount=0 2

5.

State the advantages of linked list-based implementations of the ADT bag over array-
based ones, and the other way around.

Compared to array, list does not have a size limit, so you can use space whenever you
need it. Moreover, list does not need to predict the maximum number of items, while
array needs. Therefore, List performs generally better in inserting, extracting and
moving elements in any position. However, list-based requires more space to store an
item and needs more time than array-based to access any item.

5 - Grading Policy

Missing each answer will lose 3 points.

Data Structures
TA Session3 — hw6

By Po-Chuan & Pei-Hsuan

1. Exercise 6.4

Train stack

Identify three stacks in the figure.
o BIFPIRHEZ - F - BEREEMR) - AFT=E -

How they relate to each other?

- —EEENTRBENMREE

o Hop— @0 pop() R E - A —HMEE N push() AT - HFETH
ZITERBERAZERET ; R 2R

How can you use this system to construct any possible
oermutation of railroad cars?

|: initial permutation
M: tmp stack
T: target permutation

while | is not empty
pop from | to M and search the desired car

move thatcarinto T
move all cars in M back to |

Grading policy

* |dentify 3 stacks 7
* How they are related 7
* Construct any possible sequence 6

2. Exercise 6.6

String Correction

6-6 a. stack contents (stack from bottom to top)

a a — abd
b ab — ab
C abc f abf
— ab g abfg
d abd — abf
e abde h abfh

6-6 c. C++ implementation

string correct(const string& input)

{

stack<char> s;
string ret;

for (int 1 = 0; i < input.size(); ++i)

if (input[1] = '«') // letters
s.push(input[i]); // push to s
else
s.pop(); // delete a letter

for(; !s.empty(); s.pop())

ret = s.top() + ret; // append to ret
return ret;

Grading policy

* 6-6a. 10
* String correction
* Reverse order
* Internal stack

= N N O

* Return the string

3. Exercise 6.9

Palindrome

6-9 b. (stack from bottom to top)

Stack contents

C
0 C

o bc
o b c

bc

C

O T O WInN T T O

6-9 d. (stack from bottom to top)

X X

y y X

y Yy X
Z ZY VY X
S ZYy VX
% Yy X
y y X

Grading policy

e 2 problemsin this set (10 points * 2)
e 1 point deduction for each error

4. Exercise 6.12

Infix to postfix

6-12 b. (stack from bottom to top)

—mm o sacposin_

(ab+

a (a C *(ab+c

+ (Z)L a - 5)(ab+c

b (+ ab d *(- ab+cd

) ab+) ab+cd-*
E 3

* ab+

6-12 c. (stack from bottom to top)

-m —Mm

*

(abc**

a (a - - abc**

* (* a d abc**d

((*(a + + abc**d

b (*(ab e + abc**d-e

* (*(* ab é) (b/ abc**d-e

C (*(* abc f +/ abc**d-ef
(

abc* abc**d-ef/+

B

p

Grading policy

e 2 problems in this set (10 points * 2)
* 1 point deduction for each error

5. Exercise 6.12

Stack axioms

Prove that any stack is equal to a stack that is in canonical
form.
When a set is empty (length = 0), the assertion is correct.

Suppose a set of length of n, S, is in canonical form.
S.push() creates a set of length of n + 1, which is also in canonical form.

il S

By M.l., we prove that any stack is equal to a stack that is in canonical form.

Simplify expression

e (aStack.push(item)).pop() = aStack:

((((((((((new Stack()).push(6)).push(9)).pop()).pop()).
push(2)).pop()).push(3)).push(1)).pop()).peek()

=((((((((new Stack()).push(6)).pop()).push(2)).pop()).push(3)).push(1)).pop()).peek()
=((({(((new Stack()).push(2)).pop()).push(3)).push(1)).pop()).peek()

=((((new Stack()).push(3)).push(1)).pop()).peek()

=((new Stack()).push(3)).peek()

Simplify expression

» (aStack.push(item)).peek()=item:
((new Stack()).push(3)).peek()=3

* Problem assertion is correct.

Grading policy

* Proof 10
Explanation 8

e Expression simplification 10

The end™

Hope you did a good job in this assighnment.
Average score is 79.6

By the TAs

104/11/30

