Data Structures
Homework Solution 7 and 8

By Po-Chuan & Pei-Hsuan

HW 7

7.1

Write a C++ function that, given as input two objects of a class that implements the
ADT list, returns a new list obtained from concatenating the two lists (by appending
the second to the end of the first). The function should behave like a client of the

ADT list, independent from its implementation

7.1

template <typename ItemType>

List<ItemType>::concatenate list(List<ItemType> A list, List<ItemType> B_list)

{
List<Itemtype> newlList = new List<ItemType>();
int alen = A _list.getLength();
int blen = B_list.getLength();

for (int i=1; i<alen; i++) newlList.insert(i, a.getEntry(i));
for (int i=1; i<blen; i++) newlList.insert(i+alen, b.getEntry(i));
return newlList;

7.1 Grading Policy

e function prototype (2 lists)
e return a new list
e appends correctly

~ 00 b~ b

e client function

7.2 Exercise 10.5

Consider the following C++ function f, which calls the function swap. Assume that
swap exists an simply swaps the contents of its two arguments. How many
comparisons does f perform? Count only the number of comparisons between two

void f(int theArray[], int n)

entries of the array.

j=0, i will run 1 time
j=1, i will run 2 times
j=2, i will run 3 times
j=3, i will run 4 times
j=n-1, i will run n times

So, total is

nn+1)

1+2+3+tn=—"

{

for (int j = @; j < n; ++J)

{
int 1 = 0;
while (i <= j)
{
if (theArray[i] < theArray[j])
swap(theArray[i] , theArray[j]);
i++;

7.2 Grading Policy

e correct answer 20

7.3 Exercise 10.9

Show that 7n? + 5n is not 0(n)

According to the definition of order O(), algorithm A is order f(n) — denoted O(f(n)) — if
constants k and n, exist such that A requires no more than k x f(n) time units to solve a
problem of size n 2 n,,.

Assume there exists a k and for n > nythat 7n® + 5n < cn..

However, we can’t find a k for n 2 n, to match this formula.

Therefore, 7n? + 5n is not O (n).

7.4 Grading Policy

e smooth explanation or proof 20
e deductions for errors

7.4 Exercise 11.2

Trace the insertion sort as the following array into ascending order: 45 13 27 52 18 25
Show which pair of entries are compared and which pair are exchanged as the
algorithm executes.

7.4 Exercise 11.2

Index [1] [2] 3] [4] [5] [6]
1 45 13 27 52 18 25 Copy 13
2 13 45 27 52 18 25 Shift 45
3 13 27 45 52 18 25 Insert 13, copy 27
4 13 27 45 52 18 25 Shift 45
3 13 27 45 18 52 25 Insert27, copy 52, insert 52
2 13 27 18 45 52 25 Copy 18
4 13 18 27 45 52 25 Shift 27, 45, 52
5 13 18 27 45 52 25 Insert 18, copy 52
4 13 18 27 45 25 51 Shift 27, 45, 52
5 13 18 27 25 45 51 Insert 25
13 18 25 27 45 51

7.4 Grading Policy

e each stage 4
e each error -1
e Trace another sort method -8

7.5 Exercise 11.10

Trace the merge sort algorithm as it sorts the following array into ascending order. List
the calls to mergeSort and merge in the order in which they occur. 20 80 40 25 60 30

20 80 40 25 60 30
20 80 40 25 60 30
20 80 40 25 60 30
20 80 25 60

mergeSort —<

merge

20 | 80 | 40 | 25 | 60 | 30
20 | 80 | 40 25 60 | 30
20 80 4’0 25 60 310
0] [s0]] 5] (@] /
2(\)\ /:;o 25 \\ /6/0
20 \\?‘i)\ i 80 25\:;(,) 60
20 25\\3:(; ’21—0//60 30

7.5 Grading Policy

e each divide and conquer 3
e wrong division or merge -1
e Didn’t list down mergeSort(), merge() -5

HW 8

8.1 Exercise 13.7

(You should provide an appropriate declaration and also an implementation for the
new display operation, both in C++.)

An operation that displays the contents of a queue can be useful during program
debugging. Add a display operation to the ADT queue such that display uses only ADT
gueue operation, so it is independent of the queue’s implementation.

8.1 Exercise 13.7

template<class ItemType>
bool implementQueue<ItemType>::display queue(const implementQueue& aQueue)

{
while(!aQueue.isEmpty())
{

cout << aQueue.peekFront() << endl;
aQueue.dequeue();

¥

return true;

implementQueue can be ListQueue or ArrayQueue

8.2 Exercise 13.11

(Note that the customer being served is not part of the queue representing the waiting line.)

With the following data, hand-trace the execution of the bank-line simulation that this chapter
describes. Each line of data contains an arrival time and a transaction time. Show the state of
the queue and the event list at each step.

59
7 5
14 5
30 5
32 5
34 5

Note that at time 14, there is a tie between the execution of an arrival event and a departure
event.

By using the arrival time and the transaction length, the simulation can

easily determine the time at which a customer departs.

Data
59
7 5
14 5
30 5
32 5
34 5

Arrive length Start Departure
Customerl 5 9 5 14
Customer?2 7 5 14 19
Customer3 14 5 19 24
Customer4 30 5 30 35
Customer5 32 5 35 40
Customer6 34 5 40 45

Use a queue to represent the line of customers in the bank. Let’s trace the bank
simulation algorithm.

Time bankQueue eventList_PrioirtyQueue
0
AS59 A75 A145 ||A305 |[|A325 |[A345
5
A75 A145 || D14 - ||A305 ||A325 ||A345
7
A75 A145 ||D14- ||[A305 ||[A325 ||A345
14
A 14 5 D14 - [[D19- |A305 ||A325 |[A345
19
A 14 5 D24- |A305 ||A325 ||A345
24
A305 ||A325 ||A345

Time bankQueue eventList_PrioirtyQueue
24
A305 |[|A325 |[|A345
30
A325 ||A345 | D35-
32
A 325 A345 | |D35-
34
A325 | A345 D 35 -
35
A 345 D 40 -
40

D 45 -

8.3 Exercise 14.2 (Use C++)

Repeat the previous exercise, but implement a memory-safe copy constructor instead.
If a memory allocation fails, this constructor should release all memory that was
allocated prior to the failure and then throw an exception.

Previous exercise: Implement the copy constructor for the class LinkedQueue that is
declared in Listing 14-3. Hint: look at the copy constructor for the ADT stack in Listing 7-

4 of Chapter 7.

8.3 Exercise 14.2 (Use C++)

template<class ItemType>
ListQueue<ItemType>::ListQueue(const ListQueue& aQueue)

{
for (auto i = aQueue.listPtr; i != nullptr; i = i->getNext())
if (! enqueue(i->getItem()))
{
delete this;
throw PrecondViolatedExcep("Memory allocation failed.");

8.4 Exercise 14.2

Using the binary search tree, write the sequence of nodes visited in

a. preorder b. postorder c.inorder

preorder 46> 15=>9->30=->20->40-> 60
(root => left => right)
postorder 9=->20=->40=->30=>15->60=> 46

(left = right = root)

inorder
(left => root => right)

9=>15->20->30->40-> 46> 60

46

15 60

30

20 40

8.5 Exercise 15.11

Consider the binary search tree in Figurel5-18. What tree results after you insert the
nodes in that order. Draw the tree resulted from inserting 90, 25, 65, 27,57, and 10 or
(90, 25,45,27,57 and 10) in that order and also the tree from inserting the same nodes

but in the reversed order. Show just the final result; no need to draw the intermediate
trees.

90 90

25 25

or

10 65 10 A5

27 57 27 57

	Data Structures �Homework Solution 7 and 8
	HW 7
	7.1
	7.1
	7.1 Grading Policy
	7.2 Exercise 10.5
	7.2 Grading Policy
	7.3 Exercise 10.9
	7.4 Grading Policy
	7.4 Exercise 11.2
	7.4 Exercise 11.2
	7.4 Grading Policy
	7.5 Exercise 11.10
	投影片編號 14
	7.5 Grading Policy
	HW 8
	8.1 Exercise 13.7
	8.1 Exercise 13.7
	8.2 Exercise 13.11
	投影片編號 20
	投影片編號 21
	投影片編號 22
	8.3 Exercise 14.2 (Use C++)
	8.3 Exercise 14.2 (Use C++)
	8.4 Exercise 14.2
	8.5 Exercise 15.11

