Data Structures

Homework #9 Solution

By Po-Chuan

Q1

Proof of time complexity

The target of this problem

Lil@
e o = Y =, PN R = P R
£ 1 o I/ Y i 7 OF a9) & X £ 1 am Y. Y £ NOT .)
Uy | — | LY o K | 3 7 Wit - U0 I0)e2 5. Fi |
N & N [X0 £ y ™ o N = i) 4

Please teeill that

£ fa = A o "R e
O | risxil « Mol T W 2 Wn
< y Ly) W &\ A d.,r'u)

The proof 1/2

% Proof of f(n) = O(log, n) = f(n) = O(logy n)
@ |f(n)] < Mllogan|Vn = ng

® We take N = M

logy a
¢ |f(n)| < Mllog, n| = N|logy,n| ¥ n=ng

¢ f(n) = 0(logp n)
o f(n) = 0(logy n) = f(n) = 0(log, n) is proved.

mae

o

Q2

Classify sorting algorithms
as stable or unstable

Stable algorithms

1. Insertion sotrt

. 2. Bubble sort

3. Merge sort

Unstable algorithms

1. Selection sort

. 2. Quick sort .

* Generally, quick sort 1s unstable, but stable

implementation of quick sort also exists

Why 1t’s stable or not?

1. Selection sort — unstable

® Because selection sort swaps the minimum element
by the first element after the sorted segment, which |

causes one element to go after its counterpart.

Why 1t’s stable or not?

2. Bubble sort — stable

®* Because bubble sort doesn’t sort elements with the
same value, the relative order of all elements with the ,

same value 1s therefore reserved.

Q3

Prove that a strictly binary tree with n leafs has exactly
2n-1 nodes

The proon

* When n=1, the proposition holds.

* Suppose the proposition hold when n=k.

* When n=k+1, we have to insert 2 nodes under one
of the leat nodes of a strictly binary tree with n
nodes. The tree 1s still a strictly binary tree since the
only status-changed node has 2 children.

* By M.L, the proposition is true.

Q4

Level-order traversal implementation

Hint: using BES

The pseudocode

Queue<node> bfs;
bfs.push(root);
while bfs is not empty
print bfs.front
for all nodes v under bfs.front
bfs.push(v)
bfs.pop

Q5

Preorder traversal of a general tree

The code...

template<typename T>

. void preorder(GeneralTree<T>* root)
{ &=

cout << root->getItem() << endl;

i€ (root->getleftChildPtr() = RulLpER)
preorder(root->getLeftChildPtr());

if (root->getRightChildPtr() != nullptr)
preorder(root->getRightChildPtr());

The end~

	Data Structures
	Q1
	The target of this problem
	Please recall that…
	The proof 1/2
	The proof 2/2
	Q2
	Stable algorithms
	Unstable algorithms
	Why it’s stable or not?
	Why it’s stable or not?
	Q3
	The proof
	Q4
	The pseudocode
	Q5
	The code…
	The end~

