
Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 1 / 114 

Data Structures 

Advances in C++ (1) 

Ling-Chieh Kung 

 
Department of Information Management 

National Taiwan University 

 

Pointers Classes Inheritance and polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 2 / 114 

Outline 

• Pointers 

• Classes 

• Inheritance and polymorphism 

 

 

 

 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 3 / 114 

Pointers 

• A pointer is a variable which stores a memory address. 

– An array variable is a pointer.  

• To declare a pointer, use *.  

 

• Examples: 

 

– These pointers will store addresses.  

– These pointers will store addresses of int/double variables.  

• We may point to any type.  

• To point to different types, use different types of pointers.  

 

type pointed* pointer name;  type pointed *pointer name; 

int *ptrInt; double* ptrDou; 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 4 / 114 

Pointer assignment 

• We use the address-of operator & to obtain a variable’s address: 

 

 

• The address-of operator & returns the (beginning) address of a variable.  

• Example: 

– ptr points to a, i.e., ptr  

stores the address of a.  

• When assigning an address, the two types must match.  

pointer name = &variable name 

int a = 5; 

int* ptr = &a; 

int a = 5; 

double* ptr = &a; // error!  

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 5 / 114 

• int a = 5; 

• double b = 10.5; 

• int* aPtr = &a; 

• double* bPtr = &b; 

• cout << &a; // 0x20c644 

• cout << &b; // 0x20c660 

• cout << &aPtr; // 0x20c658 

• cout << &bPtr; // 0x20c64c 

 

 

Variables in memory 

Address Identifier Value 

Memory 

0x20c64c 
bPtr 0x20c660 

0x20c650 

0x20c658 
aPtr 0x20c644 

0x20c65c 

0x20c660 
b 10.5 

0x20c664 

0x20c644 a 5 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 6 / 114 

Address operators 

• There are two address operators. 

– &: The address-of operator. It returns a variable’s address. 

– *: The dereference operator. It returns the pointed variable (not the value!). 

• For int a = 5: 

– a equals 5.  

– &a returns an address (e.g., 0x22ff78). 

• For int* ptrA = &a: 

– ptrA stores an address (e.g., 0x22ff78). 

– *ptrA returns a, the variable pointed by the pointer.  

• A pointer pointing to nothing should be assigned nullptr or 0.  

 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 7 / 114 

Address operators 

• Example: 

 

 

 

 

 

int a = 10; 

int* p1 = &a; 

cout << "value of a = " << a << endl; 

cout << "value of p1 = " << p1 << endl; 

cout << "address of a = " << &a << endl; 

cout << "address of p1 = " << &p1 << endl; 

cout << "value of the variable pointed by p1 = " << *p1 << endl; 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 8 / 114 

• Examples: 

 

 

 

 

 

Address operators and nullptr 

int a = 10; 

int* ptr = nullptr;  

ptr = &a; 

cout << *ptr; // 10 

*ptr = 5;  

cout << a;    // 5 

a = 18;  

cout << *ptr; // 18 

int a = 10; 

int* ptr1 = nullptr;  

int* ptr2 = nullptr; 

ptr1 = ptr2 = &a; 

cout << *ptr1; // 10 

*ptr2 = 5;      

cout << *ptr1; // 5 

(*ptr1)++;  

cout << a;     // 6 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 9 / 114 

Address operators and nullptr 

• Dereferencing a null pointer shutdowns the program (a run-time error).  

int* p2 = nullptr; 

cout << "value of p2 = " << p2 << endl; 

cout << "address of p2 = " << &p2 << endl; 

cout << "the variable pointed by p2 = " << *p2 << endl; 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 10 / 114 

Pointers and arrays 

• An array variable is a pointer!  

– It records the address of the first element of the array.  

– When passing an array, we pass a pointer. 

– The array indexing operator [] indicates offsetting.   

• To further understand this issue, let’s study pointer arithmetic.  

– Using +, –, ++, and –– on pointers.  

 

 

 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 11 / 114 

Indexing and pointer arithmetic 

• The array indexing operator [] is just an interface for doing pointer arithmetic.  

 

 

 

 

 

 

– An array variable (e.g., x) stores an address, but ++ and -- work only on 

pointer variables (e.g., y).  

• Interface: a (typically safer and easier) way of completing a task.  

– x[i] and *(x + i) are identical.  

– But using the former is safer and easier.  

 

int x[3] = {1, 2, 3}; 

int* y = x; 

for(int i = 0; i < 3; i++) 

  cout << x[i] << " "; // x[i] == *(x + i)  

for(int i = 0; i < 3; i++) 

  cout << *(y++) << " "; // bad! 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 12 / 114 

References and pointers 

• Recall this example:  

• When invoking a function and passing 

parameters, the default scheme is to “call 

by value” (or “pass by value”). 

– The function declares its own local 

variables, using a copy of the arguments’ 

values as initial values.  

– Thus we swapped the two local 

variables declared in the function, not 

the original two we want to swap. 

• To solve this, we can use “call by reference” 

or “call by pointer.” 

void swap (int x, int y); 

int main() 

{ 

  int a = 10, b = 20; 

  cout << a << " " << b << endl;  

  swap(a, b); 

  cout << a << " " << b << endl;  

}  

void swap (int x, int y) 

{ 

  int temp = x; 

  x = y; 

  y = temp; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 13 / 114 

Call by reference 

• A reference is a variable’s alias.  

• The reference is another variable that refers to the variable. 

• Thus, using the reference is the same as using the variable. 

 

 

 

 

• int& d = c is to declare d as c’s reference.  

– This & is different from the & operator which returns a variable’s address.  

• int& d = 10 is an error.  

– A literal cannot have an alias! 

int c = 10; 

int& d = c; // declare d as c’s reference 

d = 20; 

cout << c << endl; // 20 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 14 / 114 

Call by reference 

• Now we know how to change a 

parameter’s value: 

– Instead of declaring a usual local 

variable as a parameter, declare a 

reference variable.  

• This is to “call by reference”.   

void swap (int& x, int& y); 

int main() 

{ 

  int a = 10, b = 20; 

  cout << a << " " << b << endl; 

  cout << &a << "\n";  

  swap(a, b); 

  cout << a << " " << b << endl;  

}  

void swap (int& x, int& y) 

{ 

  cout << &x << "\n";  

  int temp = x; 

  x = y; 

  y = temp; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 15 / 114 

Call by pointers 

• To call by pointers:  

– Declare a pointer variable as a parameter. 

– Pass a pointer variable or an address (returned 
by &) at invocation. 

• For the swap() example:  

 

 

 

 

 

• Invocation becomes swap(&a, &b); 

 

void swap(int* ptrA, int* ptrB) 

{ 

  int temp = *ptrA; 

  *ptrA = *ptrB; 

  *ptrB = temp; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c660 a 10 

0x20c664 b 20 

0x20c644 ptrA 0x20c660 

0x20c64c ptrB 0x20c664 

0x20c658 temp 10 

0x20c660 a 20 

0x20c664 b 10 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 16 / 114 

Call by pointers 

• How about the following implementation?  

 

 

 

 

 

– Invocation: swap(&a, &b); 

• Will the two arguments be swapped? What really 
happens?  

 

 

void swap(int* ptrA, int* ptrB) 

{ 

  int* temp = ptrA; 

  ptrA = ptrB; 

  ptrB = temp; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c660 a 10 

0x20c664 b 20 

0x20c644 ptrA 0x20c660 

0x20c64c ptrB 0x20c664 

0x20c658 temp 0x20c660 

0x20c644 ptrA 0x20c664 

0x20c64c ptrB 0x20c660 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 17 / 114 

Static memory allocation 

• In C/C++, we declare an array by specifying it’s length as a constant variable or 

a literal. 

– int a[100];  

• A memory space will be allocated to an array during the compilation time.  

– 400 bytes will be allocated for the above statement.  

• This is called “static memory allocation”.  

• We may decide the length of an array “dynamically”.  

– That is, during the run time.  

• To do so, we must use a different syntax.  

– All types of variables may also be declared in this way.  

 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 18 / 114 

Dynamic memory allocation 

• The operator new allocates a memory space and returns the address.  

– In C, we use a different keyword melloc.  

• new int; allocates 4 bytes without recording the address. 

• int* a = new int; makes a store the address of the space. 

• int* a = new int(5); makes the space contains 5 as the value. 

• int* a = new int[5]; allocates 20 bytes (for 5 integers).  

– a points to the first integer.  

• Dynamically allocated arrays cannot be initialized with a single statement.  

– A loop, for example, is needed.  

 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 19 / 114 

Dynamic memory allocation 

• All of these spaces are allocated during the run time.  

• So we may write 

 

 

 

 

• This allocates a space according to the input from users.  

 

 

int len = 0; 

cin >> len; 

int* a = new int[len]; 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 20 / 114 

Dynamic memory allocation 

• A space allocated during the run time has no name! 

– On the other hand, every space allocated during 

compilation time has a name.  

• To access a dynamically-allocated space, we use a 

pointer to store its address.  

 

 

int len = 0; 

cin >> len; // 3 

int* a = new int[len]; 

for (int i = 0; i < len; i++) 

  a[i] = i + 1; 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c658 len 0x20c658 len 3 

0x20c660 
a 0x20c644 

0x20c664 

0x20c644 

N/A 0x20c648 

0x20c64c 

0x20c644 

N/A 

1 

0x20c648 2 

0x20c64c 3 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 21 / 114 

Example: Fibonacci sequence 

• Recall the repetitive implementation 

of generating the Fibonacci sequence.  

• After we get the value of sequence 

length n, we dynamically declare an 

array of length n.  

• Then just use that array!  

double fibRepetitive (int n) 

{ 

  if (n == 1) 

    return 1; 

  else if (n == 2) 

    return 1; 

  double* fib = new double[n]; 

  fib[0] = 1; 

  fib[1] = 1; 

  for (int i = 2; i < n; i++) 

    fib[i] = fib[i - 1] + fib[i - 2]; 

  double result = fib[n - 1]; 

  delete[] fib; // to be explained 

  return result; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 22 / 114 

Memory leak 

• For spaces allocated during the compilation time, 

the system will release these spaces automatically 

when the corresponding variables no longer exist.  

void func(int a) 

{ 

  double b; 

} // 4 + 8 bytes are released 

int main() 

{ 

  func(10); 

  return 0; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c64c a 10 

0x20c658 b ? 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 23 / 114 

Memory leak 

• For spaces allocated during the run time, the 

system will NOT release these spaces unless it is 

asked to do so.  

– Because the space has no name! 

void func() 

{ 

  int* bPtr = new int[3]; 

}  

// 8 bytes for bPtr are released  

// 12 bytes for integers are not 

int main() 

{ 

  func( ); 

  return 0; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c65c bPtr 0x20c648 

0x20c648 N/A ? 

0x20c64c N/A ? 

0x20c650 N/A ? 

0x20c65c 

0x20c660 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 24 / 114 

Memory leak 

• Programmers must keep a record for all spaced 

allocated dynamically. 

 

 

 

 

• This problem is called memory leak.  

– We lose the control of allocated spaces.  

– These spaces are wasted.  

– They will not be released unit the program ends.  

double* b = new double; 

*b = 5.2; 

double c = 10.6; 

b = &c; // now no one can access  

        // the space containing 5.2 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c648 b 

0x20c654 N/A ? 

0x20c648 b 0x20c654 

0x20c654 N/A 5.2 

0x20c660 c 10.6 

0x20c648 b 0x20c660 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 25 / 114 

Releasing spaces manually 

• The delete operator will 

release a dynamically-

allocated space. 

 

 

• The delete operator will 

do nothing to the pointer. 

To avoid reusing the 

released space, set the 
pointer to nullptr.  

 

int* a = new int; 

delete a; // release 4 bytes 

int* b = new int[5];  

delete b; // release only 4 bytes!  

          // Unpredictable results may happen 

delete [] b; // release all 20 bytes 

int* a = new int; 

delete a;  // a is still pointing to the address 

a = nullptr;  // now a points to nothing 

int* b = new int[5];  

delete [] b; // b is still pointing to the address 

b = nullptr;    // now b points to nothing 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 26 / 114 

Two-dimensional dynamic arrays 

• With static arrays, we may create matrices as two-dimensional arrays.  

• An m by n two-dimensional array has:  

– m rows (single-dimensional arrays).  

– Each row has n elements.  

• With dynamic arrays, we now may create matrices with different row lengths.  

– We may still have m rows.  

– Now each row may have different number of elements.  

– E.g., a lower triangular matrix.  

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 27 / 114 

Example: lower triangular arrays 

• int* array = new int[10]; declares an 

array of integers.  

• int** array = new int*[10]; declares 

an array of integer pointers! 

– The type of array[0] is int*.  

– The type of array[1] is int*.  

• Then each of these integer pointers may store 

the address of a dynamic integer array.  

– And their lengths can be different. 

 

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); // later 

  return 0;  

} 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 28 / 114 

Example: lower triangular arrays 

• Let’s visualize the 

memory events.  

• In general, the 

spaces of the three 

1-dim dynamic 

arrays may be 

separated.  

• However, the 

spaces of the array 

elements in each 

array are 

contiguous.  

 

 

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); // later 

  return 0;  

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

0x20c668 

0x20c66c 

0x20c670 

0x20c674 

0x20c678 

0x20c67c 

0x20c680 

Memory 

0x20c644 r 3 

0x20c648 Array 0x20c654 

0x20c654 N/A ? 

0x20c65c N/A ? 

0x20c664 N/A ? 

0x20c654 N/A 0x20c66c 

0x20c66c N/A ? 0x20c66c N/A 1 

0x20c670 N/A ? 

0x20c674 N/A ? 

0x20c65c N/A 0x20c670 

0x20c670 N/A 1 

0x20c674 N/A 2 

0x20c664 N/A 0x20c678 

0x20c678 N/A ? 

0x20c67c N/A ? 

0x20c680 N/A ? 

0x20c678 N/A 1 

0x20c67c N/A 2 

0x20c680 N/A 3 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 29 / 114 

Example: lower triangular arrays 

• To pass a two-dimensional dynamic array, just pass that pointer.  

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); 

  return 0;  

} 

int print(int** arr, int r) 

{ 

  for(int i = 0; i < r; i++) 

  { 

    for(int j = 0; j < i; j++) 

      cout << arr[i][j] << " "; 

    cout << "\n"; 

  } 

} 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 30 / 114 

Outline 

• Pointers 

• Classes 

• Inheritance and polymorphism 

 

 

 

 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 31 / 114 

Class definition 

• To define a class:  

– Simply change struct to class.  

– We may also define the function inside the  

class definition block.  

• Compilation error! Why?  

 

 

 

class MyVector 

{ 

  int n;  

  int* m;  

  void init(int dim);  

  void print();  

}; 

void MyVector::init(int dim) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = 0; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

int main() 

{ 

  MyVector v; 

  v.init(5); 

  delete [] v.m; 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 32 / 114 

Visibility 

• We can/must set visibility of members in a class: 

– Public members can be accessed anywhere. 

– Private members can be accessed only in the class. 

– Protected members will be discussed later in this semester.  

• These three keywords are the visibility modifiers.  

• By default, all members’ visibility level is private.  

– That is why v.init(5) generates a compilation error; init() is private 

and cannot be invoked outside the class (e.g., in the main function).  

• By setting visibility, we can hide/open our instance members.  

– Usually all instance variables are private.  

– Let’s see how to do this.  

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 33 / 114 

Visibility 

• A class with different 

visibility levels:  

• Private instance members 

can only be accessed 

inside the definition of 

instance functions.  

– E.g., init() and 

print().  

• Public instance members 

can be accessed 

everywhere.  

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  void init(int dim);  

  void print();  

}; 

int main() 

{ 

  MyVector v; 

  v.init(5); // OK! 

  delete [] v.m; 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 34 / 114 

Why data hiding?  

• Setting members to private is to do 

data hiding.  

• Why bother?  

• By setting members to private, we 

control the way that they are accessed.  

– We can better predict how others 

may use our class.  

• As an example, now we can prevent 
inconsistency between n and the length 

of m!  

 

int main() 

{ 

  MyVector v; 

  v.init(5); // fine 

  v.n = 3; // compilation error! 

  delete [] v.m; 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 35 / 114 

Why data hiding? 

• As another example, we do not want a vector to be 

printed out in strange formats, such as {0, 10, 20}, 

[0, 10, 20), (0-10-20), etc.  

– We want they all look the same, like (5, 6, 7).  

– If we allow other programmers to access n and m, 

they can print out a vector in any way they like!  

– So we privatize instance variables and provide a 
public member function print() to control 

(restrict) the way of printing a vector.  

• These public member functions are often called 

interfaces. All others should communicate with the 

class through interfaces.  

 

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  void init(int dim);  

  void print();  

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 36 / 114 

Encapsulation 

• The concepts of packaging (grouping member variables and member functions) 

and data hiding together form the concept of “encapsulation”. 

– Roughly speaking, we pack data (member variables) into a black box and 

provide only controlled interfaces (member functions) for others to access 

these data.  

– Others should not even know how those interfaces are implemented.  

• For OOP, there are three main characteristics/functionalities:  

– Encapsulation.  

– Inheritance.  

– Polymorphism.  

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 37 / 114 

Constructors 

• A constructor is an instance function of a class.  

– However, it is very special. 

• A constructor will be invoked automatically when the object is created.   

– It must be invoked.  

– It cannot be invoked twice. 

– It cannot be invoked by the programmer manually.  

• Usually it is used to initialize the object.  

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 38 / 114 

Constructors 

• A constructor’s name is the same as the class. 

• It does not return anything, not even void.  

• You can (and usually will) overload them. 

• The constructor with no parameter is the 

default constructor. 

• If, and only if, a programmer does not define 

any constructor, the compiler makes a 

default one which does nothing.  

• A constructor may be private.  

– Be invoked only by other constructors.  

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim);  

  MyVector(int dim, int value);   

  void print();  

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 39 / 114 

Constructors for MyVector 

• Let’s define our class MyVector with constructors: 

 

 

 

 

 

 

 

 

 

• Just like usual functions, a constructor may have a default argument.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int value = 0);   

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; 

  m = nullptr; 

} 

MyVector::MyVector(int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 40 / 114 

Constructors for MyVector 

• Now, in the main function, we assign initial values when we declare objects:  

 

 

 

 

 

 

 

• If any member variable needs an initial value when an object is created, you 

should write a constructor to initialize it.  

• Use constructor overloading to provide flexibility.  

 

int main() 

{ 

  MyVector v1(1); 

  MyVector v2(3, 8); 

  v1.print(); // (0) 

  v2.print(); // (8, 8, 8) 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 41 / 114 

Destructors 

• A destructor is invoked right before an object is destroyed.  

– It must be public and have no parameter.  

• The compiler provides a default destructor that does nothing.  

• To define your own destructor, use ~:  

class MyVector 

{ 

  // ... 

public: 

  // ... 

  ~MyVector() { cout << "Bye~\n"; } 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 42 / 114 

Why destructors? 

• Suppose we do not define our own destructor.  

• Then there may be memory leak when an object is destroyed. 

– When there is dynamic memory allocation.  

 
MyVector::MyVector 

  (int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

  // no destructor 

}; 

int main() 

{ 

  if (true)  

    MyVector v1(1);  

    // memory leak 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 43 / 114 

Why destructors? 

• One typical mission for a destructor is to release those dynamically allocated 

memory spaces pointed by member variables.  

– The default destructor does not do this. We must do this by ourselves.  

 MyVector::MyVector 

  (int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

  ~MyVector() {  

    delete [] m;  

  } 

}; 

int main() 

{ 

  if (true)  

    MyVector v1(1);  

    // no memory leak 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 44 / 114 

Object pointers 

• A class is a (self-defined) data type.  

• A pointer may point to any data type.  

– A pointer may point to an object, i.e., store the address of an object.  

• Recall the class MyVector:  

 
int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v; // object pointer 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 45 / 114 

Object pointers 

• What we have done is to use an object to invoke instance functions.  

– E.g., a.print() where a is an object and print() is an instance function. 

• If we have a pointer ptrA pointing to the object a, we may write 

(*ptrA).print() to invoke the instance function print().  

– *ptrA returns the object a.  

• To simplify this, C++ offers the member access operator ->.  

– This is specifically for an object pointer to access its members.  

– (*ptrA).print() is equivalent to ptrA->print(). 

– (*ptrA).x is equivalent to ptrA->x. 

 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 46 / 114 

• An example of using an object pointer: 

– new MyVector(5) dynamically allocates a memory space.  

 

 

 

 

 

 

 

  

Object pointers 

int main() 

{ 

  // an object pointer 

  MyVector* ptrV = new MyVector(5);  

  // instance function invocation 

  ptrA->print();  

  delete ptrV; 

  return 0; 

} 

int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v;  

  v.print(); 

  ptrV->print();   

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 47 / 114 

Why object pointers? 

• Object pointers are more useful than pointers for basic data types. Why?  

• Passing a pointer into a function is more efficient than passing the object. 

– A pointer can be much smaller than an object.  

– Copying a pointer is easier than copying an object.  

• Other reasons will be discussed in other lectures. 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 48 / 114 

Passing objects into a function 

• Consider a function that takes three vectors and returns their sum.  

 

 

 

 

 

 

 

 

– We need to create four MyVector objects in this function.  

 

MyVector sum 

  (MyVector v1, MyVector v2, MyVector v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

int MyVector::getN()  

{ return n; } 

int MyVector::getM(int i)  

{ return m[i]; } 

MyVector::MyVector 

  (int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 49 / 114 

Passing object pointers into a function 

• We may pass pointers rather than objects into this function:  

 

 

 

 

 

 

 

 

– We need to create only one MyVector object in this function.  

– Nevertheless, using pointers to access members requires more time.   

 

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1->getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 50 / 114 

Passing object references  

• We may also pass references:  

 

 

 

 

 

 

 

 

– We create only one MyVector object in this function. 

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 51 / 114 

Constant references  

• While we may want to pass references to save time, we need to protect our 

arguments from being modified.  

 

 

 

 

 

– Save time while being safe!  

• Should we do the same thing when passing object pointers?  

MyVector cenGrav 

  (const MyVector& v1, const MyVector& v2, const MyVector& v3) 

{ 

  // ... 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 52 / 114 

Copying an object 

• Consider the following program:  

 

 

 

 

 

 

 

 

 

• Why just one “A” when invoking f()? Why no “A” when a4 is created?   

 

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // A 

  A a4 = a1; // nothing! 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 53 / 114 

Copying an object 

• Creating an object by “copying” an object is a special operation.  

– When we pass an object into a function using the  

call-by-value mechanism.  

– When we assign an object to another object.  

– When we create an object with another object as the  

argument of the constructor.  

• When this happens, the copy constructor will be invoked.  

– If the programmer does not define one, the compiler adds a default copy 

constructor (which of course does not print out anything) into the class.  

– The default copy constructor simply copies all member variables one by 

one, regardless of the variable types.  

 

 

 

f(a1, a2, a3); 

A a4 = a1; 

A a5(a1); 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 54 / 114 

Copy constructors 

• We may implement our own copy constructor.  

• In the C++ standard, the parameter must be a constant reference.  

– If calling by value, it will invoke itself infinitely many times.  

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

  A(const A& a) { cout << "a"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // aaaA 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 55 / 114 

Shallow copy 

• If no member variable is an array/pointer, the default copy constructor is fine.  

• If there is any array or pointer member variable, the default copy constructor 

does “shallow copy”.  

– And two different vectors may share the same space for values.  

– Modifying one vector affects the other!  

MyVector::MyVector(const MyVector& v) 

{ // this is what done by the default 

  // copy constructor 

  n = v.n; 

  m = v.m; // shallow copy 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 56 / 114 

Deep copy 

• To correctly copy a vector (by creating new values), we need to write our own 

copy constructor.  

• We say that we implement “deep copy” by ourselves.  

– In the self-defined copy constructor, we manually create another dynamic 

array, set its elements’ values according to the original array, and use m to 

record its address.  

MyVector::MyVector(const MyVector& v) 

{ // this is what should be done 

  n = v.n; 

  m = new int[n]; // deep copy 

  for(int i = 0; i < n; i++) 

    m[i] = v.m[i]; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 57 / 114 

Static members    

• A class contains some instance variables and functions.  

– Each object has its own copy of instance variables and functions.  

• A member variable/function may be an attribute/operation of a class.  

– When the attribute/operation is class-specific rather than object-specific.  

– A class-specific attribute/operation should be identical for all objects.  

• These variables/functions are called static members.  

 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 58 / 114 

• In MS Windows, each window is 

an object.  

• Each window has some object-

specific attributes.  

• They also share one class-specific 

attribute: the color of their title 

bars.  

Static members: an example   

class Window 

{ 

private: 

  int width; 

  int height; 

  int locationX; 

  int locationY;  

  int status; // 0: min, 1: usual, 2: max 

  static int barColor; // 0: gray, ... 

  // ... 

public: 

  static int getBarColor();  

  static void setBarColor(int color); 

  // ... 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 59 / 114 

Static members: an example  

• We have to initialize a static 

variable globally.  

 

• To access static members, use 
class name::member name. 

int main() 

{ 

  Window w; // not used 

  cout << Window::getBarColor(); 

  cout << endl; 

  Window::setBarColor(1); 

  return 0;  

} 

int Window::barColor = 0; // default 

 

int Window::getBarColor() 

{ 

  return barColor; 

} 

 

void Window::setBarColor(int color) 

{ 

  barColor = color; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 60 / 114 

Good programming style 

• If one attribute should be identical for all objects, it should be declared as a 

static variable.  

– Do not make it an instance variable and try to maintain consistency.  

• Some rules regarding static members:  

– We may access a static member inside an instance function.  

– We cannot access an instance member inside a static function.  

• Though not suggested, we may access a static member through an object.  

– This will confuse the reader. 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 61 / 114 

Another way of using static members 

• One may use a static variable to count the number of active (alive) objects.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  ~A() { A::count--; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  if(true) 

    A a1, a2, a3; 

  cout << A::getCount() << endl; // 0 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 62 / 114 

Getters and setters 

• In most cases, instance variables are private.  

• For them to be accessed, sometimes people 

implement getters and setters for them.  

– A getter simply returns the value of a private 

instance variable.  

– A setter simply modifies a private instance 

variables to a given value.  

• What are the benefits and costs for having getters and 

setters?  

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

 int getN() { 

    return n; 

  } 

  void setN(int v) { 

    n = v; 

  } 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 63 / 114 

friend for functions and classes 

• To “open” private members, another way is to declare “friends.” 

• One class can allow its friends to access its private members. 

• Its friends can be global functions or other classes.  

– Then inside test() and member functions of  

Test, those private members of MyVector can  

be accessed.  

– MyVector cannot access Test’s members.  

• A friend can be declared in either the public or  

private section. It does not matter.  

• A class must declare its friends by itself.  

– One cannot declare itself as another one’s friend!  

class MyVector 

{ 

  // ... 

friend void test();  

friend class Test; 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 64 / 114 

friend: an example 

 

 

void test() { 

  MyVector v; 

  v.n = 100; // syntax error if not a friend 

  cout << v.n; // syntax error if not a friend 

} 

class Test { 

public: 

  void test(MyVector v) { 

    v.x = 200; // syntax error if not a friend 

    cout << v.x; // syntax error if not a friend 

  } 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 65 / 114 

friend for functions and classes 

• Declare friends only if data hiding is preserved.  

– Do not set everything public!  

– Use structures rather than classes when nothing should be private.  

– Write appropriate public member functions (e.g., getters and setters).  

• friend may also help you hide data. 

– If a private member should be accessed only by another class/function, we 

should declare a friend instead of writing a getter/setter.  

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 66 / 114 

this 

• When you create an object, it 

occupies a memory space.  

• Inside an instance function, 
this is a pointer storing the 

address of that object.  

– this is a C++ keyword.  

• When the compiler reads 
this, it looks at the memory 

space to find the object.  

• The two implementations are 

identical:  

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < this->n - 1; i++) 

    cout << this->m[i] << ", "; 

  cout << this->m[this->n - 1] << ")\n"; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n - 1] << ")\n"; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 67 / 114 

this 

• Suppose that x is an instance variable.  

– Usually you can use x directly instead of this->x. 

– However, if you want to have a local variable or function parameter 

having the same name as an instance variable, you need this->. 

 

 

 

 

 

• A local variable hides the instance variable with the same name.  

– this->x is the instance variable and x is the local variable.  

MyVector::MyVector(int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

MyVector::MyVector(int n, int m[]) 

{ 

  this->n = n; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 68 / 114 

Constant objects 

• Some variables are by nature constants.  

 

 

• We may also have constant objects.  

 

 

– This is the origin in R3. It should not be modified.  

• Should there be any restriction on instance function invocation?  

const double PI = 3.1416; 

const MyVector ORIGIN_3D(3, 0); 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 69 / 114 

Constant objects 

• A constant object cannot invoke a function 

that modifies its instance variables.  

– In C++, functions that may be invoked 

by a constant object must be declared 

as a constant instance function.  

• For a constant instance function: 

– It can be called by non-constant objects.  

– It cannot modify any instance variable.  

• For a non-constant instance function:  

– It cannot be called by constant objects 

even if no instance variable is modified.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 70 / 114 

Constant instance variables 

• We may have constant instance variables.  

– E.g., for a vector, its dimension should 

be fixed once it is determined.  

• Obviously, a constant instance variable 

should be initialized in the constructor(s).  

– However:  

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; // error!  

  m = nullptr; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 71 / 114 

Member initializers 

• For a constant instance variable:  

– It cannot be assigned a value.  

– It cannot be initialized 

globally.  

• We need a member initializer.  

– A specific operation for 

initializing an instance 

variable.  

– Can also be used for 

initializing non-constant 

instance variables.  

 

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector() : n(0), m(nullptr) {} 

  MyVector(int dim, int v[]) : n(dim) 

  { 

    for(int i = 0; i < n; i++) 

      m[i] = v[i];     

  }  

  // ... 

}; 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 72 / 114 

Initializing constant instance variables 

• Member initializers can also be used when constructors are implemented outside 

the class definition block.  

 

 

 

 

 

 

 

 

• Member initializers are used a lot in general.  

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  // ... 

}; 

MyVector::MyVector()  

  : n(0), m(nullptr) 

{ 

} 

MyVector::MyVector(int dim, int v[])  

  : n(dim) 

{ 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

Pointers Classes Inheritance and polymorphism 

Basics of classes Objects and pointers Miscellaneous issues 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 73 / 114 

Outline 

• Pointers 

• Classes 

• Inheritance and polymorphism 

 

 

 

 

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 74 / 114 

Inheritance 

• Through inheritance, we may create new 

classes from existing classes.  

– A derived (child) class inherits a base 

(parent) class.  

– A child class has (some) members 

defined in the parent class.  

• Recall that we have defined MyVector.  

– A two-dimensional (2D) vector is a 

vector!  

• Let’s create a class for 2D vector by  

inheritance.  

 

class MyVector 

{ 

protected: // to be explained 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 75 / 114 

Child class MyVector2D 

 

 

 

 

 

 

 

 

 

• That is all for MyVector2D!  

– The modifier public will be discussed later.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

    

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 76 / 114 

Inheriting parent class’ members 

• Members in the parent class are automatically defined in the child class.  

– Except private members, constructors,  

and the destructor.  

– A protected member can only be accessed  

by itself and its successors.  

• What are the members of MyVector2D?  

class MyVector 

{ 

protected: 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 77 / 114 

Invoking parent class’ constructors 

• The parent class’ constructor will not be inherited.  

• One of them will be invoked before the child class’ constructor is invoked.  

– Create the parent before creating the child!  

• If not specified, the parent’s default constructor will be invoked.  

MyVector::MyVector()  

  : n(0), m(nullptr)  

{ 

} 

 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

  // this->m = nullptr is redundant 

} 

int main() 

{ 

  MyVector2D v; 

  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 78 / 114 

Invoking parent class’ constructors 

• To specify a parent’s constructor to call, use  the syntax for member initializer:  

– Pass appropriate arguments to control the behavior.  

MyVector::MyVector(int n, double m[]) 

{ 

  this->n = n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

  // not MyVector(2, m) here!  

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 79 / 114 

Invoking copy constructors 

• How about the copy constructor?  

• If we do not define one for the child,  

the system provides a default one.  

• Before the child’s default copy  

constructor is invoked, the  

parent’s copy constructor will be  

automatically invoked.  

MyVector::MyVector(const MyVector& v) 

{ 

  this->n = v.n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = v.m[i];  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no copy constructor 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 80 / 114 

Invoking copy constructors 

• If we define a copy constructor for the child, we must specify the constructor 

we want to invoke!  

– Otherwise the parent’s default constructor will be invoked.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  MyVector2D(const MyVector2D& v) {}  

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  MyVector2D w(v); 

  w.print(); // error 

    

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 81 / 114 

Invoking parent’s member functions 

• Once member variables are set properly, typically all the member functions of 

the parent can be used with no error.  

void MyVector::print() const  

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

    

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 82 / 114 

Invoking parent class’ destructor 

• When an object of the child class is to  

be destroyed: 

– First the child’s destructor is invoked.  

– Then the parent’s destructor is  

invoked automatically, even if we do  

not define a destructor for the child.  

MyVector::~MyVector()  

{  

  delete [] m;  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no destructor 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 83 / 114 

Defining new members for the child 

• A child may have its own  

members.  

– The parent has no way to  

access a child’s member.  

• Let’s define a setValue()  

function without using arrays:  

– Note that this should never 
be a member of MyVector.  

• We may also define new  

member variables and static  

members.  

 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

}; 

void MyVector2D::setValue(double i1, double i2) 

{ 

  if(this->m == nullptr) 

    this->m = new double[2]; 

  this->m[0] = i1; 

  this->m[1] = i2; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 84 / 114 

Function overriding 

• We may also redefine existing  

member inherited from a parent.  

– This typically happens to  

member functions.  

– We say that we override the  

member function.  

• As an example, let’s override  
print():  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

  void print() const; 

}; 

void MyVector2D::print() const 

{ 

  cout << "2D: ("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 85 / 114 

Function overriding 

• To override a parent’s member function, define a child’s member function with 

exactly the same function signature.  

– A child object will invoke the child’s implementation.  

– The parent’s implementation becomes hidden to a child object.  

• Inside the child class, we may invoke a parent’s member function by using ::.  

 

 

 

 

– Use it if consistency can be enhanced.  

void MyVector2D::print() const 

{ 

  cout << "2D: "; 

  MyVector::print(); 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 86 / 114 

Overriding a constant function 

• What will happen to the following 

program?  
class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

  void print() const 

  { 

    cout << "2D: "; 

    MyVector::print(); 

  } 

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // 2D 

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // No 2D 

   

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 87 / 114 

Overriding a constant function 

• How about this?  

class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // error!  

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // No 2D 

   

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 88 / 114 

Cascade inheritance 

• While a child inherits its parent, it may have a grandchild  

inheriting itself.  

• How may we create a class for two-dimensional  

nonnegative vectors?  

– {(x, y) | x ≧ 0, y ≧ 0}.  

• A 2D nonnegative vector is a 2D vector!  

• Let’s use inheritance again.  

 

MyVector 

 

 

MyVector2D 

 

 

NNVector2D 

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 89 / 114 

Child class NNVector2D  

• Defining NNVector2D is simple:  

 

 

 

 

 

 

 

 

– Why not specifying a parent’s constructor?  

– What happens when an NNVector2D object is created?   

class NNVector2D : public MyVector2D 

{ 

public: 

  NNVector2D(); // do we need it?  

  NNVector2D(double m[]);   

  void setValue(double i1, double i2); 

}; 

NNVector2D::NNVector2D() 

{ 

} 

NNVector2D::NNVector2D(double m[]) 

{ 

  this->m = new double[2]; 

  this->m[0] = m[0] >= 0 ? m[0] : 0; 

  this->m[1] = m[1] >= 0 ? m[1] : 0;   

} 

void NNVector2D::setValue 

  (double i1, double i2) 

{ 

  if(this->m == nullptr) 

    this->m = new double[2]; 

  this->m[0] = i1 >= 0 ? i1 : 0; 

  this->m[1] = i2 >= 0 ? i2 : 0;   

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 90 / 114 

Cascade inheritance 

• In general, a class has all the protected and public members (excluding 

constructors and destructors) of its predecessors.  

• When an object is created:  

– Constructors are invoked from the oldest class to the youngest class.  

– Each constructor can specify a one-level-above constructor to invoke.  

– Only one level!  

• When an object is destroyed:  

– Destructors are invoked from the youngest to the oldest.  

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 91 / 114 

Inheritance visibility 

• Recall that we added the modifier public when MyVector2D inherits 

MyVector and when NNVector2D inherits MyVector2D.  

– This modifier specifies the inheritance visibility.  

– It shows how this child modify the member visibility set by its predecessors.  

• When one inherits something from its parent, it may narrow the visibility of 

these members.  

– E.g., if my parent set its to protected, I may set it to private.  

– E.g., if my parent set its to private, I cannot set it to public.  

• Why only narrowing?  

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 92 / 114 

Inheritance visibility 

• In general, the visibility of a member in a child class depends on:  

– The member visibility by the parent.  

– The inheritance modifier.  

 

 

 

 

 

 

 

• If you have no idea, just use public inheritance.  

Member visibility 

by the parent 

Inheritance modifier 

public protected private 

public public protected private 

protected protected protected private 

private private private private 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 93 / 114 

Class Character 

• There is a public function beatMonster(int exp): 

– It is invoked when the character beats a monster.  

– exp is the number of experience points earns in this battle.  

– This function increments the accumulated experience points and checks 

whether there should be a level up. If so, a private member function 
levelUp() is invoked.  

• There is a private function levelUp(): 

– The character's level will be incremented. 

– However, her abilities will remain the same because characters of different 

occupations should get different improvements.  

– This should be specified in Warrior and Wizard.  

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 94 / 114 

Class Character 

 class Character 

{ 

protected: 

  string name; 

  int level; 

  int exp; 

  int power; 

  int knowledge; 

  int luck; 

  static const int expForLevel = 100; 

  void levelUp(int pInc, int kInc, int lInc); // private member function 

public: 

  Character(string n, int lv, int po, int kn, int lu); 

  void beatMonster(int exp); 

  void print(); 

  string getName(); 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 95 / 114 

Class Character 

• Basic ideas and the first example 

• Virtual functions 

 

Character::Character(string n, int lv, int po, int kn, int lu)  

  : name(n), level(lv), exp(pow(lv - 1, 2) * expForLevel), power(po), knowledge(kn), luck(lu) {} 

void Character::beatMonster(int exp) { 

  this->exp += exp; 

  while(this->exp >= pow(this->level, 2) * expForLevel) 

    this->levelUp(0, 0, 0); // No improvement when advancing to the next level 

} 

void Character::print() { 

  cout << this->name  

       << ": Level " << this->level << " (" << this->exp << "/" << pow(this->level, 2) * expForLevel 

       << "), " << this->power << "-" << this->knowledge << "-" << this->luck << "\n"; 

} 

void Character::levelUp(int pInc, int kInc, int lInc) { 

  this->level++; this->power += pInc; this->knowledge += kInc; this->luck += lInc;     

} 

string Character::getName() { 

  return this->name; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 96 / 114 

Character, Warrior, and Wizard 

• Character should not be used to 

create an object.  

– No improvement when advancing 

to the next level.  

– Personal attributes for 

improvements per level are not 

defined.  

• We define two derived classes 
Warrior and Wizard:  

– Character is an abstract class.  

– Warrior and Wizard are 

concrete classes.  

 

Character 

 

 

Warrior 

 

 

Wizard 

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 97 / 114 

Classes Warrior and Wizard 

 
class Warrior : public Character 

{ 

private: 

  static const int powerPerLevel = 10; 

  static const int knowledgePerLevel = 5; 

  static const int luckPerLevel = 5; 

public: 

  Warrior(string n) : Character(n, 1, powerPerLevel, knowledgePerLevel, luckPerLevel) {} 

  Warrior(string n, int lv)  

    : Character(n, lv, lv * powerPerLevel, lv * knowledgePerLevel, lv * luckPerLevel) {} 

  void print() { cout << "Warrior "; Character::print(); }   

  void beatMonster(int exp) // function overriding 

  { 

    this->exp += exp; 

    while(this->exp >= pow(this->level, 2) * expForLevel) 

      this->levelUp(powerPerLevel, knowledgePerLevel, luckPerLevel); 

  } 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 98 / 114 

Classes Warrior and Wizard 

 
class Wizard : public Character 

{ 

private: 

  static const int powerPerLevel = 4; 

  static const int knowledgePerLevel = 9; 

  static const int luckPerLevel = 7; 

public: 

  Wizard(string n) : Character(n, 1, powerPerLevel, knowledgePerLevel, luckPerLevel) {} 

  Wizard(string n, int lv)  

    : Character(n, lv, lv * powerPerLevel, lv * knowledgePerLevel, lv * luckPerLevel) {} 

  void print() { cout << "Wizard "; Character::print(); }   

  void beatMonster(int exp) // function overriding 

  { 

    this->exp += exp; 

    while(this->exp >= pow(this->level, 2) * expForLevel) 

      this->levelUp(powerPerLevel, knowledgePerLevel, luckPerLevel); 

  } 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 99 / 114 

Some questions 

• We may create Warrior and Wizard 

objects in our program.  

– May we prevent one from 
creating a Character object?  

• A “team” has at most ten members.  

– We create two arrays, one for 

warriors and one for wizards. 

Each of them has a length of 10.  

– Why wasting spaces?  

 

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  // some other functions 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 100 / 114 

Some questions 

• We may need to add a 

warrior/wizard, let a 

warrior/wizard beat a monster, 

and print the current status of a 

warrior/wizard.  

– Characters’ names are all 

different.  

• Either we write two functions 

for a task, or write just one.  

– Two: tedious and 

inconsistent.  

– One: Inefficient.  

 

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  void addWar(string name, int lv); 

  void addWiz(string name, int lv); 

  void warBeatMonster(string name, int exp); 

  void wizBeatMonster(string name, int exp); 

  void printWar(string name); 

  void printWiz(string name); 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 101 / 114 

Polymorphism 

• The key flaw is to create two arrays, one for warriors and one for wizards.  

– May we use only one array to store the ten members?  

– But Warrior and Wizard are different classes.  

• While they are different classes, they have the same base class.  

– They are all Characters!  

– May we declare a Character array to store Warrior and Wizard objects?  

• We can. This is called polymorphism.  

– In C++, the way we implement polymorphism is to  

“Use a variable of a parent type to  

store a value of a child type.” 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 102 / 114 

Variables vs. values 

• Let’s differentiate a variable’s type and a value’s type.  

• A variable can store values and must have a type.  

– E.g., a double variable is a container which “should” store a double value.  

• A value is the thing that is stored in a variable.  

– E.g., 12.5 or 7.  

• A value has its own type, which may be different from the variable’s type.  

• In C++, a parent variable can store a child object.  

– A Character variable can store a Warrior or a Wizard object.  

– Because a warrior/wizard is a character!  

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 103 / 114 

Examples of polymorphism 

• For example, we may do this:  

 

 

 

 

• Or we may do this with pointers:  

int main 

{ 

  Warrior w("Alice", 10); 

  Character c = w; // copy constructor 

  cout << c.getName() << endl; // Alice 

  return 0; 

} 

int main 

{ 

  Warrior w("Alice", 10);   

  Character* c = &w; 

  cout << c->getName() << endl; // Alice 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 104 / 114 

Polymorphism with arrays 

• Polymorphism is useful typically with functions or arrays:   

int main 

{ 

  Character* c[3];  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  // do not delete [] c; 

  return 0; 

} 

int main 

{ 

  Character c[3]; // Need a default constructor!  

  Warrior w1("Alice", 10); 

  Wizard w2("Sophie", 8); 

  Warrior w3("Amy", 12); 

  c[0] = w1; 

  c[1] = w2; 

  c[2] = w3; 

  for(int i = 0; i < 3; i++) 

    c[i].print();  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 105 / 114 

Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  void addWarrior(string name, int lv); 

  void addWizard(string name, int lv); 

  void warriorBeatMonster(string name, int exp); 

  void wizardBeatMonster(string name, int exp); 

  void printWarrior(string name); 

  void printWizard(string name); 

}; 

class Team 

{ 

private: 

  int memberCount; 

  Character* member[10]; 

public: 

  Team(); 

  ~Team(); 

  void addMember 

    (string name, int lv, char occupation); 

  void memberBeatMonster(string name, int exp); 

  void printMember(string name); 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 106 / 114 

Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

Team::Team() 

{ 

  this->memberCount = 0; 

  for(int i = 0; i < 10; i++) 

    member[i] = nullptr; 

} 

Team::~Team() 

{ 

  for(int i = 0;  

      i < this->memberCount;  

      i++) 

    delete this->member[i]; 

} 

void Team::addMember 

  (string name, int lv, char occupation) 

{ 

  if(this->memberCount < 10) 

  { 

    if(occupation == 'R') 

      this->member[this->memberCount] = new Warrior(name, lv); 

    else if(occupation == 'D') 

      this->member[this->memberCount] = new Wizard(name, lv); 

    this->memberCount++; 

  } 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 107 / 114 

Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

void Team::memberBeatMonster(string name, int exp) 

{ 

  for(int i = 0; i < this->memberCount; i++) 

  { 

    if(this->member[i]->getName() == name) 

    { 

      this->member[i]->beatMonster(exp); 

      break; 

    } 

  }   

} 

void Team::printMember(string name) 

{ 

  for(int i = 0; i < this->memberCount; i++) 

  { 

    if(this->member[i]->getName() == name) 

    { 

      this->member[i]->print(); 

      break; 

    } 

  } 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 108 / 114 

Remaining questions 

• We still cannot prevent one from creating a Character object.  

• What happens to the following program:   

– No “Warrior ” and “Wizard ” printed out.  

– No experience point accumulated.  

• Why?  

– Because the default setting is to invoke the  

parent’s implementation.  

– To invoke the child’s one, we need virtual  

functions.  

 

int main() 

{ 

  Character* c[3];  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  c[0]->beatMonster(10000); 

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 109 / 114 

Early binding vs. late binding 

• When we do A a = b or A* a = &b, we are using 

polymorphism.  

• For A a = b, the system does early binding:  

– a occupies only four bytes for storing i.  

– a does not have a space for storing j.  

– Its type is determined to be A at compilation.  

• For A* a = &b, the system does late binding:  

– a is just a pointer.  

– It can point to an A object or a B object.  

– Its “type” can be determined at the run time.  

 

class A 

{ 

protected: 

  int i; 

public: 

  void a() { cout << "a\n"; }  

  void f() { cout << "af\n"; }  

}; 

 

class B : public A 

{ 

private: 

  int j; 

public: 

  void b() { cout << "b\n"; } 

  void f() { cout << "bf\n"; } 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 110 / 114 

Early binding vs. late binding 

• But we still see the parent’s implementation being invoked. Why?  

 

 

 

 

 

 

 

 

• To ask the system to invoke the child’s implementation, we need to declare 

virtual functions.  

int main() 

{ 

  A a; 

  B b; 

  A* who = &a; 

  who->f(); // af 

  who = &b; 

  who->f(); // af 

 

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 111 / 114 

Virtual functions 

• If we declare a parent’s member function to be virtual, its invocation priority 

will be lower than a child’s (if we use late binding).  

– To do so, simply add the modifier virtual into the function header:  

– The child’s implementation is invoked!  

• No need to do that at the child’s side.  

– A parent can declare its function as  

a virtual function.  

– A child cannot declare a parent’s  

function as virtual (it is of no use).  

• In summary, we need: 

– Late binding + virtual functions.  

 

 

class A 

{ 

private: 

  int i; 

public: 

  void a() { cout << "a\n"; }  

  virtual void f() { cout << "af\n"; }  

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 112 / 114 

Virtual functions 

• For our Character class, simply declare  

beatMonster() and print() as virtual.  

 

 

 

 

 

 

 

• Warrior and Wizard override the two functions.  

Now their implementations get invoked.  

class Character 

{ 

protected: 

  // ... 

public: 

  Character(string n, int lv, int po, int kn, int lu); 

  virtual void beatMonster(int exp); 

  virtual void print(); 

  string getName(); 

}; 

int main 

{ 

  Character* c[3];  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  c[0]->beatMonstor(10000); 

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 113 / 114 

Abstract classes 

• The two virtual functions are different in their natures:  

– print() is invoked in the children’s implementations.  

– beatMonster() should not be invoked by any one.  

• We may set beatMonster() to be a pure virtual function:  

 

 

 

 

– Now we do not need to implement it.  

– Moreover, we cannot create Character objects!  

class Character 

{ 

  // ... 

  virtual void beatMonster(int exp) = 0; 

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 114 / 114 

Summary 

• Polymorphism is a technique to make our program clearer, more flexible and 

more powerful.  

– It is based on inheritance.  

– It is tightly related to function overriding, late binding, and virtual 

functions. 

• The key action is to “use a parent pointer to point to a child object”.  

• To implement late binding, you need to 

– Declare and override virtual functions. 

– Do late binding by using parent pointers to point to child objects.  

 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 


