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Pointers 

• A pointer is a variable which stores a memory address. 

– An array variable is a pointer.  

• To declare a pointer, use *.  

 

• Examples: 

 

– These pointers will store addresses.  

– These pointers will store addresses of int/double variables.  

• We may point to any type.  

• To point to different types, use different types of pointers.  

 

type pointed* pointer name;  type pointed *pointer name; 

int *ptrInt; double* ptrDou; 
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Pointer assignment 

• We use the address-of operator & to obtain a variable’s address: 

 

 

• The address-of operator & returns the (beginning) address of a variable.  

• Example: 

– ptr points to a, i.e., ptr  

stores the address of a.  

• When assigning an address, the two types must match.  

pointer name = &variable name 

int a = 5; 

int* ptr = &a; 

int a = 5; 

double* ptr = &a; // error!  
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• int a = 5; 

• double b = 10.5; 

• int* aPtr = &a; 

• double* bPtr = &b; 

• cout << &a; // 0x20c644 

• cout << &b; // 0x20c660 

• cout << &aPtr; // 0x20c658 

• cout << &bPtr; // 0x20c64c 

 

 

Variables in memory 

Address Identifier Value 

Memory 

0x20c64c 
bPtr 0x20c660 

0x20c650 

0x20c658 
aPtr 0x20c644 

0x20c65c 

0x20c660 
b 10.5 

0x20c664 

0x20c644 a 5 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 6 / 114 

Address operators 

• There are two address operators. 

– &: The address-of operator. It returns a variable’s address. 

– *: The dereference operator. It returns the pointed variable (not the value!). 

• For int a = 5: 

– a equals 5.  

– &a returns an address (e.g., 0x22ff78). 

• For int* ptrA = &a: 

– ptrA stores an address (e.g., 0x22ff78). 

– *ptrA returns a, the variable pointed by the pointer.  

• A pointer pointing to nothing should be assigned nullptr or 0.  
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Address operators 

• Example: 

 

 

 

 

 

int a = 10; 

int* p1 = &a; 

cout << "value of a = " << a << endl; 

cout << "value of p1 = " << p1 << endl; 

cout << "address of a = " << &a << endl; 

cout << "address of p1 = " << &p1 << endl; 

cout << "value of the variable pointed by p1 = " << *p1 << endl; 
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• Examples: 

 

 

 

 

 

Address operators and nullptr 

int a = 10; 

int* ptr = nullptr;  

ptr = &a; 

cout << *ptr; // 10 

*ptr = 5;  

cout << a;    // 5 

a = 18;  

cout << *ptr; // 18 

int a = 10; 

int* ptr1 = nullptr;  

int* ptr2 = nullptr; 

ptr1 = ptr2 = &a; 

cout << *ptr1; // 10 

*ptr2 = 5;      

cout << *ptr1; // 5 

(*ptr1)++;  

cout << a;     // 6 
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Address operators and nullptr 

• Dereferencing a null pointer shutdowns the program (a run-time error).  

int* p2 = nullptr; 

cout << "value of p2 = " << p2 << endl; 

cout << "address of p2 = " << &p2 << endl; 

cout << "the variable pointed by p2 = " << *p2 << endl; 

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 10 / 114 

Pointers and arrays 

• An array variable is a pointer!  

– It records the address of the first element of the array.  

– When passing an array, we pass a pointer. 

– The array indexing operator [] indicates offsetting.   

• To further understand this issue, let’s study pointer arithmetic.  

– Using +, –, ++, and –– on pointers.  
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Indexing and pointer arithmetic 

• The array indexing operator [] is just an interface for doing pointer arithmetic.  

 

 

 

 

 

 

– An array variable (e.g., x) stores an address, but ++ and -- work only on 

pointer variables (e.g., y).  

• Interface: a (typically safer and easier) way of completing a task.  

– x[i] and *(x + i) are identical.  

– But using the former is safer and easier.  

 

int x[3] = {1, 2, 3}; 

int* y = x; 

for(int i = 0; i < 3; i++) 

  cout << x[i] << " "; // x[i] == *(x + i)  

for(int i = 0; i < 3; i++) 

  cout << *(y++) << " "; // bad! 
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References and pointers 

• Recall this example:  

• When invoking a function and passing 

parameters, the default scheme is to “call 

by value” (or “pass by value”). 

– The function declares its own local 

variables, using a copy of the arguments’ 

values as initial values.  

– Thus we swapped the two local 

variables declared in the function, not 

the original two we want to swap. 

• To solve this, we can use “call by reference” 

or “call by pointer.” 

void swap (int x, int y); 

int main() 

{ 

  int a = 10, b = 20; 

  cout << a << " " << b << endl;  

  swap(a, b); 

  cout << a << " " << b << endl;  

}  

void swap (int x, int y) 

{ 

  int temp = x; 

  x = y; 

  y = temp; 

} 
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Call by reference 

• A reference is a variable’s alias.  

• The reference is another variable that refers to the variable. 

• Thus, using the reference is the same as using the variable. 

 

 

 

 

• int& d = c is to declare d as c’s reference.  

– This & is different from the & operator which returns a variable’s address.  

• int& d = 10 is an error.  

– A literal cannot have an alias! 

int c = 10; 

int& d = c; // declare d as c’s reference 

d = 20; 

cout << c << endl; // 20 
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Call by reference 

• Now we know how to change a 

parameter’s value: 

– Instead of declaring a usual local 

variable as a parameter, declare a 

reference variable.  

• This is to “call by reference”.   

void swap (int& x, int& y); 

int main() 

{ 

  int a = 10, b = 20; 

  cout << a << " " << b << endl; 

  cout << &a << "\n";  

  swap(a, b); 

  cout << a << " " << b << endl;  

}  

void swap (int& x, int& y) 

{ 

  cout << &x << "\n";  

  int temp = x; 

  x = y; 

  y = temp; 

} 
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Call by pointers 

• To call by pointers:  

– Declare a pointer variable as a parameter. 

– Pass a pointer variable or an address (returned 
by &) at invocation. 

• For the swap() example:  

 

 

 

 

 

• Invocation becomes swap(&a, &b); 

 

void swap(int* ptrA, int* ptrB) 

{ 

  int temp = *ptrA; 

  *ptrA = *ptrB; 

  *ptrB = temp; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c660 a 10 

0x20c664 b 20 

0x20c644 ptrA 0x20c660 

0x20c64c ptrB 0x20c664 

0x20c658 temp 10 

0x20c660 a 20 

0x20c664 b 10 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 
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Call by pointers 

• How about the following implementation?  

 

 

 

 

 

– Invocation: swap(&a, &b); 

• Will the two arguments be swapped? What really 
happens?  

 

 

void swap(int* ptrA, int* ptrB) 

{ 

  int* temp = ptrA; 

  ptrA = ptrB; 

  ptrB = temp; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c660 a 10 

0x20c664 b 20 

0x20c644 ptrA 0x20c660 

0x20c64c ptrB 0x20c664 

0x20c658 temp 0x20c660 

0x20c644 ptrA 0x20c664 

0x20c64c ptrB 0x20c660 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 
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Static memory allocation 

• In C/C++, we declare an array by specifying it’s length as a constant variable or 

a literal. 

– int a[100];  

• A memory space will be allocated to an array during the compilation time.  

– 400 bytes will be allocated for the above statement.  

• This is called “static memory allocation”.  

• We may decide the length of an array “dynamically”.  

– That is, during the run time.  

• To do so, we must use a different syntax.  

– All types of variables may also be declared in this way.  
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Dynamic memory allocation 

• The operator new allocates a memory space and returns the address.  

– In C, we use a different keyword melloc.  

• new int; allocates 4 bytes without recording the address. 

• int* a = new int; makes a store the address of the space. 

• int* a = new int(5); makes the space contains 5 as the value. 

• int* a = new int[5]; allocates 20 bytes (for 5 integers).  

– a points to the first integer.  

• Dynamically allocated arrays cannot be initialized with a single statement.  

– A loop, for example, is needed.  
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Dynamic memory allocation 

• All of these spaces are allocated during the run time.  

• So we may write 

 

 

 

 

• This allocates a space according to the input from users.  

 

 

int len = 0; 

cin >> len; 

int* a = new int[len]; 
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Dynamic memory allocation 

• A space allocated during the run time has no name! 

– On the other hand, every space allocated during 

compilation time has a name.  

• To access a dynamically-allocated space, we use a 

pointer to store its address.  

 

 

int len = 0; 

cin >> len; // 3 

int* a = new int[len]; 

for (int i = 0; i < len; i++) 

  a[i] = i + 1; 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c658 len 0x20c658 len 3 

0x20c660 
a 0x20c644 

0x20c664 

0x20c644 

N/A 0x20c648 

0x20c64c 

0x20c644 

N/A 

1 

0x20c648 2 

0x20c64c 3 
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Example: Fibonacci sequence 

• Recall the repetitive implementation 

of generating the Fibonacci sequence.  

• After we get the value of sequence 

length n, we dynamically declare an 

array of length n.  

• Then just use that array!  

double fibRepetitive (int n) 

{ 

  if (n == 1) 

    return 1; 

  else if (n == 2) 

    return 1; 

  double* fib = new double[n]; 

  fib[0] = 1; 

  fib[1] = 1; 

  for (int i = 2; i < n; i++) 

    fib[i] = fib[i - 1] + fib[i - 2]; 

  double result = fib[n - 1]; 

  delete[] fib; // to be explained 

  return result; 

} 
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Memory leak 

• For spaces allocated during the compilation time, 

the system will release these spaces automatically 

when the corresponding variables no longer exist.  

void func(int a) 

{ 

  double b; 

} // 4 + 8 bytes are released 

int main() 

{ 

  func(10); 

  return 0; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c64c a 10 

0x20c658 b ? 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 
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Memory leak 

• For spaces allocated during the run time, the 

system will NOT release these spaces unless it is 

asked to do so.  

– Because the space has no name! 

void func() 

{ 

  int* bPtr = new int[3]; 

}  

// 8 bytes for bPtr are released  

// 12 bytes for integers are not 

int main() 

{ 

  func( ); 

  return 0; 

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c65c bPtr 0x20c648 

0x20c648 N/A ? 

0x20c64c N/A ? 

0x20c650 N/A ? 

0x20c65c 

0x20c660 
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Memory leak 

• Programmers must keep a record for all spaced 

allocated dynamically. 

 

 

 

 

• This problem is called memory leak.  

– We lose the control of allocated spaces.  

– These spaces are wasted.  

– They will not be released unit the program ends.  

double* b = new double; 

*b = 5.2; 

double c = 10.6; 

b = &c; // now no one can access  

        // the space containing 5.2 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

Memory 

0x20c648 b 

0x20c654 N/A ? 

0x20c648 b 0x20c654 

0x20c654 N/A 5.2 

0x20c660 c 10.6 

0x20c648 b 0x20c660 
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Releasing spaces manually 

• The delete operator will 

release a dynamically-

allocated space. 

 

 

• The delete operator will 

do nothing to the pointer. 

To avoid reusing the 

released space, set the 
pointer to nullptr.  

 

int* a = new int; 

delete a; // release 4 bytes 

int* b = new int[5];  

delete b; // release only 4 bytes!  

          // Unpredictable results may happen 

delete [] b; // release all 20 bytes 

int* a = new int; 

delete a;  // a is still pointing to the address 

a = nullptr;  // now a points to nothing 

int* b = new int[5];  

delete [] b; // b is still pointing to the address 

b = nullptr;    // now b points to nothing 
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Two-dimensional dynamic arrays 

• With static arrays, we may create matrices as two-dimensional arrays.  

• An m by n two-dimensional array has:  

– m rows (single-dimensional arrays).  

– Each row has n elements.  

• With dynamic arrays, we now may create matrices with different row lengths.  

– We may still have m rows.  

– Now each row may have different number of elements.  

– E.g., a lower triangular matrix.  

Pointers Classes Inheritance and polymorphism 

Basics of pointers Calling by references/pointers Dynamic memory allocation 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 27 / 114 

Example: lower triangular arrays 

• int* array = new int[10]; declares an 

array of integers.  

• int** array = new int*[10]; declares 

an array of integer pointers! 

– The type of array[0] is int*.  

– The type of array[1] is int*.  

• Then each of these integer pointers may store 

the address of a dynamic integer array.  

– And their lengths can be different. 

 

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); // later 

  return 0;  

} 
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Example: lower triangular arrays 

• Let’s visualize the 

memory events.  

• In general, the 

spaces of the three 

1-dim dynamic 

arrays may be 

separated.  

• However, the 

spaces of the array 

elements in each 

array are 

contiguous.  

 

 

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); // later 

  return 0;  

} 

Address Identifier Value 

0x20c644 

0x20c648 

0x20c64c 

0x20c650 

0x20c654 

0x20c658 

0x20c65c 

0x20c660 

0x20c664 

0x20c668 

0x20c66c 

0x20c670 

0x20c674 

0x20c678 

0x20c67c 

0x20c680 

Memory 

0x20c644 r 3 

0x20c648 Array 0x20c654 

0x20c654 N/A ? 

0x20c65c N/A ? 

0x20c664 N/A ? 

0x20c654 N/A 0x20c66c 

0x20c66c N/A ? 0x20c66c N/A 1 

0x20c670 N/A ? 

0x20c674 N/A ? 

0x20c65c N/A 0x20c670 

0x20c670 N/A 1 

0x20c674 N/A 2 

0x20c664 N/A 0x20c678 

0x20c678 N/A ? 

0x20c67c N/A ? 

0x20c680 N/A ? 

0x20c678 N/A 1 

0x20c67c N/A 2 

0x20c680 N/A 3 
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Example: lower triangular arrays 

• To pass a two-dimensional dynamic array, just pass that pointer.  

int main() 

{ 

  int r = 3; 

  int** array = new int*[r]; 

  for(int i = 0; i < r; i++) 

  { 

    array[i] = new int[i + 1]; 

    for(int j = 0; j <= i; j++) 

      array[i][j] = j + 1; 

  } 

  print(array, r); 

  return 0;  

} 

int print(int** arr, int r) 

{ 

  for(int i = 0; i < r; i++) 

  { 

    for(int j = 0; j < i; j++) 

      cout << arr[i][j] << " "; 

    cout << "\n"; 

  } 

} 
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Outline 

• Pointers 

• Classes 

• Inheritance and polymorphism 
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Class definition 

• To define a class:  

– Simply change struct to class.  

– We may also define the function inside the  

class definition block.  

• Compilation error! Why?  

 

 

 

class MyVector 

{ 

  int n;  

  int* m;  

  void init(int dim);  

  void print();  

}; 

void MyVector::init(int dim) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = 0; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

int main() 

{ 

  MyVector v; 

  v.init(5); 

  delete [] v.m; 

  return 0; 

} 
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Visibility 

• We can/must set visibility of members in a class: 

– Public members can be accessed anywhere. 

– Private members can be accessed only in the class. 

– Protected members will be discussed later in this semester.  

• These three keywords are the visibility modifiers.  

• By default, all members’ visibility level is private.  

– That is why v.init(5) generates a compilation error; init() is private 

and cannot be invoked outside the class (e.g., in the main function).  

• By setting visibility, we can hide/open our instance members.  

– Usually all instance variables are private.  

– Let’s see how to do this.  
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Visibility 

• A class with different 

visibility levels:  

• Private instance members 

can only be accessed 

inside the definition of 

instance functions.  

– E.g., init() and 

print().  

• Public instance members 

can be accessed 

everywhere.  

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  void init(int dim);  

  void print();  

}; 

int main() 

{ 

  MyVector v; 

  v.init(5); // OK! 

  delete [] v.m; 

  return 0; 

} 
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Why data hiding?  

• Setting members to private is to do 

data hiding.  

• Why bother?  

• By setting members to private, we 

control the way that they are accessed.  

– We can better predict how others 

may use our class.  

• As an example, now we can prevent 
inconsistency between n and the length 

of m!  

 

int main() 

{ 

  MyVector v; 

  v.init(5); // fine 

  v.n = 3; // compilation error! 

  delete [] v.m; 

  return 0; 

} 
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Why data hiding? 

• As another example, we do not want a vector to be 

printed out in strange formats, such as {0, 10, 20}, 

[0, 10, 20), (0-10-20), etc.  

– We want they all look the same, like (5, 6, 7).  

– If we allow other programmers to access n and m, 

they can print out a vector in any way they like!  

– So we privatize instance variables and provide a 
public member function print() to control 

(restrict) the way of printing a vector.  

• These public member functions are often called 

interfaces. All others should communicate with the 

class through interfaces.  

 

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  void init(int dim);  

  void print();  

}; 
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Encapsulation 

• The concepts of packaging (grouping member variables and member functions) 

and data hiding together form the concept of “encapsulation”. 

– Roughly speaking, we pack data (member variables) into a black box and 

provide only controlled interfaces (member functions) for others to access 

these data.  

– Others should not even know how those interfaces are implemented.  

• For OOP, there are three main characteristics/functionalities:  

– Encapsulation.  

– Inheritance.  

– Polymorphism.  
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Constructors 

• A constructor is an instance function of a class.  

– However, it is very special. 

• A constructor will be invoked automatically when the object is created.   

– It must be invoked.  

– It cannot be invoked twice. 

– It cannot be invoked by the programmer manually.  

• Usually it is used to initialize the object.  
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Constructors 

• A constructor’s name is the same as the class. 

• It does not return anything, not even void.  

• You can (and usually will) overload them. 

• The constructor with no parameter is the 

default constructor. 

• If, and only if, a programmer does not define 

any constructor, the compiler makes a 

default one which does nothing.  

• A constructor may be private.  

– Be invoked only by other constructors.  

 

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim);  

  MyVector(int dim, int value);   

  void print();  

}; 
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Constructors for MyVector 

• Let’s define our class MyVector with constructors: 

 

 

 

 

 

 

 

 

 

• Just like usual functions, a constructor may have a default argument.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int value = 0);   

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; 

  m = nullptr; 

} 

MyVector::MyVector(int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 
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Constructors for MyVector 

• Now, in the main function, we assign initial values when we declare objects:  

 

 

 

 

 

 

 

• If any member variable needs an initial value when an object is created, you 

should write a constructor to initialize it.  

• Use constructor overloading to provide flexibility.  

 

int main() 

{ 

  MyVector v1(1); 

  MyVector v2(3, 8); 

  v1.print(); // (0) 

  v2.print(); // (8, 8, 8) 

  return 0; 

} 
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Destructors 

• A destructor is invoked right before an object is destroyed.  

– It must be public and have no parameter.  

• The compiler provides a default destructor that does nothing.  

• To define your own destructor, use ~:  

class MyVector 

{ 

  // ... 

public: 

  // ... 

  ~MyVector() { cout << "Bye~\n"; } 

}; 
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Why destructors? 

• Suppose we do not define our own destructor.  

• Then there may be memory leak when an object is destroyed. 

– When there is dynamic memory allocation.  

 
MyVector::MyVector 

  (int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

  // no destructor 

}; 

int main() 

{ 

  if (true)  

    MyVector v1(1);  

    // memory leak 

  return 0; 

} 
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Why destructors? 

• One typical mission for a destructor is to release those dynamically allocated 

memory spaces pointed by member variables.  

– The default destructor does not do this. We must do this by ourselves.  

 MyVector::MyVector 

  (int dim, int value) 

{ 

  n = dim; 

  m = new int[n];  

  for(int i = 0; i < n; i++) 

    m[i] = value; 

} 

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

  ~MyVector() {  

    delete [] m;  

  } 

}; 

int main() 

{ 

  if (true)  

    MyVector v1(1);  

    // no memory leak 

  return 0; 

} 
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Object pointers 

• A class is a (self-defined) data type.  

• A pointer may point to any data type.  

– A pointer may point to an object, i.e., store the address of an object.  

• Recall the class MyVector:  

 
int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v; // object pointer 

  return 0; 

} 
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Object pointers 

• What we have done is to use an object to invoke instance functions.  

– E.g., a.print() where a is an object and print() is an instance function. 

• If we have a pointer ptrA pointing to the object a, we may write 

(*ptrA).print() to invoke the instance function print().  

– *ptrA returns the object a.  

• To simplify this, C++ offers the member access operator ->.  

– This is specifically for an object pointer to access its members.  

– (*ptrA).print() is equivalent to ptrA->print(). 

– (*ptrA).x is equivalent to ptrA->x. 
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• An example of using an object pointer: 

– new MyVector(5) dynamically allocates a memory space.  

 

 

 

 

 

 

 

  

Object pointers 

int main() 

{ 

  // an object pointer 

  MyVector* ptrV = new MyVector(5);  

  // instance function invocation 

  ptrA->print();  

  delete ptrV; 

  return 0; 

} 

int main() 

{ 

  MyVector v(5); 

  MyVector* ptrV = &v;  

  v.print(); 

  ptrV->print();   

  return 0; 

} 
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Why object pointers? 

• Object pointers are more useful than pointers for basic data types. Why?  

• Passing a pointer into a function is more efficient than passing the object. 

– A pointer can be much smaller than an object.  

– Copying a pointer is easier than copying an object.  

• Other reasons will be discussed in other lectures. 
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Passing objects into a function 

• Consider a function that takes three vectors and returns their sum.  

 

 

 

 

 

 

 

 

– We need to create four MyVector objects in this function.  

 

MyVector sum 

  (MyVector v1, MyVector v2, MyVector v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 

int MyVector::getN()  

{ return n; } 

int MyVector::getM(int i)  

{ return m[i]; } 

MyVector::MyVector 

  (int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 
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Passing object pointers into a function 

• We may pass pointers rather than objects into this function:  

 

 

 

 

 

 

 

 

– We need to create only one MyVector object in this function.  

– Nevertheless, using pointers to access members requires more time.   

 

MyVector sum(MyVector* v1, MyVector* v2, MyVector* v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1->getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1->getM(i) + v2->getM(i) + v3->getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 
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Passing object references  

• We may also pass references:  

 

 

 

 

 

 

 

 

– We create only one MyVector object in this function. 

MyVector cenGrav(MyVector& v1, MyVector& v2, MyVector& v3) 

{ 

  // assume that their dimensions are identical 

  int n = v1.getN();  

  int* sov = new int[n]; 

  for(int i = 0; i < n; i++)  

    sov[i] = v1.getM(i) + v2.getM(i) + v3.getM(i); 

  MyVector sumOfVec(n, sov);  

  return sumOfVec;  

} 
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Constant references  

• While we may want to pass references to save time, we need to protect our 

arguments from being modified.  

 

 

 

 

 

– Save time while being safe!  

• Should we do the same thing when passing object pointers?  

MyVector cenGrav 

  (const MyVector& v1, const MyVector& v2, const MyVector& v3) 

{ 

  // ... 

} 
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Copying an object 

• Consider the following program:  

 

 

 

 

 

 

 

 

 

• Why just one “A” when invoking f()? Why no “A” when a4 is created?   

 

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // A 

  A a4 = a1; // nothing! 

  return 0; 

} 
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Copying an object 

• Creating an object by “copying” an object is a special operation.  

– When we pass an object into a function using the  

call-by-value mechanism.  

– When we assign an object to another object.  

– When we create an object with another object as the  

argument of the constructor.  

• When this happens, the copy constructor will be invoked.  

– If the programmer does not define one, the compiler adds a default copy 

constructor (which of course does not print out anything) into the class.  

– The default copy constructor simply copies all member variables one by 

one, regardless of the variable types.  

 

 

 

f(a1, a2, a3); 

A a4 = a1; 

A a5(a1); 
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Copy constructors 

• We may implement our own copy constructor.  

• In the C++ standard, the parameter must be a constant reference.  

– If calling by value, it will invoke itself infinitely many times.  

class A 

{ 

private: 

  int i; 

public: 

  A() { cout << "A"; } 

  A(const A& a) { cout << "a"; } 

}; 

void f(A a1, A a2, A a3) 

{ 

  A a4; 

} 

int main() 

{ 

  A a1, a2, a3; // AAA 

  cout << "\n===\n"; 

  f(a1, a2, a3); // aaaA 

  return 0; 

} 
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Shallow copy 

• If no member variable is an array/pointer, the default copy constructor is fine.  

• If there is any array or pointer member variable, the default copy constructor 

does “shallow copy”.  

– And two different vectors may share the same space for values.  

– Modifying one vector affects the other!  

MyVector::MyVector(const MyVector& v) 

{ // this is what done by the default 

  // copy constructor 

  n = v.n; 

  m = v.m; // shallow copy 

} 
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Deep copy 

• To correctly copy a vector (by creating new values), we need to write our own 

copy constructor.  

• We say that we implement “deep copy” by ourselves.  

– In the self-defined copy constructor, we manually create another dynamic 

array, set its elements’ values according to the original array, and use m to 

record its address.  

MyVector::MyVector(const MyVector& v) 

{ // this is what should be done 

  n = v.n; 

  m = new int[n]; // deep copy 

  for(int i = 0; i < n; i++) 

    m[i] = v.m[i]; 

} 
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Static members    

• A class contains some instance variables and functions.  

– Each object has its own copy of instance variables and functions.  

• A member variable/function may be an attribute/operation of a class.  

– When the attribute/operation is class-specific rather than object-specific.  

– A class-specific attribute/operation should be identical for all objects.  

• These variables/functions are called static members.  
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• In MS Windows, each window is 

an object.  

• Each window has some object-

specific attributes.  

• They also share one class-specific 

attribute: the color of their title 

bars.  

Static members: an example   

class Window 

{ 

private: 

  int width; 

  int height; 

  int locationX; 

  int locationY;  

  int status; // 0: min, 1: usual, 2: max 

  static int barColor; // 0: gray, ... 

  // ... 

public: 

  static int getBarColor();  

  static void setBarColor(int color); 

  // ... 

}; 
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Static members: an example  

• We have to initialize a static 

variable globally.  

 

• To access static members, use 
class name::member name. 

int main() 

{ 

  Window w; // not used 

  cout << Window::getBarColor(); 

  cout << endl; 

  Window::setBarColor(1); 

  return 0;  

} 

int Window::barColor = 0; // default 

 

int Window::getBarColor() 

{ 

  return barColor; 

} 

 

void Window::setBarColor(int color) 

{ 

  barColor = color; 

} 
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Good programming style 

• If one attribute should be identical for all objects, it should be declared as a 

static variable.  

– Do not make it an instance variable and try to maintain consistency.  

• Some rules regarding static members:  

– We may access a static member inside an instance function.  

– We cannot access an instance member inside a static function.  

• Though not suggested, we may access a static member through an object.  

– This will confuse the reader. 
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Another way of using static members 

• One may use a static variable to count the number of active (alive) objects.  

class A 

{ 

private: 

  static int count; 

public: 

  A() { A::count++; } 

  ~A() { A::count--; } 

  static int getCount()  

  { return A::count; } 

}; 

int A::count = 0; 

 

int main() 

{ 

  if(true) 

    A a1, a2, a3; 

  cout << A::getCount() << endl; // 0 

  return 0; 

} 
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Getters and setters 

• In most cases, instance variables are private.  

• For them to be accessed, sometimes people 

implement getters and setters for them.  

– A getter simply returns the value of a private 

instance variable.  

– A setter simply modifies a private instance 

variables to a given value.  

• What are the benefits and costs for having getters and 

setters?  

class MyVector 

{ 

private: 

  int n; 

  int* m; 

public: 

  // ... 

 int getN() { 

    return n; 

  } 

  void setN(int v) { 

    n = v; 

  } 

}; 
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friend for functions and classes 

• To “open” private members, another way is to declare “friends.” 

• One class can allow its friends to access its private members. 

• Its friends can be global functions or other classes.  

– Then inside test() and member functions of  

Test, those private members of MyVector can  

be accessed.  

– MyVector cannot access Test’s members.  

• A friend can be declared in either the public or  

private section. It does not matter.  

• A class must declare its friends by itself.  

– One cannot declare itself as another one’s friend!  

class MyVector 

{ 

  // ... 

friend void test();  

friend class Test; 

}; 
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friend: an example 

 

 

void test() { 

  MyVector v; 

  v.n = 100; // syntax error if not a friend 

  cout << v.n; // syntax error if not a friend 

} 

class Test { 

public: 

  void test(MyVector v) { 

    v.x = 200; // syntax error if not a friend 

    cout << v.x; // syntax error if not a friend 

  } 

}; 
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friend for functions and classes 

• Declare friends only if data hiding is preserved.  

– Do not set everything public!  

– Use structures rather than classes when nothing should be private.  

– Write appropriate public member functions (e.g., getters and setters).  

• friend may also help you hide data. 

– If a private member should be accessed only by another class/function, we 

should declare a friend instead of writing a getter/setter.  
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this 

• When you create an object, it 

occupies a memory space.  

• Inside an instance function, 
this is a pointer storing the 

address of that object.  

– this is a C++ keyword.  

• When the compiler reads 
this, it looks at the memory 

space to find the object.  

• The two implementations are 

identical:  

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < this->n - 1; i++) 

    cout << this->m[i] << ", "; 

  cout << this->m[this->n - 1] << ")\n"; 

} 

void MyVector::print() 

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n - 1] << ")\n"; 

} 
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this 

• Suppose that x is an instance variable.  

– Usually you can use x directly instead of this->x. 

– However, if you want to have a local variable or function parameter 

having the same name as an instance variable, you need this->. 

 

 

 

 

 

• A local variable hides the instance variable with the same name.  

– this->x is the instance variable and x is the local variable.  

MyVector::MyVector(int d, int v[]) 

{ 

  n = d; 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 

MyVector::MyVector(int n, int m[]) 

{ 

  this->n = n; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 
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Constant objects 

• Some variables are by nature constants.  

 

 

• We may also have constant objects.  

 

 

– This is the origin in R3. It should not be modified.  

• Should there be any restriction on instance function invocation?  

const double PI = 3.1416; 

const MyVector ORIGIN_3D(3, 0); 
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Constant objects 

• A constant object cannot invoke a function 

that modifies its instance variables.  

– In C++, functions that may be invoked 

by a constant object must be declared 

as a constant instance function.  

• For a constant instance function: 

– It can be called by non-constant objects.  

– It cannot modify any instance variable.  

• For a non-constant instance function:  

– It cannot be called by constant objects 

even if no instance variable is modified.  

class MyVector 

{ 

private: 

  int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 
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Constant instance variables 

• We may have constant instance variables.  

– E.g., for a vector, its dimension should 

be fixed once it is determined.  

• Obviously, a constant instance variable 

should be initialized in the constructor(s).  

– However:  

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  ~MyVector();  

  int getN() const; 

  int getM() const; 

  void print();  

}; 

MyVector::MyVector() 

{ 

  n = 0; // error!  

  m = nullptr; 

} 
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Member initializers 

• For a constant instance variable:  

– It cannot be assigned a value.  

– It cannot be initialized 

globally.  

• We need a member initializer.  

– A specific operation for 

initializing an instance 

variable.  

– Can also be used for 

initializing non-constant 

instance variables.  

 

 

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector() : n(0), m(nullptr) {} 

  MyVector(int dim, int v[]) : n(dim) 

  { 

    for(int i = 0; i < n; i++) 

      m[i] = v[i];     

  }  

  // ... 

}; 
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Initializing constant instance variables 

• Member initializers can also be used when constructors are implemented outside 

the class definition block.  

 

 

 

 

 

 

 

 

• Member initializers are used a lot in general.  

class MyVector 

{ 

private: 

  const int n;  

  int* m;  

public: 

  MyVector(); 

  MyVector(int dim, int v[]);  

  // ... 

}; 

MyVector::MyVector()  

  : n(0), m(nullptr) 

{ 

} 

MyVector::MyVector(int dim, int v[])  

  : n(dim) 

{ 

  for(int i = 0; i < n; i++) 

    m[i] = v[i]; 

} 
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Outline 

• Pointers 

• Classes 

• Inheritance and polymorphism 
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Inheritance 

• Through inheritance, we may create new 

classes from existing classes.  

– A derived (child) class inherits a base 

(parent) class.  

– A child class has (some) members 

defined in the parent class.  

• Recall that we have defined MyVector.  

– A two-dimensional (2D) vector is a 

vector!  

• Let’s create a class for 2D vector by  

inheritance.  

 

class MyVector 

{ 

protected: // to be explained 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

}; 
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Child class MyVector2D 

 

 

 

 

 

 

 

 

 

• That is all for MyVector2D!  

– The modifier public will be discussed later.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

    

  return 0; 

} 
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Inheriting parent class’ members 

• Members in the parent class are automatically defined in the child class.  

– Except private members, constructors,  

and the destructor.  

– A protected member can only be accessed  

by itself and its successors.  

• What are the members of MyVector2D?  

class MyVector 

{ 

protected: 

  int n;  

  double* m;  

public: 

  MyVector(); 

  MyVector(int n, double m[]);   

  MyVector(const MyVector& v); 

  ~MyVector() 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

}; 
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Invoking parent class’ constructors 

• The parent class’ constructor will not be inherited.  

• One of them will be invoked before the child class’ constructor is invoked.  

– Create the parent before creating the child!  

• If not specified, the parent’s default constructor will be invoked.  

MyVector::MyVector()  

  : n(0), m(nullptr)  

{ 

} 

 

MyVector2D::MyVector2D() 

{ 

  this->n = 2; 

  // this->m = nullptr is redundant 

} 

int main() 

{ 

  MyVector2D v; 

  

  return 0; 

} 
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Invoking parent class’ constructors 

• To specify a parent’s constructor to call, use  the syntax for member initializer:  

– Pass appropriate arguments to control the behavior.  

MyVector::MyVector(int n, double m[]) 

{ 

  this->n = n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = m[i]; 

} 

MyVector2D::MyVector2D(double m[]) : MyVector(2, m) 

{ 

  // not MyVector(2, m) here!  

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

  

  return 0; 

} 
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Invoking copy constructors 

• How about the copy constructor?  

• If we do not define one for the child,  

the system provides a default one.  

• Before the child’s default copy  

constructor is invoked, the  

parent’s copy constructor will be  

automatically invoked.  

MyVector::MyVector(const MyVector& v) 

{ 

  this->n = v.n; 

  this->m = new double[n]; 

  for(int i = 0; i < n; i++) 

    this->m[i] = v.m[i];  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no copy constructor 

}; 
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Invoking copy constructors 

• If we define a copy constructor for the child, we must specify the constructor 

we want to invoke!  

– Otherwise the parent’s default constructor will be invoked.  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  MyVector2D(const MyVector2D& v) {}  

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  MyVector2D w(v); 

  w.print(); // error 

    

  return 0; 

} 
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Invoking parent’s member functions 

• Once member variables are set properly, typically all the member functions of 

the parent can be used with no error.  

void MyVector::print() const  

{ 

  cout << "("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 

int main() 

{ 

  double i[2] = {1, 2}; 

  MyVector2D v(i); 

  v.print(); 

    

  return 0; 

} 
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Invoking parent class’ destructor 

• When an object of the child class is to  

be destroyed: 

– First the child’s destructor is invoked.  

– Then the parent’s destructor is  

invoked automatically, even if we do  

not define a destructor for the child.  

MyVector::~MyVector()  

{  

  delete [] m;  

} 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D(); 

  MyVector2D(double m[]);   

  // no destructor 

}; 
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Defining new members for the child 

• A child may have its own  

members.  

– The parent has no way to  

access a child’s member.  

• Let’s define a setValue()  

function without using arrays:  

– Note that this should never 
be a member of MyVector.  

• We may also define new  

member variables and static  

members.  

 

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

}; 

void MyVector2D::setValue(double i1, double i2) 

{ 

  if(this->m == nullptr) 

    this->m = new double[2]; 

  this->m[0] = i1; 

  this->m[1] = i2; 

} 
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Function overriding 

• We may also redefine existing  

member inherited from a parent.  

– This typically happens to  

member functions.  

– We say that we override the  

member function.  

• As an example, let’s override  
print():  

class MyVector2D : public MyVector 

{ 

public: 

  MyVector2D() { this-> n = 2; } 

  MyVector2D(double m[]) : MyVector(2, m) {} 

  void setValue(double i1, double i2); 

  void print() const; 

}; 

void MyVector2D::print() const 

{ 

  cout << "2D: ("; 

  for(int i = 0; i < n - 1; i++) 

    cout << m[i] << ", "; 

  cout << m[n-1] << ")\n"; 

} 
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Function overriding 

• To override a parent’s member function, define a child’s member function with 

exactly the same function signature.  

– A child object will invoke the child’s implementation.  

– The parent’s implementation becomes hidden to a child object.  

• Inside the child class, we may invoke a parent’s member function by using ::.  

 

 

 

 

– Use it if consistency can be enhanced.  

void MyVector2D::print() const 

{ 

  cout << "2D: "; 

  MyVector::print(); 

} 
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Overriding a constant function 

• What will happen to the following 

program?  
class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

  void print() const 

  { 

    cout << "2D: "; 

    MyVector::print(); 

  } 

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // 2D 

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // No 2D 

   

  return 0; 

} 
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Overriding a constant function 

• How about this?  

class MyVector 

{ 

  // ... 

  void print() const; 

}; 

class MyVector2D : public MyVector 

{ 

  // ... 

  void print() { MyVector::print(); } 

}; 

int main() 

{ 

  double i[2] = {1, 2}; 

  const MyVector2D v(i); 

  v.print(); // error!  

   

  MyVector2D u; 

  u.setValue(3, 4); 

  u.print(); // No 2D 

   

  return 0; 

} 
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Cascade inheritance 

• While a child inherits its parent, it may have a grandchild  

inheriting itself.  

• How may we create a class for two-dimensional  

nonnegative vectors?  

– {(x, y) | x ≧ 0, y ≧ 0}.  

• A 2D nonnegative vector is a 2D vector!  

• Let’s use inheritance again.  

 

MyVector 

 

 

MyVector2D 

 

 

NNVector2D 
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Child class NNVector2D  

• Defining NNVector2D is simple:  

 

 

 

 

 

 

 

 

– Why not specifying a parent’s constructor?  

– What happens when an NNVector2D object is created?   

class NNVector2D : public MyVector2D 

{ 

public: 

  NNVector2D(); // do we need it?  

  NNVector2D(double m[]);   

  void setValue(double i1, double i2); 

}; 

NNVector2D::NNVector2D() 

{ 

} 

NNVector2D::NNVector2D(double m[]) 

{ 

  this->m = new double[2]; 

  this->m[0] = m[0] >= 0 ? m[0] : 0; 

  this->m[1] = m[1] >= 0 ? m[1] : 0;   

} 

void NNVector2D::setValue 

  (double i1, double i2) 

{ 

  if(this->m == nullptr) 

    this->m = new double[2]; 

  this->m[0] = i1 >= 0 ? i1 : 0; 

  this->m[1] = i2 >= 0 ? i2 : 0;   

} 
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Cascade inheritance 

• In general, a class has all the protected and public members (excluding 

constructors and destructors) of its predecessors.  

• When an object is created:  

– Constructors are invoked from the oldest class to the youngest class.  

– Each constructor can specify a one-level-above constructor to invoke.  

– Only one level!  

• When an object is destroyed:  

– Destructors are invoked from the youngest to the oldest.  
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Inheritance visibility 

• Recall that we added the modifier public when MyVector2D inherits 

MyVector and when NNVector2D inherits MyVector2D.  

– This modifier specifies the inheritance visibility.  

– It shows how this child modify the member visibility set by its predecessors.  

• When one inherits something from its parent, it may narrow the visibility of 

these members.  

– E.g., if my parent set its to protected, I may set it to private.  

– E.g., if my parent set its to private, I cannot set it to public.  

• Why only narrowing?  
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Inheritance visibility 

• In general, the visibility of a member in a child class depends on:  

– The member visibility by the parent.  

– The inheritance modifier.  

 

 

 

 

 

 

 

• If you have no idea, just use public inheritance.  

Member visibility 

by the parent 

Inheritance modifier 

public protected private 

public public protected private 

protected protected protected private 

private private private private 
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Class Character 

• There is a public function beatMonster(int exp): 

– It is invoked when the character beats a monster.  

– exp is the number of experience points earns in this battle.  

– This function increments the accumulated experience points and checks 

whether there should be a level up. If so, a private member function 
levelUp() is invoked.  

• There is a private function levelUp(): 

– The character's level will be incremented. 

– However, her abilities will remain the same because characters of different 

occupations should get different improvements.  

– This should be specified in Warrior and Wizard.  
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Class Character 

 class Character 

{ 

protected: 

  string name; 

  int level; 

  int exp; 

  int power; 

  int knowledge; 

  int luck; 

  static const int expForLevel = 100; 

  void levelUp(int pInc, int kInc, int lInc); // private member function 

public: 

  Character(string n, int lv, int po, int kn, int lu); 

  void beatMonster(int exp); 

  void print(); 

  string getName(); 

}; 
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Class Character 

• Basic ideas and the first example 

• Virtual functions 

 

Character::Character(string n, int lv, int po, int kn, int lu)  

  : name(n), level(lv), exp(pow(lv - 1, 2) * expForLevel), power(po), knowledge(kn), luck(lu) {} 

void Character::beatMonster(int exp) { 

  this->exp += exp; 

  while(this->exp >= pow(this->level, 2) * expForLevel) 

    this->levelUp(0, 0, 0); // No improvement when advancing to the next level 

} 

void Character::print() { 

  cout << this->name  

       << ": Level " << this->level << " (" << this->exp << "/" << pow(this->level, 2) * expForLevel 

       << "), " << this->power << "-" << this->knowledge << "-" << this->luck << "\n"; 

} 

void Character::levelUp(int pInc, int kInc, int lInc) { 

  this->level++; this->power += pInc; this->knowledge += kInc; this->luck += lInc;     

} 

string Character::getName() { 

  return this->name; 

} 
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Character, Warrior, and Wizard 

• Character should not be used to 

create an object.  

– No improvement when advancing 

to the next level.  

– Personal attributes for 

improvements per level are not 

defined.  

• We define two derived classes 
Warrior and Wizard:  

– Character is an abstract class.  

– Warrior and Wizard are 

concrete classes.  

 

Character 

 

 

Warrior 

 

 

Wizard 
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Classes Warrior and Wizard 

 
class Warrior : public Character 

{ 

private: 

  static const int powerPerLevel = 10; 

  static const int knowledgePerLevel = 5; 

  static const int luckPerLevel = 5; 

public: 

  Warrior(string n) : Character(n, 1, powerPerLevel, knowledgePerLevel, luckPerLevel) {} 

  Warrior(string n, int lv)  

    : Character(n, lv, lv * powerPerLevel, lv * knowledgePerLevel, lv * luckPerLevel) {} 

  void print() { cout << "Warrior "; Character::print(); }   

  void beatMonster(int exp) // function overriding 

  { 

    this->exp += exp; 

    while(this->exp >= pow(this->level, 2) * expForLevel) 

      this->levelUp(powerPerLevel, knowledgePerLevel, luckPerLevel); 

  } 

}; 
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Classes Warrior and Wizard 

 
class Wizard : public Character 

{ 

private: 

  static const int powerPerLevel = 4; 

  static const int knowledgePerLevel = 9; 

  static const int luckPerLevel = 7; 

public: 

  Wizard(string n) : Character(n, 1, powerPerLevel, knowledgePerLevel, luckPerLevel) {} 

  Wizard(string n, int lv)  

    : Character(n, lv, lv * powerPerLevel, lv * knowledgePerLevel, lv * luckPerLevel) {} 

  void print() { cout << "Wizard "; Character::print(); }   

  void beatMonster(int exp) // function overriding 

  { 

    this->exp += exp; 

    while(this->exp >= pow(this->level, 2) * expForLevel) 

      this->levelUp(powerPerLevel, knowledgePerLevel, luckPerLevel); 

  } 

}; 
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Some questions 

• We may create Warrior and Wizard 

objects in our program.  

– May we prevent one from 
creating a Character object?  

• A “team” has at most ten members.  

– We create two arrays, one for 

warriors and one for wizards. 

Each of them has a length of 10.  

– Why wasting spaces?  

 

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  // some other functions 

}; 
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Some questions 

• We may need to add a 

warrior/wizard, let a 

warrior/wizard beat a monster, 

and print the current status of a 

warrior/wizard.  

– Characters’ names are all 

different.  

• Either we write two functions 

for a task, or write just one.  

– Two: tedious and 

inconsistent.  

– One: Inefficient.  

 

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  void addWar(string name, int lv); 

  void addWiz(string name, int lv); 

  void warBeatMonster(string name, int exp); 

  void wizBeatMonster(string name, int exp); 

  void printWar(string name); 

  void printWiz(string name); 

}; 
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Polymorphism 

• The key flaw is to create two arrays, one for warriors and one for wizards.  

– May we use only one array to store the ten members?  

– But Warrior and Wizard are different classes.  

• While they are different classes, they have the same base class.  

– They are all Characters!  

– May we declare a Character array to store Warrior and Wizard objects?  

• We can. This is called polymorphism.  

– In C++, the way we implement polymorphism is to  

“Use a variable of a parent type to  

store a value of a child type.” 
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Variables vs. values 

• Let’s differentiate a variable’s type and a value’s type.  

• A variable can store values and must have a type.  

– E.g., a double variable is a container which “should” store a double value.  

• A value is the thing that is stored in a variable.  

– E.g., 12.5 or 7.  

• A value has its own type, which may be different from the variable’s type.  

• In C++, a parent variable can store a child object.  

– A Character variable can store a Warrior or a Wizard object.  

– Because a warrior/wizard is a character!  
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Examples of polymorphism 

• For example, we may do this:  

 

 

 

 

• Or we may do this with pointers:  

int main 

{ 

  Warrior w("Alice", 10); 

  Character c = w; // copy constructor 

  cout << c.getName() << endl; // Alice 

  return 0; 

} 

int main 

{ 

  Warrior w("Alice", 10);   

  Character* c = &w; 

  cout << c->getName() << endl; // Alice 

  return 0; 

} 
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Polymorphism with arrays 

• Polymorphism is useful typically with functions or arrays:   

int main 

{ 

  Character* c[3];  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  // do not delete [] c; 

  return 0; 

} 

int main 

{ 

  Character c[3]; // Need a default constructor!  

  Warrior w1("Alice", 10); 

  Wizard w2("Sophie", 8); 

  Warrior w3("Amy", 12); 

  c[0] = w1; 

  c[1] = w2; 

  c[2] = w3; 

  for(int i = 0; i < 3; i++) 

    c[i].print();  

  return 0; 

} 
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Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

class Team 

{ 

private: 

  int warriorCount; 

  int wizardCount; 

  Warrior* warrior[10]; 

  Wizard* wizard[10]; 

public: 

  Team(); 

  ~Team(); 

  void addWarrior(string name, int lv); 

  void addWizard(string name, int lv); 

  void warriorBeatMonster(string name, int exp); 

  void wizardBeatMonster(string name, int exp); 

  void printWarrior(string name); 

  void printWizard(string name); 

}; 

class Team 

{ 

private: 

  int memberCount; 

  Character* member[10]; 

public: 

  Team(); 

  ~Team(); 

  void addMember 

    (string name, int lv, char occupation); 

  void memberBeatMonster(string name, int exp); 

  void printMember(string name); 

}; 
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Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

Team::Team() 

{ 

  this->memberCount = 0; 

  for(int i = 0; i < 10; i++) 

    member[i] = nullptr; 

} 

Team::~Team() 

{ 

  for(int i = 0;  

      i < this->memberCount;  

      i++) 

    delete this->member[i]; 

} 

void Team::addMember 

  (string name, int lv, char occupation) 

{ 

  if(this->memberCount < 10) 

  { 

    if(occupation == 'R') 

      this->member[this->memberCount] = new Warrior(name, lv); 

    else if(occupation == 'D') 

      this->member[this->memberCount] = new Wizard(name, lv); 

    this->memberCount++; 

  } 

} 
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Class Team with Polymorphism 

• With polymorphism, we may redefine the class Team:  

void Team::memberBeatMonster(string name, int exp) 

{ 

  for(int i = 0; i < this->memberCount; i++) 

  { 

    if(this->member[i]->getName() == name) 

    { 

      this->member[i]->beatMonster(exp); 

      break; 

    } 

  }   

} 

void Team::printMember(string name) 

{ 

  for(int i = 0; i < this->memberCount; i++) 

  { 

    if(this->member[i]->getName() == name) 

    { 

      this->member[i]->print(); 

      break; 

    } 

  } 

} 
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Remaining questions 

• We still cannot prevent one from creating a Character object.  

• What happens to the following program:   

– No “Warrior ” and “Wizard ” printed out.  

– No experience point accumulated.  

• Why?  

– Because the default setting is to invoke the  

parent’s implementation.  

– To invoke the child’s one, we need virtual  

functions.  

 

int main() 

{ 

  Character* c[3];  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  c[0]->beatMonster(10000); 

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  return 0; 

} 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 109 / 114 

Early binding vs. late binding 

• When we do A a = b or A* a = &b, we are using 

polymorphism.  

• For A a = b, the system does early binding:  

– a occupies only four bytes for storing i.  

– a does not have a space for storing j.  

– Its type is determined to be A at compilation.  

• For A* a = &b, the system does late binding:  

– a is just a pointer.  

– It can point to an A object or a B object.  

– Its “type” can be determined at the run time.  

 

class A 

{ 

protected: 

  int i; 

public: 

  void a() { cout << "a\n"; }  

  void f() { cout << "af\n"; }  

}; 

 

class B : public A 

{ 

private: 

  int j; 

public: 

  void b() { cout << "b\n"; } 

  void f() { cout << "bf\n"; } 

}; 
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Early binding vs. late binding 

• But we still see the parent’s implementation being invoked. Why?  

 

 

 

 

 

 

 

 

• To ask the system to invoke the child’s implementation, we need to declare 

virtual functions.  

int main() 

{ 

  A a; 

  B b; 

  A* who = &a; 

  who->f(); // af 

  who = &b; 

  who->f(); // af 

 

  return 0; 

} 
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Virtual functions 

• If we declare a parent’s member function to be virtual, its invocation priority 

will be lower than a child’s (if we use late binding).  

– To do so, simply add the modifier virtual into the function header:  

– The child’s implementation is invoked!  

• No need to do that at the child’s side.  

– A parent can declare its function as  

a virtual function.  

– A child cannot declare a parent’s  

function as virtual (it is of no use).  

• In summary, we need: 

– Late binding + virtual functions.  

 

 

class A 

{ 

private: 

  int i; 

public: 

  void a() { cout << "a\n"; }  

  virtual void f() { cout << "af\n"; }  

}; 

Pointers Classes Inheritance and polymorphism 

Inheritance An example Polymorphism 



Ling-Chieh Kung (NTU IM) Data Structures – Advances in C++ (1) 112 / 114 

Virtual functions 

• For our Character class, simply declare  

beatMonster() and print() as virtual.  

 

 

 

 

 

 

 

• Warrior and Wizard override the two functions.  

Now their implementations get invoked.  

class Character 

{ 

protected: 

  // ... 

public: 

  Character(string n, int lv, int po, int kn, int lu); 

  virtual void beatMonster(int exp); 

  virtual void print(); 

  string getName(); 

}; 

int main 

{ 

  Character* c[3];  

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  c[0] = new Warrior("Alice", 10);  

  c[1] = new Wizard("Sophie", 8);  

  c[2] = new Warrior("Amy", 12);  

  c[0]->beatMonstor(10000); 

  for(int i = 0; i < 3; i++) 

    c[i]->print();  

  for(int i = 0; i < 3; i++) 

    delete c[i];  

  return 0; 

} 
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Abstract classes 

• The two virtual functions are different in their natures:  

– print() is invoked in the children’s implementations.  

– beatMonster() should not be invoked by any one.  

• We may set beatMonster() to be a pure virtual function:  

 

 

 

 

– Now we do not need to implement it.  

– Moreover, we cannot create Character objects!  

class Character 

{ 

  // ... 

  virtual void beatMonster(int exp) = 0; 

}; 
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Summary 

• Polymorphism is a technique to make our program clearer, more flexible and 

more powerful.  

– It is based on inheritance.  

– It is tightly related to function overriding, late binding, and virtual 

functions. 

• The key action is to “use a parent pointer to point to a child object”.  

• To implement late binding, you need to 

– Declare and override virtual functions. 

– Do late binding by using parent pointers to point to child objects.  
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