
Data Structures [Compiled on October 30, 2016] Fall 2016

Homework Assignment #5:
Programming Project #1

Due Time/Date

2:10PM Monday, November 14, 2016. Late submission will be penalized by 20% for each
working day overdue.

Task Description

Develop a C++ application (called “myCalculator” perhaps) that reads a C/C++ arith-
metic expression, evaluates it, and prints out the result. The simplest kind of arithmetic
expression that you must handle is a C/C++ constant integral expression built up from
integers and the six arithmetic operators binary + (addition), binary - (subtraction),
* (multiplication), / (division), % (remainder/modulo), and unary - (negation), with
possible parentheses (and) to group subexpressions. Below are two examples:

• 1 + 2 - 3 * 4 / 5

• (1 + 23 - 456) * (78 / 9)

Be careful with illegal inputs. When the input is illegal, your program should be able
to report an error and stop (or ask for another input).

You may go beyond this basic requirement, but please follow the C/C++ syntax and
semantics for integral arithmetic expressions.

Submission Guidelines

• Pack everything, excluding compiler-generated files, in a .zip file, named with the
pattern “b047050xx-ds2016-hw5.zip”.

• Upload the .zip file to the Ceiba course site for Data Structures 2016:

https://ceiba.ntu.edu.tw/1051ds2016.

• If you use a Makefile, make sure that it outputs “hw5”. Otherwise, make sure that
the whole application can be compiled by a single command like “gcc hw5.c”,
“g++ hw5.cpp”, or “javac hw5.java”.

Grading

This assignment constitutes 5% of your grade (of this course). Your work will be graded
according to its completeness, correctness, and presentation. You should provide evi-
dences (such as tests) showing that your program is correct. You should also organize
and document (by adding comments to) your program in such a way that other program-
mers, for example your classmates, can understand it. Below is a more specific grading
policy:

1

Criteria Score

far from complete, or doesn’t compile ≤ 20
nearly complete, compiles, but with major errors ≤ 40
nearly complete, with minor errors ≤ 60
complete, but handles only single-digit integers ≤ 80
complete, except unary − ≤ 90
complete and correct ≤ 100
allows variables and assignments +10
can detect an overflow/underflow +10

2

