
Information Security [Compiled on November 1, 2011] Fall 2011

Suggested Solutions to Homework Assignment #1B

1. Exercise problems from [Stallings 2011]:

5.1 We want to show that d(x) = a(x)× b(x) mod (x4 + 1) = 1. Substituting into Equation

(5.12) in Appendix 5A, we have:
d0
d1
d2
d3

 =


a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0




b0
b1
b2
b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




0E
09
0D
0B

 =


1
0
0
0


But this is the same set of equations discussed in the subsection on the MixColumn

transformation:

({0E} · {02})⊕ {0B} ⊕ {0D} ⊕ ({09} · {03}) = {01}
({09} · {02})⊕ {0E} ⊕ {0B} ⊕ ({0D} · {03}) = {00}
({0D} · {02})⊕ {09} ⊕ {0E} ⊕ ({0B} · {03}) = {00}
({0B} · {02})⊕ {0D} ⊕ {09} ⊕ ({0E} · {03}) = {00}

The first equation is verified in the text. For the second equation, we have {09} · {02} =

00010010; and {0D} · {03} = {0D} ⊕ ({0D} · {02}) = 00001101⊕ 00011010 = 00010111.

Then

{09} · {02} = 00010010
{0E} = 00001110
{0B} = 00001011
{0D} · {03} = 00010111

00000000

For the third equation, we have {0D} · {02} = 00011010; and {0B} · {03} = {0B} ⊕
({0B} · {02}) = 00001011⊕ 00010110 = 00011101. Then

{0D} · {02} = 00011010
{09} = 00001001
{0E} = 00001110
{0B} · {03} = 00011101

00000000

For the fourth equation, we have {0B} · {02} = 00010110; and {0E} · {03} = {0E} ⊕
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({0E} · {02}) = 00001110⊕ 00011100 = 00010010. Then

{0B} · {02} = 00010110
{0D} = 00001101
{09} = 00001001
{0E} · {03} = 00010010

00000000

Thus, we found out d(x) = a(x) × b(x) mod (x4 + 1) = 1 by calculating these four

equations.

5.4 a.

00 04 08 0C

01 05 09 0D

02 06 0A 0E

03 07 0B 0F

b.

01 05 09 0D

00 04 08 0C

03 07 0B 0F

02 06 0A 0E

c.

7C 6B 01 D7

63 F2 30 FE

7B C5 2B 76

77 6F 67 AB

d.

7C 6B 01 D7

F2 30 FE 63

2B 76 7B C5

AB 77 6F 67

e.

75 87 0F B2

55 E6 04 22

3E 2E B8 8C

10 15 58 0A

5.6 a. AddRoundKey

b. The MixColumn step, because this is where the different bytes interact with each

other.

c. The ByteSub step, because it contributes nonlinearity to AES.

d. The ShiftRow step, because it permutes the bytes.

e. There is no wholesale swapping of rows or columns. AES does not require this step

because: The MixColumn step causes every byte in a column to alter every other

byte in the column, so there is not need to swap rows; The ShiftRow step moves

bytes from one column to another, so there is no need to swap columns

6.4 a. The question assumes that there was an error in block C4 of the transmitted cipher-

text.
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ECB mode: In this mode, ciphertext block Ci is used only as input for the direct

dencryption of plaintext block Pi. Therefore, a transmission error in block C4 will

only corrupt block P4 of the decrypted plaintext.

CBC mode: In this mode, ciphertext block Ci is used as input to the XOR func-

tion when obtaining plaintext blocks Pi and Pi+1. Therefore, a transmission error

in block C4 will corrupt blocks P4 and P5 of the decrypted plaintext, but will not

propagate to any of the other blocks.

CTR mode: In this mode, ciphertext block Ci, as well as the encrypted counter ti,

are used only as input for the direct decryption of plaintext block Pi. Therefore, a

transmission error in block C4 will only corrupt block P4 of the decrypted plaintext.

b. The question assumes that the ciphertext contains N blocks, and that there was a

bit error in the source version of P3.

ECB mode: In this mode, ciphertext block Ci is generated by direct encryption of

plaintext block Pi, independent of the other plaintext or ciphertext blocks. There-

fore, a bit error in block P3 will only affect ciphertext block C3 and will not propagate

further. Thus, only one ciphertext block will be corrupted.

CBC mode: In this mode, ciphertext block Ci is generated by XORing plaintext

block Pi with ciphertext block Ci−1. Therefore, a bit error in block P3 will affect

ciphertext block C3, which in turn will affect ciphertext block C4 and so forth, and

therefore the error will propagate through all remaining ciphertext blocks. Thus,

N − 2 ciphertext block will be corrupted.

CTR mode: In this mode, ciphertext block Ci is generated by applying the XOR

function to plaintext block Pi and the encrypted counter ti, independent of the other

plaintext or ciphertext blocks. Therefore, a bit error in block P3 will only affect ci-

phertext block P3 and will not propagate further. Thus, only one ciphertext block

will be corrupted.

6.7 For this padding method, the padding bits can be removed unambiguously, provided

the receiver can determine that the message is indeed padded. One way to ensure that

the receiver does not mistakenly remove bits from an unpadded message is to require

the sender to pad every message, including messages in which the final block is already

complete. For such messages, an entire block of padding is appended.

6.11 a. CTS is the same as CBC, except for the last two blocks. PN−1 is encrypted as usual

for CBC, but the result of this encryption is split into two parts: the prefix is used

as CN , while the remaining bits (X) are used in the encryption of PN into CN−1

but are not returned. Since the X bits are used in future encryption stages they

can be retrieved during decryption, but the ciphertext remains the same length as

the original plaintext (unlike with simple padding schemes). This is useful when we
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wish the ciphertext to fit in the same buffer as the plaintext did.

b. Decrypting CN−1: Assume the message length is (block size*i - j). After passing

CN−1 through the encryption/decryption box using K, denote the result as Z. We

XOR the (block size-j) prefix bits of Z with CN , and that gives us PN .

Decrypting CN : After the above procedure, concatenate the j postfix bits of Z at

the end of CN , and pass these through the encryption/decryption box using K. The

result is XORed with CN−2 and PN−1 is the result.

c. The specific value of the padding of PN is not important, as long as the entity

decrypting the message knows what the padding is. Thus 1’s or a key prefix would

not obstruct decryption. Using 0’s is just the simplest option since it leaves the X

bits as they were.

6.12 a. For all blocks other than the last, this is simply CBC. We therefore focus on the

last block.

Encryption: Straightforward from the diagram. CN−1 is re-encrypted with the key

K, and the j leftmost bits are XORed with PN to produce CN.

Decryption: CN−1 is re-encrypted with the key K, and the j leftmost bits are XORed

with CN to produce PN .

b. The property does not hold. Specifically, for the last block we need to use encryption

of CN−1, a part of the ciphertext, in order to decrypt part of the ciphertext. For a

standard symmetric cipher (e.g. CBC), only decryption of ciphertext blocks would

be used during decryption.

c. TS is better, since the property mentioned in section (b) holds for it, making im-

plementation simpler.

2. In the CTR mode, the seed value (V) will be incremented by 1 after each encryption. Thanks

to the invertibility of the encryption algorithm, different values of V give rise to different

pseudorandom bits. Only when the value of V loops back to the initial value, the whole

stream will repeat. V has 2128 possible values, each producing 128 pseudorandom bits. So,

the period of the pseudorandom bit stream is 128× 2128 bits long.

3. To compute the expected period of the bit stream, we have to compute the expected num-

ber of times\rounds the encryption algorithm has to be applied to get a repeated stream.

Multiplying this expected value with the block length, we get the expected period of the bit

stream.

In the following table, the first column is the number of rounds that the encryption algorithm

have been applied. The third column is the probability that after these many rounds the

generated bit stream repeats. And the initial seed value is V0.

4



Let us look at the second row of Column 3. The first part 1
2128−1

is the probability that

V0 = V2, given that V0 6= V1. We know that the AES encryption algorithm is invertible.

When V0 6= V1, it is not possible that the new generated block value (V2) is equal to last

round’s block value (V1). So the number of possible values of this generated block is 2128− 1.

The second part is the computation about the probability that V0 6= V1.

rounds seed values transition probability that the generated bit stream repeat

1 V0 → V1
1

2128

2 V0 → V1 → V2
1

2128−1
× 2128·(2128−1)

(2128)2
= 1

2128

3 V0 → V1 → V2 → V3
1

2128−2
× 2128·(2128−1)(2128−2)

2128·2128·(2128−1)
= 1

2128

...
...

...

2128 V0 → V1 → · · · → V2128
1

2128

The expected number of rounds to get a repeated bit stream:

1× 1
2128

+ 2× 1
2128

+ · · ·+ 2128 × 1
2128

= (1 + 2 + · · ·+ 2128)× 1
2128

= (2128+1)×2128

2 × 1
2128

= (2128+1)
2

So, the expected period is 128× (2128+1)
2 = 64× (2128 + 1) bits long.
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