

Classical Encryption Techniques

Yih-Kuen Tsay

Department of Information Management National Taiwan University

Symmetric Encryption/Ciphers

- Also known as
 - conventional,
 - single-key, or
 - secret-key
 - encryption
- Encryption and decryption performed with the same key
- Most widely used type of ciphers

Simplified Model of Symmetric Encryption

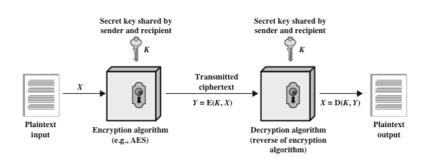
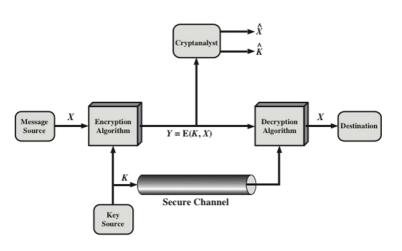


Figure 2.1 Simplified Model of Symmetric Encryption

Source: Figure 2.1, Stallings 2014

Symmetric Encryption in Essence

- Setting:
 - X: the plaintext
 - Y: the ciphertext
 - $\stackrel{ ext{!}}{ ext{!}} E$: the encryption algorithm
 - otin D: the decryption algorithm
 - 🏓 K: the secret key
- \P Y = E(K, X) or $Y = E_K(X)$
- igoplus E_K and D_K are the inverse function of each other!


Security of Secret-Key Encryption

- Encryption algorithm must be strong enough: impossible to decrypt a message based on the ciphertext alone
- Depends on the secrecy of the key, not the secrecy of the algorithm
- Do not need to keep the algorithm secret; only need to keep the key secret
- Feasible for wide-spread use

Model of Conventional Cryptosystem

$$Y = E(K, X); X = D(K, Y)$$

Source: Figure 2.2, Stallings 2014

Dimensions of Cryptographic Systems

- The type of operations used for the security-related transformation:
 - substitution and/or
 - transposition (permutation)
- The number of keys used:
 - 🌞 one key (symmetric encryption) or
 - two keys (asymmetric encryption)
- The way in which the plaintext is processed:
 - block cipher or
 - stream cipher

Cryptanalysis

Cryptanalysis is the process of attempting to discover plaintext or key or both.

- Ciphertext only: all that is available is the ciphertext.
 - the brute-force approach
 - statistical approaches (must first have some general idea about the type of plaintext)
- Known plaintext: feasible if certain plaintext patterns are known to appear in a message.
- Chosen plaintext: feasible if the analyst is able to insert chosen messages into the system.
- Chosen ciphertext
- Chosen text

Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Type of Attack	Known to Cryptanaryst
Ciphertext Only	Encryption algorithm
	Ciphertext
Known Plaintext	Encryption algorithm
	Ciphertext
	One or more plaintext-ciphertext pairs formed with the secret key
Chosen Plaintext	Encryption algorithm
	Ciphertext
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key
Chosen Ciphertext	Encryption algorithm
	Ciphertext
	Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key
Chosen Text	Encryption algorithm
	Ciphertext
	Plaintext message chosen by cryptanalyst, together with its corresponding ciphertext generated with the secret key
	Ciphertext chosen by cryptanalyst, together with its corresponding decrypted plaintext generated with the secret key

Source: Table 2.1, Stallings 2014

Strength of Encryption Schemes

- Unconditionally secure: unbreakable no matter how much ciphertext is available
- 🚱 Computationally secure:
 - The cost exceeds the value of the encrypted information
 - The time required exceeds the useful lifetime of the information

Exhaustive Key Search

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption/µs		Time Required at 10 ⁶ Decryptions/µs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu \text{s}$	= 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu \text{s}$	= 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu \text{s}$	$= 5.4 \times 10^{24} \text{ years}$	$5.4 \times 10^{18} \text{ years}$
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu \text{s}$	$= 5.9 \times 10^{36} \text{ years}$	$5.9 \times 10^{30} \text{ years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu$	$s = 6.4 \times 10^{12} \text{ years}$	6.4×10^6 years

Source: Table 2.2, Stallings 2010

Substitution Techniques

A *substitution technique* is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.

- Caesar Cipher
- Monoalphabetic Ciphers
- 🚱 Playfair Cipher
- Hill Cipher
- Polyalphabetic Ciphers

The Caesar Cipher

😚 Each letter replaced with the letter standing three places further down the alphabet

plain: abcdefghijklmnopqrstuvwxyz cipher: DEFGHIJKLMNOPQRSTUVWXYZABC plain: meet me after the toga party cipher: PHHW PH DIWHU WKH WRJD SDUWB

😚 The shift or key (which is 3) may be generalized to get General Caesar cipher:

$$C = E_k(p) = (p + k) \mod 26$$
, where $1 \le k \le 25$

Decryption:
$$p = D_k(C) = (C - k) \mod 26$$

Cryptanalysis of Caesar Cipher

	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
KEY 1	0000	00	chvat	i.a	waio	ratura
		-				
2			bgufs			
3			after		-	
4			zesdq	-		
5	kccr	kc	ydrcp	rfc	rmey	nyprw
6	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	gy	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fghjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrra	zr	nsgre	gur	abtn	cnegl
17			mrfqd		-	
18			lgepc	-		
19		-	kpdob			
20			jocna			
21			inbmz	-		
22			hmaly			,
23			glzkx		-	-
24		•	fkyjw			
25	qiix	qi	ejxiv	xli	xske	tevxc

Figure 2.3 Brute-Force Cryptanalysis of Caesar Cipher

Source: Figure 2.3, Stallings 2014

Breaking General Caesar Ciphers

Three characteristics of general Caesar ciphers enable us to use a brute-force cryptanalysis:

- 📀 Encryption and decryption algorithms known
- 🚱 Only 25 keys to try
- Language of the plaintext known and easily recognizable

Mono-alphabetic Ciphers

- Substitution represented by an arbitrary permutation of the alphabet
- 26! possible permutations (or keys) for English
- If language of the plaintext is known, regularities of the language may be exploited

Relative Frequency of English Letters

17 / 38

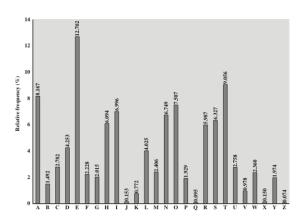


Figure 2.5 Relative Frequency of Letters in English Text

Breaking a Mono-alphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

1. Examine the relative frequency.

Р	13.33	Н	5.83	F	3.33	В	1.67	С	0.00
	11.67								
S	8.33	E	5.00	Q	2.50	Υ	1.67	L	0.00
U	8.33	V	4.17	Т	2.50	1	0.83	Ν	0.00
0	7.50	Х	4.17	Α	1.67	J	0.83	R	0.00
М	6.67								

Guess: P \rightarrow e and Z \rightarrow t (or the other way), $\{S,U,O,M,H\} \rightarrow \{r,n,i,o,a,s\}, \{A,B,G,Y,I,J\} \rightarrow \{w,v,b,k,x,q,j,z\}.$

Breaking a Mono-alphabetic Cipher (cont.)

2. Look for other regularities, particularly the frequency of two-letter combinations (digrams).

Guess: $ZW \rightarrow th$, $Z \rightarrow t$, $P \rightarrow e$.

3. $ZWSZ \rightarrow th_t$,

Guess: $S \rightarrow a$.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

ta e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

e e e tat e the t

Improving Mono-alphabetic Ciphers

- Easy to break, because they reflect the frequency data of the original alphabet
- A countermeasure: provide multiple substitutes (homophones) for a single letter
- 📀 Still, multi-letter patterns survive in the ciphertext
- Two better approaches for improvement:
 - Encrypt multiple letters of plaintext: Playfair Cipher
 - Use multiple cipher alphabets: Hill Cipher

The Playfair Cipher

- Treats digrams in the plaintext as single units.
- lacktriangle Based on the use of a 5 imes 5 matrix of letters constructed using a keyword.
- For example,

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Χ	Z

The Playfair Cipher (cont.)

Encryption rules by example:

М	0	N	Α	R
С	Н	Υ	В	D
Е	F	G	I/J	K
L	Р	Q	S	Т
U	V	W	Χ	Z

- 1. balloon (the plaintext) \rightarrow ballx lo on (repeating letters in the same pair separated by filler x)
- 2. $ON \rightarrow NA$ (ON on the same row)
- 3. BA \rightarrow IB (BA on the same column)
- 4. LX \rightarrow SU, LO \rightarrow PM

Relative Frequency of Letter Occurrences

23 / 38

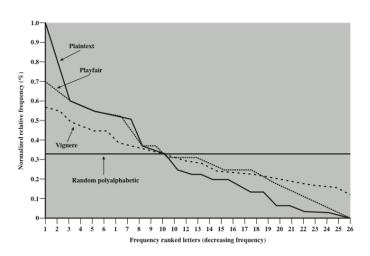


Figure 2.6 Relative Frequency of Occurrence of Letters

The Hill Cipher

- $\bigcirc m$ (successive) plaintext letters $\longrightarrow m$ ciphertext letters
- Substitution determined by m linear equations, with $a = 0, b = 1, \ldots, z = 25$

$$C_1 = (k_{11}p_1 + k_{12}p_2 + k_{13}p_3) \mod 26$$

For
$$m = 3$$
, $C_2 = (k_{21}p_1 + k_{22}p_2 + k_{23}p_3) \mod 26$
 $C_3 = (k_{31}p_1 + k_{32}p_2 + k_{33}p_3) \mod 26$

$$\begin{pmatrix} C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} \pmod{26}$$

or

$$\begin{pmatrix} C_1 & C_2 & C_3 \end{pmatrix} = \begin{pmatrix} p_1 & p_2 & p_3 \end{pmatrix} \begin{pmatrix} k_{11} & k_{21} & k_{31} \\ k_{12} & k_{22} & k_{32} \\ k_{13} & k_{23} & k_{33} \end{pmatrix} \pmod{26}$$

The Hill Cipher (cont.)

- P,C: row vectors of length *m*, representing the plaintext and ciphertext
- lacktriangledown K: invertible m imes m matrix, representing the encryption key

$$C = E_K(P) = PK$$

$$P = D_{K}(C) = CK^{-1} = PKK^{-1} = P$$

 Strong against a ciphertext-only attacks, but easily broken with a known plaintext attack

Breaking the Hill Cipher

Given:
$$(7\ 8)$$
 K = $(7\ 2)$, $(11\ 11)$ **K** = $(17\ 25)$

Setting up the equation:
$$\begin{pmatrix} 7 & 2 \\ 17 & 25 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} \mathbf{K}$$

Calculating the needed inverse:
$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}^{-1} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix}$$

Calculating the key:
$$\mathbf{K} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix} \begin{pmatrix} 7 & 2 \\ 17 & 25 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 8 & 5 \end{pmatrix}$$

The result may be verified with other known plaintext-ciphertext pairs.

Calculating the Inverse of a Matrix

Let A be an invertible matrix (with a nonzero determinant). Its inverse A^{-1} can be computed as follows:

$$[A^{-1}]_{ij} = (-1)^{i+j} \times D_{ji} \times \det^{-1}(A)$$

where D_{ij} is the subdeterminant obtained by deleting the j-th row and the i-th column of A.

$$\det^{-1} \begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix} = (-11)^{-1} = 15^{-1} = 7 \pmod{26}$$

$$\begin{pmatrix} 7 & 8 \\ 11 & 11 \end{pmatrix}^{-1} = \begin{pmatrix} 11 \times 7 & -8 \times 7 \\ -11 \times 7 & 7 \times 7 \end{pmatrix} = \begin{pmatrix} 25 & 22 \\ 1 & 23 \end{pmatrix} \pmod{26}$$

Poly-alphabetic Ciphers

- To improve on simple monoalphabetic ciphers, juggle different monoalphabetic substitutions
- 😚 This is called *polyalphabetic* cipher
- Common features:
 - 🌞 A set of related monoalphabetic substitution rules
 - A key determines which particular rule is chosen

The Vigenère Cipher

- Best-known polyalphabetic cipher
- Monoalphabetic substitution rules consist of the 26 general Caesar ciphers
- Each cipher is denoted by a key letter, which is the ciphertext letter that substitutes for letter 'a'

```
key: deceptivedeceptive
plain: wearediscoveredsaveyourself
cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
```

(Note: d = 3, w = 22, and 3 + 22 = 25 = Z; so, w is mapped to Z under the key d.)

📀 Multiple ciphertext letters for each plaintext letter

The Vernam Cipher

The encryption scheme is expressed as

$$C_i = p_i \oplus k_i$$

where $p_i = i$ -th binary digit of plaintext,

 $k_i = i$ -th binary digit of key, and

 $C_i = i$ -th binary digit of ciphertext

- The one-time pad scheme uses a random key for the Vernam cipher; in principle, unbreakable
- Rarely used due to key management problems

The Vernam Cipher (cont.)

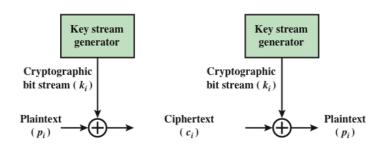


Figure 2.7 Vernam Cipher

Source: Figure 2.7, Stallings 2014

One-Time Pad Is Unbreakable

Assume a 27×27 Vigenère substitution cipher.

cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih plain: mr mustard with the candlestick in the hall

cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt plain: miss scarlet with the knife in the library

Cannot conclude one of the two keys is more likely than the other.

Transposition Techniques

Transposition ciphers perform some sort of permutation on the plaintext letters.

- 😚 The rail fence technique
- 📀 Columnar transpositions
- Multiple-stage transpositions

Columnar Transpositions

- Write the message in a rectanlge, row by row, and read the message off, column by column, but permute the order of the columns
- For example,

```
key: 4 3 1 2 5 6 7
plain: a t t a c k p
o s t p o n e
d u n t i l t
w o a m x y z
```

cipher: TTNAAPTMTSUOAODWCOIXKNLYPETZ

A Three-Rotor Machine

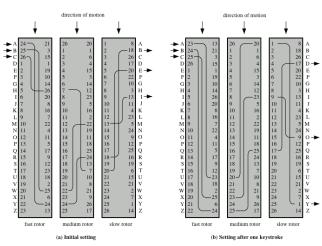


Figure 2.8 Three-Rotor Machine With Wiring Represented by Numbered Contacts

Rotor Machines

- A rotor machine consists of a set of cylinders that rotate like an odometer.
- A cylinder has 26 input pins, each connecting to a unique output pin.
- A rotating cylinder defines a poly-alphabetic substitution algorithm with a period of 26.
- A three-rotor machine has a period of $26 \times 26 \times 26 = 17,576$; four-rotor 456, 976; five-rotor 11, 881, 376.

Steganography

The methods of steganography conceal the existence of the message (whereas the methods of cryptography render the message unintelligible to outsiders).

- Character marking
- 🕝 Invisible ink
- Pin punctures
- Typewriter correction ribbon

A Puzzle

3rd March

Dear George,

Greetings to all at Oxford. Many thanks for your letter and for the Summer examination package. All Entry Forms and Fees Forms should be ready for final despatch to the Syndicate by Friday 20th or at the very latest, I'm told, by the 21st. Admin has improved here, though there's room for improvement still; just give us all two or three more years and we'll really show you! Please don't let these wretched 16t proposals destroy your basic 0 and A pattern. Certainly this sort of change, if implemented immediately, would bring chaos.

Sincerely yours,