Classical Encryption Techniques

Yih-Kuen Tsay
Department of Information Management National Taiwan University

Symmetric Encryption/Ciphers

Also known as
conventional,
*) single-key, or
, secret-key
encryption
Encryption and decryption performed with the same key

- Most widely used type of ciphers

Simplified Model of Symmetric Encryption

Figure 2.1 Simplified Model of Symmetric Encryption

Source: Figure 2.1, Stallings 2014

Symmetric Encryption in Essence

- Setting:
, X : the plaintext
, Y : the ciphertext
E: the encryption algorithm
, : the decryption algorithm
䇐 K : the secret key
- $Y=E(K, X)$ or $Y=E_{K}(X)$
$X=D(K, Y)$ or $X=D_{K}(Y)$
E_{K} and D_{K} are the inverse function of each other!

Security of Secret-Key Encryption

Encryption algorithm must be strong enough: impossible to decrypt a message based on the ciphertext alone
Depends on the secrecy of the key, not the secrecy of the algorithm
Do not need to keep the algorithm secret; only need to keep the key secret
Feasible for wide-spread use

Model of Conventional Cryptosystem

Source: Figure 2.2, Stallings 2014

Dimensions of Cryptographic Systems

The type of operations used for the security-related transformation:
, substitution and/or

* transposition (permutation)

The number of keys used:
漬 one key (symmetric encryption) or
, two keys (asymmetric encryption)
The way in which the plaintext is processed:
, block cipher or

* stream cipher

Cryptanalysis

Cryptanalysis is the process of attempting to discover plaintext or key or both.
Ciphertext only: all that is available is the ciphertext.
, the brute-force approach
statistical approaches (must first have some general idea about the type of plaintext)Known plaintext: feasible if certain plaintext patterns are known to appear in a message.
-
Chosen plaintext: feasible if the analyst is able to insert chosen messages into the system.
Chosen ciphertext

- Chosen text

Attacks on Encrypted Messages

Type of Attack
Known to Cryptanalyst
$\left.\begin{array}{|l|l|}\hline \text { Ciphertext Only } & \begin{array}{l}\text { - Encryption algorithm } \\ \text { - Ciphertext }\end{array} \\ \hline \text { Known Plaintext } & \begin{array}{l}\text { - Encryption algorithm } \\ \text { - }\end{array} \text { (iphertext } \\ \text { - One or more plaintext-ciphertext pairs formed with the secret } \\ \text { key }\end{array}\right]$

Source: Table 2.1, Stallings 2014

Strength of Encryption Schemes

- Unconditionally secure: unbreakable no matter how much ciphertext is available
- Computationally secure:
* The cost exceeds the value of the encrypted information
* The time required exceeds the useful lifetime of the information

Exhaustive Key Search

Key Size (bits)	Number of Alternative Keys	Time Required at 1 Decryption $/ \boldsymbol{\mu} \mathbf{s}$	Time Required at $\mathbf{1 0}^{6}$ Decryptions $\boldsymbol{\mu} \mathbf{s}$	
32	$2^{32}=4.3 \times 10^{9}$	$2^{31} \mu \mathrm{~s}$	$=35.8$ minutes	2.15 milliseconds
56	$2^{56}=7.2 \times 10^{16}$	$2^{55} \mu \mathrm{~s}$	$=1142$ years	10.01 hours
128	$2^{128}=3.4 \times 10^{38}$	$2^{127} \mu \mathrm{~s}$	$=5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168}=3.7 \times 10^{50}$	$2^{167} \mu \mathrm{~s} \quad=5.9 \times 10^{36}$ years	5.9×10^{30} years	
26 characters (permutation)	$26!=4 \times 10^{26}$	$2 \times 10^{26} \mu \mathrm{~s}=6.4 \times 10^{12}$ years	6.4×10^{6} years	

Source: Table 2.2, Stallings 2010

Substitution Techniques

A substitution technique is one in which the letters of plaintext are replaced by other letters or by numbers or symbols.

- Caesar Cipher
- Monoalphabetic Ciphers
- Playfair Cipher
- Hill Cipher

Polyalphabetic Ciphers

The Caesar Cipher

Each letter replaced with the letter standing three places further down the alphabet
plain: abcdefghijklmnopqrstuvwxyz
cipher: DEFGHIJKLMNOPQRSTUVWXYZABC
plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB
The shift or key (which is 3) may be generalized to get General Caesar cipher:
$C=E_{k}(p)=(p+k) \bmod 26$, where $1 \leq k \leq 25$
Decryption: $p=D_{k}(C)=(C-k) \bmod 26$

Cryptanalysis of Caesar Cipher

IM NTU

KEY
1
2

PHHW PH DIWHU WKH WRJD SDUWB oggv og chvgt vjg vqic rctva nffu nf bgufs uif uphb qbsuz meet me after the toga party ldds $1 d$ zesdq sgd snfz ozqsx kecr kc ydrcp rfc rmey nyprw jbbq jb xcqbo qeb qldx mxoqv iaap ia wbpan pda pkcw lwnpu hzzo hz vaozm ocz ojbv kvmot gyyn gy uznyl nby niau julns fxxm fx tymxk max mhzt itkmr ewwl ew sxlwj lzw lgys hsjlq dvvk dv rwkvi kyv kfxr grikp cuuj cu qvjuh jxu jewq fqhjo btti bt puitg iwt idvp epgin assh as othsf hvs hcuo dofhm zrrg zr nsgre gur gbtn cnegl yqqf yq mrfqd ftq fasm bmdfk xppe xp lqepc esp ezrl alcej wood wo kpdob dro dyqk zkbdi vnnc vn jocna cqn cxpj yjach ummb um inbmz bpm bwoi xizbg tlla tl hmaly aol avnh whyaf skkz sk glzkx znk zumg vgxze rjjy rj fkyjw ymj ytlf ufwyd qiix qi ejxiv xli xske tevxc

Figure 2.3 Brute-Force Cryptanalysis of Caesar Cipher

Source: Figure 2.3, Stallings 2014

Breaking General Caesar Ciphers

Three characteristics of general Caesar ciphers enable us to use a brute-force cryptanalysis:

- Encryption and decryption algorithms known

Only 25 keys to try

- Language of the plaintext known and easily recognizable

Mono-alphabetic Ciphers

- Substitution represented by an arbitrary permutation of the alphabet
26! possible permutations (or keys) for English
If language of the plaintext is known, regularities of the language may be exploited

Relative Frequency of English Letters

Figure 2.5 Relative Frequency of Letters in English Text

Source: Figure 2.5, Stallings 2014

Breaking a Mono-alphabetic Cipher

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ

 VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ1. Examine the relative frequency.

P	13.33	H	5.83	F	3.33	B	1.67	C	0.00
Z	11.67	D	5.00	W	3.33	G	1.67	K	0.00
S	8.33	E	5.00	Q	2.50	Y	1.67	L	0.00
U	8.33	V	4.17	T	2.50	I	0.83	N	0.00
O	7.50	X	4.17	A	1.67	J	0.83	R	0.00
M	6.67								

Guess: $\mathrm{P} \rightarrow \mathrm{e}$ and $\mathrm{Z} \rightarrow \mathrm{t}($ or the other way $)$,
$\{\mathrm{S}, \mathrm{U}, \mathrm{O}, \mathrm{M}, \mathrm{H}\} \rightarrow\{\mathrm{r}, \mathrm{n}, \mathrm{i}, \mathrm{o}, \mathrm{a}, \mathrm{s}\},\{\mathrm{A}, \mathrm{B}, \mathrm{G}, \mathrm{Y}, \mathrm{I}, \mathrm{J}\} \rightarrow$
$\{\mathrm{w}, \mathrm{v}, \mathrm{b}, \mathrm{k}, \mathrm{x}, \mathrm{q}, \mathrm{j}, \mathrm{Z}\}$.

Breaking a Mono-alphabetic Cipher (cont.)

2. Look for other regularities, particularly the frequency of two-letter combinations (digrams).
Guess: ZW \rightarrow th, $\mathrm{Z} \rightarrow \mathrm{t}, \mathrm{P} \rightarrow \mathrm{e}$.
3. ZWSZ \rightarrow th_t,

Guess: $\mathrm{S} \rightarrow \mathrm{a}$.

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
t a e e te a that e e a a

VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX

$$
\text { e t ta } \mathrm{t} \text { ha e ee a e th } \mathrm{t} \quad \mathrm{a}
$$

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t

Improving Mono-alphabetic Ciphers

Easy to break, because they reflect the frequency data of the original alphabet
A countermeasure: provide multiple substitutes (homophones) for a single letter
Still, multi-letter patterns survive in the ciphertext

- Two better approaches for improvement:
* Encrypt multiple letters of plaintext: Playfair Cipher
\% Use multiple cipher alphabets: Hill Cipher

The Playfair Cipher

Treats digrams in the plaintext as single units.
Based on the use of a 5×5 matrix of letters constructed using a keyword.
For example,

\mathbf{M}	\mathbf{O}	\mathbf{N}	\mathbf{A}	\mathbf{R}
\mathbf{C}	\mathbf{H}	\mathbf{Y}	B	D
E	F	G	I / J	K
L	P	Q	S	T
U	V	W	X	Z

The Playfair Cipher (cont.)

Encryption rules by example:

\mathbf{M}	\mathbf{O}	\mathbf{N}	\mathbf{A}	\mathbf{R}
\mathbf{C}	\mathbf{H}	\mathbf{Y}	B	D
E	F	G	I / J	K
L	P	Q	S	T
U	V	W	X	Z

1. balloon (the plaintext) \rightarrow ba Ix lo on (repeating letters in the same pair separated by filler x)
2. $\mathrm{ON} \rightarrow \mathrm{NA}$ (ON on the same row)
3. $\mathrm{BA} \rightarrow \mathrm{IB}$ (BA on the same column)
4. $\mathrm{LX} \rightarrow \mathrm{SU}, \mathrm{LO} \rightarrow \mathrm{PM}$

Relative Frequency of Letter Occurrences

Figure 2.6 Relative Frequency of Occurrence of Letters

Source: Figure 2.6, Stallings 2014

The Hill Cipher

m (successive) plaintext letters $\longrightarrow m$ ciphertext letters

- Substitution determined by m linear equations, with $a=0, b=1, \ldots, z=25$

$$
C_{1}=\left(k_{11} p_{1}+k_{12} p_{2}+k_{13} p_{3}\right) \bmod 26
$$

For $m=3, \quad C_{2}=\left(k_{21} p_{1}+k_{22} p_{2}+k_{23} p_{3}\right) \bmod 26$

$$
C_{3}=\left(k_{31} p_{1}+k_{32} p_{2}+k_{33} p_{3}\right) \bmod 26
$$

$$
\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

or
$\left(\begin{array}{lll}C_{1} & C_{2} & C_{3}\end{array}\right)=\left(\begin{array}{lll}p_{1} & p_{2} & p_{3}\end{array}\right)\left(\begin{array}{lll}k_{11} & k_{21} & k_{31} \\ k_{12} & k_{22} & k_{32} \\ k_{13} & k_{23} & k_{33}\end{array}\right)$

The Hill Cipher (cont.)

P,C: row vectors of length m, representing the plaintext and ciphertext
K: invertible $m \times m$ matrix, representing the encryption key

$$
\begin{aligned}
& \mathbf{C}=E_{\mathbf{K}}(\mathbf{P})=\mathbf{P K} \\
& \mathbf{P}=D_{\mathbf{K}}(\mathbf{C})=\mathbf{C K}^{-1}=\mathbf{P K K}^{-1}=\mathbf{P}
\end{aligned}
$$

Strong against a ciphertext-only attacks, but easily broken with a known plaintext attack

Breaking the Hill Cipher

Given: $\left(\begin{array}{ll}7 & 8\end{array}\right) \mathbf{K}=\left(\begin{array}{ll}7 & 2\end{array}\right),\left(\begin{array}{ll}11 & 11\end{array}\right) \mathbf{K}=\left(\begin{array}{ll}17 & 25\end{array}\right)$
Setting up the equation: $\left(\begin{array}{rr}7 & 2 \\ 17 & 25\end{array}\right)=\left(\begin{array}{rr}7 & 8 \\ 11 & 11\end{array}\right) \mathbf{K}$
Calculating the needed inverse: $\left(\begin{array}{rr}7 & 8 \\ 11 & 11\end{array}\right)^{-1}=\left(\begin{array}{rr}25 & 22 \\ 1 & 23\end{array}\right)$
Calculating the key: $\mathbf{K}=\left(\begin{array}{rr}25 & 22 \\ 1 & 23\end{array}\right)\left(\begin{array}{rr}7 & 2 \\ 17 & 25\end{array}\right)=\left(\begin{array}{ll}3 & 2 \\ 8 & 5\end{array}\right)$
The result may be verified with other known plaintext-ciphertext pairs.

Calculating the Inverse of a Matrix

Let A be an invertible matrix (with a nonzero determinant). Its inverse A^{-1} can be computed as follows:

$$
\left[A^{-1}\right]_{i j}=(-1)^{i+j} \times D_{j i} \times \operatorname{det}^{-1}(A)
$$

where $D_{j i}$ is the subdeterminant obtained by deleting the j-th row and the i-th column of A.
$\operatorname{det}^{-1}\left(\begin{array}{rr}7 & 8 \\ 11 & 11\end{array}\right)=(-11)^{-1}=15^{-1}=7 \quad(\bmod 26)$
$\left(\begin{array}{rr}7 & 8 \\ 11 & 11\end{array}\right)^{-1}=\left(\begin{array}{rr}11 \times 7 & -8 \times 7 \\ -11 \times 7 & 7 \times 7\end{array}\right)=\left(\begin{array}{rr}25 & 22 \\ 1 & 23\end{array}\right)(\bmod 26)$

Poly-alphabetic Ciphers

To improve on simple monoalphabetic ciphers, juggle different monoalphabetic substitutions
This is called polyalphabetic cipher

- Common features:
(\% A set of related monoalphabetic substitution rules
A key determines which particular rule is chosen

The Vigenère Cipher

- Best-known polyalphabetic cipher
- Monoalphabetic substitution rules consist of the 26 general Caesar ciphers
Each cipher is denoted by a key letter, which is the ciphertext letter that substitutes for letter 'a'
key: deceptivedeceptivedeceptive plain: wearediscoveredsaveyourself cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
(Note: $\mathrm{d}=3, \mathrm{w}=22$, and $3+22=25=\mathrm{Z}$; so, w is mapped to
Z under the key d.)
- Multiple ciphertext letters for each plaintext letter

The Vernam Cipher

The encryption scheme is expressed as

$$
C_{i}=p_{i} \oplus k_{i}
$$

where $p_{i}=i$-th binary digit of plaintext, $k_{i}=i$-th binary digit of key, and
$C_{i}=i$-th binary digit of ciphertext
The one-time pad scheme uses a random key for the Vernam cipher; in principle, unbreakable
Rarely used due to key management problems

The Vernam Cipher (cont.)

Figure 2.7 Vernam Cipher

Source: Figure 2.7, Stallings 2014

One-Time Pad Is Unbreakable

Assume a 27×27 Vigenère substitution cipher.
cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih plain: mr mustard with the candlestick in the hall
cipher: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS key: mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt plain: miss scarlet with the knife in the library

Cannot conclude one of the two keys is more likely than the other.

Transposition Techniques

Transposition ciphers perform some sort of permutation on the plaintext letters.

The rail fence technique

- Columnar transpositions
- Multiple-stage transpositions

Columnar Transpositions

Write the message in a rectanlge, row by row, and read the message off, column by column, but permute the order of the columns

- For example,

```
            key:4}4314256
            plain: a t t a c k p
                            o s t p o n e
                            d unt i l t
                            w O a m x y z
cipher: TTNAAPTMTSUOAODWCOIXKNLYPETZ
```


A Three-Rotor Machine

Figure 2.8 Three-Rotor Machine With Wiring Represented by Numbered Contacts

Rotor Machines

- A rotor machine consists of a set of cylinders that rotate like an odometer.
A cylinder has 26 input pins, each connecting to a unique output pin.
A rotating cylinder defines a poly-alphabetic substitution algorithm with a period of 26 .
A three-rotor machine has a period of $26 \times 26 \times 26=17,576$; four-rotor 456, 976; five-rotor 11, 881, 376.

Steganography

The methods of steganography conceal the existence of the message (whereas the methods of cryptography render the message unintelligible to outsiders).

Character markingInvisible ink

- Pin punctures
- Typewriter correction ribbon

A Puzzle

3rd March
Dear George,
Greetings to all at Oxford. Many thanks for your
letter and for the Summer examination package.
All Entry Forms and Fees Forms should be ready
for final despatch to the Syndicate by Friday
20th or at the very latesty l'm told, by the 21 st.
Admin has improved here, though there's room
for improvement still; just give us all two or three
more years and we'll really show you! Please
don't let these wretched 16 proposals destroy
your basic O and A pattern. Certainly this
sort of change, if implemented immediately,
would bring chaos.
Sincerely yours,

