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Areas Considered by Info. Security

« Secrecy (Confidentiality): keep information unrevealed

* Authentication: determine the i1dentity of whom you are talking
to

* Nonrepudiation: make sure that someone cannot deny the
things he/she had done

 Integrity control: make sure the message you received has not
been modified

 Availability: make sure the resource be available for authorized
personnel when needed
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Essential Concepts for Info. Security

» Risk management
— threats, vulnerabilities, assets, damages and probabilities
— balancing acts

— all cryptosystems may be compromised (trade-off between overhead and
expected time span of protection)

« Notion of chains (Achilles' heel)

* Notion of buckets (products, policies, processes and people)
* Defense in-depth

e Average vs. worst cases

« Backup, restoration and contingency plans
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A Number of Interesting Ciphers

e Chinese poems

e Clubs and leather stripes

* Invisible ink (steganography in general)

* Books

* Code books

* Enigma

* XOR (can be considered as an example of symmetric
cryptosystems)

* Ej/vu3dz8h96
« Scramblers (physical and application layers)
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Principles of Public-Key
Cryptosystems

YSL

Public vs Nonpublic Unlike Private key Ccryp-
tography, there is no need to share keys. In-
stead, there is a public “"phone number’” awvail-
able to any potential user and a private key.
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Principles of Public-Key
Cryptosystems (cont’d)

* Requirements for PKC
— easy for B (receiver) to generate KU, and KR,
— easy for A (sender) to calculate C = Ey,,(M)
— easy for B to calculate M = Dy, (C) = Dggi(Exyp(M))
— infeasible for an opponent to calculate KR, from KU,

— 1nfeasible for an opponent to calculate M from C and
KU,

— (useful but not necessary) M = Dy (Exyp(M)) =
Evp(Diriy(M)) (true for RSA and good for

authentication)
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Principles of Public-Key
Cryptosystems (cont’d)

TRAPDOOR

FPublic Key Cryptography (PKC) is based on
the idea of a trapdoor function f : X — Y,
i.e.,

e f is one-to-one,

e [ is easy to compute,

e f is public,

e f—1 is difficult to compute,

e f 1 becomes easy to compute if a trapdoor

iIs kKnown.
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Principles of Public-Key
Cryptosystems (cont’d)

YSL

The 1dea of PKC was first proposed by
Diffie and Hellman 1n 1976.

Two keys (public and private) are needed.
The difficulty of calculating f-! is typically
facilitated by

— factorization of large numbers

— resolution of NP-completeness

— calculation of discrete logarithms

High complexity confines PKC to key
management and signature applications
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Principles of Public-Key
Cryptosystems (cont’d)
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Principles of Public-Key
Cryptosystems (cont’d)
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Principles of Public-Key
Cryptosystems (cont’d)

« Comparison between conventional (symmetric)
| public-key (asymmetric) encryption

anc

Conventional Encryption

Public-Key Encryption

Needed to Work:

Needed to Work:

1.

2.

The same algorithm with the same key
is used for encryption and decryption.

The sender and receiver must share the
algorithm and the key.

1.

2.

One algorithm is used for encryption
and decryption with a pair of keys, one
for encryption and one for decryption.
The sender and receiver must each have
one of the matched pair of keys (not the
same one).

Needed for Security:

Needed for Security:

YSL

1.

2.

. Knowledge

The key must be kept secret.

It must be impossible or at least
impractical to decipher a message if no
other information is available.

of the algorithm plus
samples of ciphertext must be
insufficient to determine the key.

1.

2.

One of the two keys must be kept
secret.

It must be impossible or at least
impractical to decipher a message if no
other information is available.

. Knowledge of the algorithm plus one

of the keys plus samples of ciphertext
must be insufficient to determine the
other key.
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Principles of Public-Key
Cryptosystems (cont’d)

« Applications for PKC
— encryption/decryption

— digital signature

— key exchange

Algorithm Encryption/Decryption| Digital Signature Key Exchange
RSA Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No

YSL
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Principles of Public-Key
Cryptosystems (cont’d)
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Cryptanalyst A
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Figure 6.2 Public-Key Cryptosystem: Secrecy
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Principles of Public-Key
Cryptosystems (cont’d)

Source A Destination B
o~ A ~ ~ A ~~
. . r . X
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|

Figure 6.3 Public-Key Cryptosystem: Authentication
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Principles of Public-Key
Cryptosystems (cont’d)
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Figure 6.4 Public-Key Cryptosystem: Secrecy and Authentication
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The RSA Algorithm

YSL

Developed by Rivest, Shamir, and Adleman
at MIT in 1978

First well accepted and widely adopted
PKC algorithm

Security based on the difficulty of factoring
large numbers

Patent expired 1n 2001

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

EULER'S TOTIENT FUNCTION

A Crr) is the nmnumMmber of Nmnon-negative integers
less than  which are relatively prirme to se.

7r  H{ar) e e T > re)
1 O 10O < 1< 13
=2 1 11 10 20 =

= =2 122 =} 21 122
<} =2 13 122 =22 1O
5 ra 1 & =23 =22
L =2 15 = 2 =
i & 1 = 25 20
= < 17 1 & 2o i
.= <] 15 & =2F 13

Some Important wvalues of ()

T AH(re) — Conditions
o g2 — A1 o pPrirme
P'ﬂ"i‘. p?r- _ pf-'_]— T Drirme
s -t | & (s) - (&) gcd(s,+) — 1
Prog | (p— 1) - (g — 1) | p g prime

X3 X AT & o F N Bt 2 TRl BIALE N B AR R o
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The RSA Algorithm (cont’d)

YSL

RSA CRYPTOSYSTEMN

e, Define n — pg where p and g are large
primes.
d,e: gcd(e, d(mn)) = 1 and ed = 1 {modg(r))

AT AT is the number representing the message
to be encrvyvpted.

' 7 is the number representing the "“"Cwvpher-
text” (i.e., the encrvpted text).

FPublic Information: . e.

Private Information: .

Information Security -- Public-Key Cryptography 19



The RSA Algorithm (cont’d)

ey Generaliomn
SBelect g, g 2 and g both prime
Calculate i1 = pr > g

Calculate ¢ {ad = (2 - Ll - 1)

Select integer & godiglm). e = 12 1 =< & < @)
Calculate of o = e-1 mod ¢

Public ey KLl = [&, ]

Private kew KR = [ . i}

Encry plion

Plaintexi: A = 1

Cliphertext: = A (mod )
Decryplion

Cliphertext: [y

Plainuexte: Af = O fmod )

The RSA Algorithm
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The RSA Algorithm (cont’d)

YSL

PRIMES

An integer n > 1 is prime if 1 and n are its only
divisors,

Euclid: There are infinitely many primes.

If pp < po < -+ < pp are the first n primes then
any prime divisor of the integer 1 4+ pypo---pn
must be larger than ps,.

The number w(n) of primes < n is asymptoti-
cally equal to

)
Inmn'

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

2 3 5 7 I 13 17 19 23 29 31 37 41 43
101 103 107 109 113 127 131 137 139 149 151 157 163 167
211 223 227 229 233 239 241 251 257 263 269 271 281 283
307 311 313 317 331 337 347 349 449 457 461 463 467 479
401 409 419 421 431 433 439 443 449 457 461 463 467 479
503 509 521 523 541 547 557 563 569 571 577 587 593 599
601 607 613 617 619 631 641 643 647 653 659 661 673 677
701 709 719 727 733 739 743 751 757 761 769 773 787 797
809 811 821 823 827 829 839 853 857 859 863 877 831 883
907 911 919 929 937 941 947 953 967 971 977 983 991 997
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091
1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291 1297
1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399

47
173
293
487
487

683

887

1093 1097

53
179

491
491

691

1409 1423 1427 1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499

1511 1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597
1601 1607 1609 1613 1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699
1709 1721 1723 1733 1741 1747 1753 1759 1777 1783 1787 1789

1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879 1889
1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 199’

Primes under 2000

59 61 67 71
181 191 193 197
499
499

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

 The above statement 1s referred to as the
prime number theorem, which was proven in

1896 by Hadaward and Poussin.
X n(X) X/In X (m(X) x In X)/x
10° 168 144.8 1.160
10° 1229 1085.7 1.132
10° 9592 8685.9 1.104
10° 78498 74382.4 1.085
107 664579 620420.7 1.071
10° 5761455 5428681.0 1.061
10° 50847534 48254942.4 1.054
10" 455052512 434294481.9 1.048

YSL
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The RSA Algorithm (cont’d)

YSL

Whether there exists a simple formula to
generate prime numbers?

An ancient Chinese mathematician conjectured
that 1f n divides 2" - 2 then n 1s prime. For n = 3,

3 divides 6 and n 1s prime. However, for n = 341
=11 x 31, ndives 23# - 2.

Mersenne suggested that if p is prime then M, =
2P - 1 1s prime. This type of primes are referred
to as Mersenne primes™®. Unfortunately, for p =
11, M, =211-1=2047 =23 x 89.

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

*In mathematics, a Mersenne number is a positive integer that is one
less than a power of two:

M =2n_1.

Some definitions of Mersenne numbers require that the exponent n be
prime.

A Mersenne prime is a Mersenne number that is prime. As of
September 2008, only 46 Mersenne primes are known; the largest
known prime number (24311269 — 1) is a Mersenne prime, and in
modern times, the largest known prime has almost always been a
Mersenne prime. Like several previously-discovered Mersenne primes,
it was discovered by a distributed computing project on the Internet,
known as the Great Internet Mersenne Prime Search (GIMPS). It was
the first known prime number with more than 10 million digits.
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The RSA Algorithm (cont’d)

YSL

Fermat conjectured that if F, =22 + 1, where
N 1s a non-negative integer, then F_ 1s prime.
When n 1s less than or equal to 4, F, =3, F, =
5, F, =17, F;, =257 and F, = 65537 are all

primes. However, F, =4294967297 = 641 x
6700417 1s not a prime number.

nZ - 79n + 1601 is valid only for n < &0.

There are an infinite number of primes of the
form 4n + 1 or 4n + 3.

There 1s no simple way so far to gererate
prime numbers.

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

Bertrand’'s Postulate For any integer there
IS always a prime between n+ 1 and 2n. A
beautiful elementary proof Is due to Erdos.

Open problem of Hardy and Wright: I[s
there a prime between n? and (n + 1)27?

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

* Prime gap: displacement between two
consecutive prime numbers
— 0 the smallest
— unbounded from above

— n!+2 (devisable by 2), n!+3 (devisable by 3,
n!+4 (devisable by 4),..., n!+n (devisable by n)
are not prime

YSL Information Security -- Public-Key Cryptography 28



The RSA Algorithm (cont’d)

 Format’s Little Theorem (to be proven later): If
P 1s prime and a 1s a positive integer not
divisible by p, then

aP!l=1modp.
Example:a="7,p=19
72=49=11 mod 19
74=121 =7 mod 19
78 =49 =11 mod 19
716=121=7mod 19
aPl=718=716t2 = 7% 11 =1 mod 19
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The RSA Algorithm (cont’d)

YSL

HOWW I'T WORKS

RSA Encryption: A — (N = NIF° = 7 mod

T

RSA Decryption: ¢ — D(C") :— 4 = A mod

.

vvhen and WwWwhy it Wworks: Recall that «&(n) —

(p — 1)(g — 1. For RSA to work M < 7,
agcd(e,. (p — LI g — 1)) — 1, p and g are prime
and de = 1(mod(p — 1)(g — 1)).

RSA works because: 9 = (A7) = pred =

Arlt+Ep—1)(g— 1){ modrz)

Assume that gocd (M, g) —m gcd(AF, p) — 1. T hen
by Fermat's Little T heorem:

v —= AL (AP AIyEla—1) = AR P 1) = Ar(modp)
'l = AT (AFE—IEP—1) = Aq(1)Re—1) = A7 (modg)
T herefore ' = Ad(modn).
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The RSA Algorithm (cont’d)

YSL

A = M+Ip for a non-negative integer I.
A = M+]q for a non-negative integer J.
From the above two equations, Ip = .
Then, 1 = Kqg. (p and  are primes.)

Consequently, A = M+ip = M+kpg. Q.E.D.
(quod erat demonstrandum)

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

Ciphertext
b

Encryption
Plaintext 20807 with a
19 =19 247{.1]5]5] = remainder of
66
kU =511Y

Decryption

140 1.06... ll]lmwilh

Plaintext

_l-h-I'J

b =1.1?... 10 = aremainder of
19
KR =77, 119

Figure 6.6 Example of RSA Algorithm
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The RSA Algorithm (cont’d)

YSL

* Example 1

Select two prime numbers, p=7and q = 17.
Calculate n=p x g =7x17=1109.
Calculate ®(n) = (p-1)(g-1) = 96.

Select e such that e is relatively prime to ®(n)
= 96 and less than ®(n); 1n this case, e = 3.

Determine d such thatd x € = 1 mod 96 and d
< 96.The correct value 1s d = 77, because

T7x5 =385 = 4x96+1.

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

Example 2: p = 101,q = 113,n = 11413.
Then ¢(n) = (p—1)(g — 1) = 11200 = 25527.
So any integer not divisible by 2.5,7 can be
used as a public key. We can choose e = 3533.
Using the Euclidean algorithm we easily com-
pute e~1 mod 11200 = 6597.

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

OPERATIONS OMN MNMUMBERS

Addition of two E-bit numbers can be done in
time OCE).
O10110101

11010010
110000111

r~Multiplication of two AE-bit mnumbers can be
done in time (k2.

1011
110
O000
1011
1011
100010

Both are wwell-known algorithms. OfF course
there are ““faster’” algorithms (see Knuth's: ““Art
of Computer Programming' ).

Exponentiation of two k-bit numbers can be
done in time O(&E3).

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

YSL

Example: p—= 5.qg — 7.,1mn — 35.

Can choose e =—= 11. Let the message be Al —

12. To compute 1211 mod 35.

First write (11)1j0 — (1011)>. T hen calculate
Arll — pag1-2340-2241.2141.20

— (AZ1-27+0-20+1.29y2 5

— ((AL1-2'+0-2932 72 pyg
C(AT2Y2ZAL2ZNA

T he formal algorithm is as follows: Compute

the binary representation of e = >% "1 ¢,2%, where
E = [logs] and perform the following algo-
rithhrm:

Procedure exrponentiatiorn (a,e, 1)
=z :— 1

for i —m k& — 1 downto O do
= 1=— =< mod n
if ;7 = 1 then = :=— =z - =& Mmod n

return o mod e

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

« Key generation
— determining two large prime numbers, p and
— selecting either e or d and calculating the other

* Probabilistic algorithm to generate primes
— [1] Pick an odd integer n at random.

— [2] Pick an integer a < n (a 1s clearly not divisible by n)
at random.

— [3] Perform the probabilistic primality test, such as
Miller-Rabin. If n fails the test, reject the value n and
go to [1].

— [4] If n has passed a sufficient number of tests, accept n;
otherwise, go to [2].

YSL Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

 How may trials on the average are required to
find a prime?
— from the prime number theory, primes near n are
spaced on the average one every (In n) integers
— even numbers can be immediately rejected
— for a prime on the order of 22%°, about (In 22%0)/2 =
70 trials are required
* To calculate e, what 1s the probability that a

random number 1s relatively prime to ®(n)?
About 0.6.

YSL Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

 For fixed length keys, how many primes can be
chosen?

— for 64-bit keys, 2°4/In 2%% - 293/In 29 ~ 2.05 x10!7

— for 128- and 256-bit keys, 1.9 x10°¢and 3.25 x1074,
respectively, are available

* For fixed length keys, what is the probability
that a randomly selected odd number a 1s prime?
— for 64-bit keys, 2.05 x1017/(0.5 x(264 - 263)) ~ 0.044
(expectation value: 1/0.044 = 23)

— for 128- and 256-bit keys, 0.022 and 0.011,
respectively
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The RSA Algorithm (cont’d)

* The security of RSA

— brute force: This involves trying all possible
private keys.

— mathematical attacks: There are several
approaches, all equivalent in effect to factoring
the product of two primes.

— timing attacks: These depend on the running
time of the decryption algorithm.
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The RSA Algorithm (cont’d)

* To avoid brute force attacks, a large key
space 1s required.

 To make n difficult to factor

— p and g should differ in length by only a few
digits (both in the range of 107> to 10199)

— both (p-1) and (g-1) should contain a large
prime factor

— ged(p-1,9-1) should be small
— should avoid e << n and d < nl/4
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The RSA Algorithm (cont’d)

* To make n difficult to factor (cont’d)

— p and g should best be strong primes, where p 1s
a strong prime 1f

* there exist two large primes p, and p, such that p,|p-1
and p,|p+1

* there exist four large primes r,, S, I, and S, such that
r{pi-1, 81|p+1, 1y[p,-1 and s, |p,+1

— e should not be too small, e.g. fore=3 and C =
M3 mod n, if M? < n then M can be easily
calculated

YSL Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

FACTORING ALGORIT HMNMS

Froblem: Factor a given .

T his is a very important problem. No efficient
algorithm (i.e., running in time polvlogarithmic
im ) is kKNown.

T he 1996 challenge referred to anmn RSA chal-
lenge with a kewyw length of 120 decimal digits.
Implementation was done on the Internet.

Irecirral Y ear N F PSS | Algoritferm

I digits Achieved Y ears

100 1991 T | Sieve

110 1992 TS | @ Sieve

120 1993 S30 | @ Sieve

130 1996 500 | Ferr. Nawrre., Field

rMIFPS-weaears is Millions of Instructions Per Sec-—
ond counted 1N wears, e.g. a FPentium 200 is a
50 MIFPS machine.

Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

* Major threats

— the continuing 1ncrease in computing power
(100 or even 1000 MIPS machines are easily
available)

— continuing refinement of factoring algorithms
(from QS to GNFS and to SNFS)

YSL Information Security -- Public-Key Cryptography
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The RSA Algorithm (cont’d)

1% / | e
[ /’rf
1 [_l' f/’
— Ceerveral MNurmbrer
= 10 Field Sieye // b
_-.a. -’-..-"-_-'-r
:: . / __'_‘_'_,.-r—"-’-
é (] V —
A A <
:E; 1 [JI“ /“-‘- -
——
o 7] / ‘/
= 10° Pt
= f,,-" =
| =peecial Munnbeer
. / Ficld Sicve
o ..-#"’
_ / —_
1o
| 0
()
oo e I =AM PR 1 24MD 1M 1 el H) 1 =50 H) 2O

ESir=

Figure 6.9 MIPS-vears Weeded to Factor
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The RSA Algorithm (cont’d)

YSL

Expaerimental Runming T imes
ey lenagth selection for RSA depends o in-
tended security and expected key lifetimeae., E.g.,
i wou want vour kewys Lo remain secure fTor 20
vears a key 11,0249 bits lonmng is too short!

Table for factoring times in NFS anmnd SNEFEFS.

#£ of Bits | NFS-MIPS | SNEFS-MIPS
512 =32 . 104 = 200
TES 2. 10% 1 - 10°
1024 3 .- 1011 3. 10"
12380 1 - 1014 = - 10°
1536 3 - 1016 =2 . 1011
2043 32 .- 1020 4 - 1014

To be sure, certainly vou Can use wvery large
keyvs, but remember vour computation time will
become unreasonablel Here are some predic-—
tions in bit lengaths:

Year Indiwvidual Corporation Gowvernmeaent
2000 1024 12380 1538
2005 1280 1538 204938
2010 1280 1538 20493
2015 1538 20493 20495
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The RSA Algorithm (cont’d)

YSL

TIMNMINMG AT TACKS ON RS A

T his is simidlar to a burglar observinmng howw long
It takes for someone to turnmn the dial of a safe.
It is applicable to other cryptosysterrms as well.

A cryvptanalvyst can compute a private kewy bw
keeping track of how |long it takes the com-
puter to decipher messages. | he exponent is
computed bit-bw-bit startimg with the low-end
bit.

For a given ciphertex<t it is possible to time
howw long it takes to perform modular expo-

nentiation. Whe can therefore determine un-
Known bits by exploitimg timing differences in
responses. (T his attack was implemented by

<oeher in 1996.)

T he problem is eliminated by usinmng any of the
following remedies: (a) constant exponentia-
tion time, (b)) random delay, or (<) blinding bw
multiplwvinag the ciphertext with randorm nuourm-
ber prior to exponentiation.

Information Security -- Public-Key Cryptography
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Diffie-Hellman Key Exchange

 First public-key algorithm published
« Limited to key exchange

* Dependent for its effectiveness on the
difficulty of computing discrete logarithm

YSL Information Security -- Public-Key Cryptography
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Diffie-Hellman Key Exchange (cont’d)

YSL

Define a primitive root of of a prime number p as
one whose powers generate all the integers from 1
to p-1.

If a 1s a primitive root of the prime number p, then
the numbers

amodp,a‘modp, ..., aP! modp

are distinct and consist of the integers from 1 to p-
|1 in some permutation.

Not every number has a primitive root.

For example, 2 is a primitive root of 5, but 4 1s not.

Information Security -- Public-Key Cryptography
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Diffie-Hellman Key Exchange (cont’d)

* For any integer b and a primitive root a of
prime number P, one can find a unique
exponent I such that

b =a' mod p, where 0 <i < (p-1).

» The exponent I 1s referred to as the discrete
logarithm, or index, of b for the base a, mod p.

* This value is denoted as ind, ,(b) (dlog, ,(b)).
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Diffie-Hellman Key Exchange (cont’d)

YSL

(zlabal Puablic KElemnmenits

or pPrirme nurnber

Ll O = o anc o a prrirmniti ve rodot of e
Lser % Kewy (GGemeralionmn

Seclect private 3 s, o == or

Calculate public ™ & ™ o = r:-[xl"'k el ey
Lser B Kevy (zeneraliomn

Select private X g3 My = e

Calculare public ™ 5 ™ 3 = n-[xli i T T )

(zemneration of Secret Key by User M

K = (YR g <

eneration of Secrel Kew by User IS

K — (% a0 B oo o

The IFifliece-Hellmamn Key Exchange A lgocrit b

Information Security -- Public-Key Cryptography

51



Diffie-Hellman Key Exchange (cont’d)

« Example:

YSL

g =97 and a primitive root a = 5 1s selected.
X, =36 and Xg = 58 (both < 97).

Y, =5%°=50mod 97 and

Y, =5°% =44 mod 97.

K= (Yg) *xmod 97 = 44°¢ mod 97 = 75 mod 97.
K=(Y,) %smod 97 = 50°® mod 97 = 75 mod 97.
75 cannot easily be computed by the opponent.
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Diffie-Hellman Key Exchange (cont’d)

 How the algorithm works
K = (Yg)"* modq
= (a”® mod)** modqg
=(a”®)"* mod(
= *** mod(
=(a”*)"® mod(
= (a** modQ)”® modq

= (YA)XB mod g
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Diffie-Hellman Key Exchange (cont’d)

YSL

User A

Generale

random Xy < g3
Calculate

Yas= oA mod i

Calculate
K=i{Yp) A mod g

User B

Generate

random Xy < g3
Calculate

Ygi= B mod g3
Calculale

K=i{Ys)*Emod g

Figure 6.17 Diffie-Hellman Key Exchange
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Diffie-Hellman Key Exchange (cont’d)

* Q,a, Y, and Yy are public.

* To attack the secrete key of user B, the
opponent must compute

Xg = ind, o(Yp). [Yg=a"s mod q.]
* The effectiveness of this algorithm therefore

depends on the difficulty of solving discrete
logarithm.
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Diffie-Hellman Key Exchange (cont’d)

* Bucket brigade (Man-in-the-middle) attack

Alice Trudy Bob
picks X picks z picks 'y
1 q, &, a*mod
0 % 2 J, &, a*mod -
i 3 a*mod g E é
. a Y mod g

— (e«** mod q) becomes the secret key between
Alice and Trudy, while («¥* mod Q) becomes
the secret key between Trudy and Bob.

YSL Information Security -- Public-Key Cryptography 56



