SVVRL) IM.NTU

Concurrent Programming

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

1/48

SVVRL () IM.NTU

Processes and Threads

Thread:

The operating system abstraction of a processing activity; a
sequence of steps executed one at a time; a single
sequential flow of control; ...

Process:

An executing program (application) that involves single or
multiple processing activities

* single-threaded process
traditional UNIX-like process
* multi-threaded process

A process consists of an execution environment together with one or
more threads.

Yih-Kuen Tsay PL 2012: Concurrent Programming 2 /48

SVVRL () IM.NTU

‘ Single vs. Multi-Threaded Processes

thread % g g —— | thread

single-threaded multithreaded

Redrawn from: Silberschatz et al., Operating System Concepts, Sixth Edition

Yih-Kuen Tsay PL 2012: Concurrent Programming 3 /48

SVVRL () IM.NTU

Client and Server with Threads

-

Thread 2 makes /
Input-output

requests to server
Receipt & G
Thread 1—_ sl
generates 0 L] C‘ | N\ ‘______FO
results ==
Reqmstﬁ,/
it M threads
Server

Client

Note 1: recall the producer-consumer model.
Note 2: disk block caching helps increase the server’s throughput.

4 /48

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition
PL 2012: Concurrent Programming

Yih-Kuen Tsay

SVVRL () IM.NTU

‘ Performance Gain with Threads

0 . 10 15 20 25 30 35 40 45 50 55 60

LU I R SN AN B D N N A B DN R A A RN R B R A BN R A S A N B B S B N B R S B R R D A B B B B B R |
1011121314 151617 18192021 222324 252627 2829303132 33343536 3738394041 424344454647 48 4950 51 5253 54 5556 57 58 59

b =
L
|
Lh
f- .
|
Of =
g

marshalling unmarshalling
(a) send i
prep. of receive
. request 1 [/ ‘\—’&29
Client & e S
Server |- L e

AN :)
/‘ processing (« \
receive S marshalling send
unmarshalling

(b)

Client ...

VAN

................................. rocessing eq 10 / \\processing req T

receive
(req. 2)

x
-
o
o
=
L
K
H
o
o
)
”

unmarshalling

Yih-Kuen Tsay PL 2012: Concurrent Programming 5 /48

SVVRL () IM.NTU

Other Threading Architectures

per-connection threads

workers
@ o— (4

9
"”D/’ ™ remote remote
e (4 / ohjects 8 —— [| Nbbts

If \G o— (4

a. Thread-per-request b. Thread-per-connection

Note: we are looking at the server side.

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming

per-object threads

= O_ (=
o
AN

c. Thread-per-object

6 /48

SVVRL () IM.NTU

Summary: When Are Multiple Threads
Useful?

Multiple physical devices, such as CPU and |I/O
device, should be present (possibly at different
locations).

The different processing activities, i.e., threads,
use different physical devices some of the time.

There is a need of prioritizing the different
processing activities.

Yih-Kuen Tsay PL 2012: Concurrent Programming 7148

SVVRL () IM.NTU

Execution Environments

An execution environment is a collection of
kernel-managed resources:

an address space

synchronization and communication resources
(semaphores, sockets, etc.)

higher-level resources (files, windows, etc.)

An environment is normally expensive to create and manage,
but can be shared by several threads.

It is protected (from threads residing in other execution
environments).

Yih-Kuen Tsay PL 2012: Concurrent Programming 8 /48

SVVRL () IM.NTU

Address Space

ol

I

Auxiliary

regions
|

Stack

+
1.

Heap * The auxiliary regions are for
mapped files and stacks of
additional threads etc.

Text

0

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming 9 /48

SVVRL () IM.NTU

Shared Regions

A shared region is one that is backed by the same
physical memory as one or more regions
belonging to other address spaces.

The uses of shared region include:
Libraries

Kernel

Data sharing and communication

Yih-Kuen Tsay PL 2012: Concurrent Programming 10 /48

SVVRL () IM.NTU

Copy on Write

Process A's address space Process B's address space
RB copied
from RA
o [l | on
Kerne|
— Shared — o
, frame
ASpage . g B'spage - -
table table fil i
a) Before write b) After write

Setirce:-Cotlouris-et-al; Distributed-Systems:-Concepts-and Design, Fourth-Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming 11 /48

‘An Execution Environment and Its
Threads

Execution enviromment Thread

Address space lables Saved processor registers

Communication interfaces, open files Priority and execution state (such as
BLOCKED)

Semaphores, other synchronization Software interrupt handling information

objects

List of thread identifiers Execution environment identifier

Pages of address space resident in memory; hardware cache entries

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition

Yih-Kuen Tsay PL 2012: Concurrent Programming 12 /48

SVVRL () IM.NTU

Multiple Threads vs. Multiple Processes

Categories of comparison:
Creation cost
Scheduling and context switching cost
Convenience of data and resources sharing
Protection

Yih-Kuen Tsay PL 2012: Concurrent Programming 13 /48

SVVRL () IM.NTU

Thread Scheduling

Preemptive: A thread may be suspended to make
way for another thread, even when it is otherwise
runnable.

Advantage: suitable for real-time applications, when
combined with an appropriate priority scheme.

Non-preemptive: A thread runs until it makes a call
that causes it to be descheduled and another to be

run.
Advantage: process synchronization is simpler.

Yih-Kuen Tsay PL 2012: Concurrent Programming 14 /48

SVVRL) IM.NTU

Essential Concepts in
Concurrent (Threads) Programming

= Race condition

= Critical section (region)
= Monitor

= Condition variable

= Semaphore

Yih-Kuen Tsay PL 2012: Concurrent Programming 15 /48

SVVRL () IM.NTU
A Multithreaded Java Program

public class PingPong extends Thread {
private String word; // what word to print
private int delay; // how long to pause
public PingPong(String whatToSay, int delayTime) {
word = whatToSay;
delay = delayTime;
}
public void run() {
try{ for(;){
System.out.print(word + " ");
Thread.sleep(delay); // wait until next time

}
} catch (InterruptedException e) {
return; /] end this thread
}
}
public static void main(String[] args) {
new PingPong("ping”, 33).start(); // 1/30 second
new PingPong("PONG", 100).start(); // 1/10 second
}

Yih}<uen Tsay PL 2012: Concurrent Programming 16 /48

SVVRL () IM.NTU

Threads and Runnables

Threads abstract the concept of a worker.

o A worker is an entity that gets something done.

o The work done by a thread is packaged up in its run
method.

The Runnable interface abstracts the concept of

work and allows that work to be associated with
a worker.

Yih-Kuen Tsay PL 2012: Concurrent Programming 17 /48

SVVRL () IM.NTU
Threads and Runnables (cont.)

class RunPingPong implements Runnable {
private String word; // what word to print
private int delay; // how long to pause
RunPingPong(String whatToSay, int delayTime) {
word = whatToSay;
delay = delayTime;
}
public void run() {
try{ for(;{
System.out.print(word + " ");
Thread.sleep(delay); // wait until next time

}
} catch (InterruptedException e) {
return; // end this thread

}

}

public static void main(String[] args) {
Runnable ping = new RunPingPong("ping", 33);
Runnable pong = new RunPingPong("PONG", 100);

new Thread(ping).start();
new Thread(pong).start();

}

Yih-%<uen Tsay PL 2012: Concurrent Programming 18 /48

SVVRL () IM.NTU

A Print Server

class PrintServer implements Runnable {
private Queue requests = new Queue();
public PrintServer() {
new Thread(this).start();
}
public void print(PrintjJob job) {
requests.add(job);

}
public void run() {
for (;;)
realPrint((PrintJob) requests.take());
}

private void realPrint(Printjob job) {
/] do the real work of printing

}
}

Yih-Kuen Tsay PL 2012: Concurrent Programming 19 /48

SVVRL () IM.NTU
Improved Print Server

class PrintServer2 {
private Queue requests = new Queue();
public PrintServer2() {
Runnable service = new Runnable() {
public void run() {
for (;;)
realPrint((PrintJob)requests.take());
}
5
new Thread(service).start();
}
public void print(PrintJob job) {
requests.add(job);
}
private void realPrint(Printjob job) {
// do the real work of printing

}

Y}h-Kuen Tsay PL 2012: Concurrent Programming 20 /48

SVVRL () IM.NTU

Thread States

FLnnihg
e ",
¥ield
statt L *
‘HewThread I—l- ‘ Funnakle I " * | Mot Runnable I
e -

l he run method terminates

| Dead I

* A thread becomes not runnable when (1) its sleep or suspend method
IS invoked, (2) it invokes its wait, or (3) it is blocking on 1/0O.

Source: Sun Microsystems, Inc., The Java Tutorial

Yih-Kuen Tsay PL 2012: Concurrent Programming 21 /48

SVVRL () IM.NTU
‘ Java Thread’s Methods (partial)

Thread{ ThreadGroup group, Runnable target, String name)
Creates a new thread in the SUSPENDED state, which will belong to group and be
identified as name: the thread will execute the run(} method of rarger.

setPriovity(int newPrioritv), getPriority)
Set and return the thread’s priority.

riny J
A thread executes the run() method of its target object, if it has one, and otherwise its
own run() method (Thread implements Runnable),

Starli)
Change the state of the thread from SUSPENDED to RUNNABLE.

sleepfint millisecs)
Cause the thread 1o enter the SUSPENDED state for the specified time.

vield()
Enter the READY state and invoke the scheduler.

destraov)
Destroy the thread.

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming 22 /148

SVVRL () IM.NTU
More about Thread’s Methods

run():

If this thread was constructed using a separate Runnable run object, then
calls that Runnable object's run method; otherwise, does nothing.

start():

Begins the execution of this thread; the Java Virtual Machine calls the run
method of this thread.

sleep(long millis):

Causes the currently executing thread to sleep (temporarily cease
execution) for the specified number of milliseconds.

yield():

Causes the currently executing thread object to temporarily pause and
allow other threads to execute.

destroy():

Destroys this thread, without any cleanup.

Yih-Kuen Tsay PL 2012: Concurrent Programming 23 /48

SVVRL () IM.NTU

Using yield() (Part 1)

class Babble extends Thread {
static boolean doYield; /] yield to other threads?
static int howOften; // how many times to print

private String word; // my word

Babble(String whatToSay) {
word = whatToSay;
}

public void run() {
for (inti = 0; i < howOften; i++) {
System.out.printin(word);
if (doYield)
yield(); // give another thread a chance

}

Yih-Kuen Tsay PL 2012: Concurrent Programming 24 /48

SVVRL) IM.NTU

Using yield() (Part Il)

public static void main(String[] args) {

doYield = new Boolean(args[0]).booleanValue();
howOften = Integer.parselnt(args[1]);

/| create a thread for each word
for (inti = 2;i < args.length; i++)
new Babble(argsli]).start();

Yih-Kuen Tsay PL 2012: Concurrent Programming 25 /48

SVVRL () IM.NTU

A Race Condition

ball =a getBalance(); l

l bal 2 = a getBalance();
ball += deposit; l

l bal 2 += deposit;
a.setBalancel(bal 17, l

l asetBalance(ba 27,

Source: Arnold, et al., The Java Programming Language, Third Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming 26 /48

SVVRL () IM.NTU

Synchronization

. l acqure lock
wait to
: ‘L acquire lock
synchronized
method I
\ ' acquire lock
l release lock jr ¥ h
! }synchmﬂize.:f
I method
release lock l ~

Source: Arnold, et al., The Java Programming Language, Third Edition

Yih-Kuen Tsay PL 2012: Concurrent Programming 27 148

SVVRL () IM.NTU

Synchronized Methods

class BankAccount {

private long number;

private long balance;

public BankAccount(long initialDeposit) {
balance = initialDeposit;

}

public synchronized long getBalance() {
return balance;

}

public synchronized long deposit(long amount) {
balance += amount;

§
§

Yih-Kuen Tsay PL 2012: Concurrent Programming 28 /48

SVVRL) IM.NTU

Synchronized Statements

/** make all elements in the array non-negative */
public static void abs(int[] values) {
synchronized (values) {
for (inti = 0; i < values.length; i++) {
if (valuesl[i] < 0)
valuesli] = - valuesli];

Yih-Kuen Tsay PL 2012: Concurrent Programming 29 /48

SVVRL () IM.NTU

Synchronized Methods vs. Statements

public synchronized long deposit(long
amount) {

balance += amount;

§

is in effect the same as

public long deposit(long amount) {
synchronized (this) {
balance += amount;

J

Yih-Kuen Tsay PL 2012: Concurrent Programming 30 /48

SVVRL) IM.NTU

Granularity of Synchronization (Part

)

class SeparateGroups {
private double aVal = 0.0;
private double bval = 1.1;
protected Object lockA = new Object();
protected Object lockB = new Object();

public double getA() {
synchronized (lockA) {
return aval;

}

}
public void setA(double val) {

synchronized (lockA) {
aVal = val;

}
}

Yih-Kuen Tsay PL 2012: Concurrent Programming 31 /48

SVVRL) IM.NTU

Granularity of Synchronization (Part

1)

public double getB() {
synchronized (lockB) {
return bVal;
b}

public void setB(double val) {
synchronized (lockB) {
bVal = val;
b}

public void reset() {
synchronized (lockA) {
synchronized (lockB) {
aVal = bval = 0.0;
}

} i

Yih-Kuen Tsay PL 2012: Concurrent Programming 32 /48

SVVRL () IM.NTU

Synchronizing on an Enclosing
Object

public class Outer {

private int data;

/] ...

private class Inner{

void setOuterData() {
synchronized (Outer.this) {
data = 12;

}

§
}

Yih-Kuen Tsay PL 2012: Concurrent Programming 33 /48

SVVRL

‘ Monitor: A Synchronization Abstraction

entry queue

queues associated with { / X

x, y conditions

'.\ —

\ operations /

initiali;aiion
code

--h'--____...--"'-_

jry e
b R

W g{w
R R
e

g

.

Source: Silberschatz et al., Operating System Concepts, Sixth Edition
Yih-Kuen Tsay PL 2012: Concurrent Programming 34 /48

SVVRL () IM.NTU

wait and notify

synchronized void doWhenCondition() {
while (‘condition)
wait();

... Do what must be done when the condition is
true ...

synchronized void changeCondition() {
... change some value used in a condition test ...
notifyAll(); // or notify()

Yih-Kuen Tsay PL 2012: Concurrent Programming 35 /48

SVVRL) IM.NTU

Implementation of a Shared Queue
(Part 1)

class Queue {
/| the first and last elements in the queue
private Cell head, tail;

public synchronized void add(Object o) {
Cell p = new Cell(o); // wrap o in a cell
if (tail == null)
head = p;
else
tail.next = p;
p.next = null;
tail = p;
notifyAll(); // let waiters know something arrived}

Yih-Kuen Tsay PL 2012: Concurrent Programming 36 /48

SVVRL () IM.NTU

Implementation of a Shared Queue
(Part Il)

public synchronized Object take() throws
InterruptedException

{
while (head == null)
wait(); // wait for an element
Cell p = head; /] remember first element
head = head.next;// remove it from the queue
if (head == null) // check for an empty queue
tail = null;
return p.item,;
}

}

Yih-Kuen Tsay PL 2012: Concurrent Programming 37 /48

SVVRL () IM.NTU

‘ Java Thread Synchronization
Methods (partial)

thread join(int millisecs)
Blocks the calling thread for up to the specified time until thread has terminated.

thread.interrupi()
Interrupts thread: causes it to return from a blocking method call such as sfeepy).

object.waitf lomg millisecs, int nanosecs)
Blocks the calling thread unul a call made to notfyf) or notifvAll) on object wakes
the thread. or the thread s interrupted., or the specified time has elapsed.

object.norifv(), object.norifvAllf)
Wakes, respectively, one or all of any threads that have called wait() on object.

Source: Coulouris et al., Distributed Systems: Concepts and Design, Fourth Edition

Yih-Kuen Tsay PL 2012: Concurrent Programming 38 /48

SVVRL () IM.NTU

Using join() (Part I)

class CalcThread extends Thread {
private double result;
public void run() {
result = calculate();
}

public double getResult() {
return result;
§

public double calculate() {
// ... calculate a value for “result”
}

}

Yih-Kuen Tsay PL 2012: Concurrent Programming 39 /48

SVVRL () IM.NTU

Using join() (Part I1)

class ShowJoin {
public static void main(String[] args) {
CalcThread calc = new CalcThread();
calc.start();
doSomethingElse();
try {
calc.join();
System.out.printin(“result is “
+ calc.getResult());
} catch (InterruptedException e) {
System.out.printIn(*No answer: interrupted”);
}

Yih-Kuen Tsay PL 2012: Concurrent Programming 40 /48

SVVRL () IM.NTU

Synchronization Designs

Server-side Synchronization

o A shared object protects access to itself by making its
methods synchronized.

0 Generally better ...
Client-side Synchronization

o All clients of a shared object agree to synchronize on

that object (or some other associated object) before
manipulating it.

o More flexible for method combinations and
operations on multiple objects ...

Yih-Kuen Tsay PL 2012: Concurrent Programming 41 /48

SVVRL () IM.NTU

Deadlocks

Several threads may reach a state where each
thread is waiting for some other thread to
release a lock.

The programmer is fully responsible for avoiding
deadlocks.

Yih-Kuen Tsay PL 2012: Concurrent Programming 42 | 48

SVVRL () IM.NTU

An Example Deadlock (Part I)

class Friendly {
private Friendly partner;
private String name,
public Friendly(String name) {
this.name = name;
}

public synchronized void hug() {
System.out.printIn(Thread.currentThread().getName() +
“in “ + name + “.hug() trying to invoke “ +
partner.name + “.hugBack()");
partner.hugBack();
}
private synchronized void hugBack() {
System.out.printIn(Thread.currentThread().getName() +
“in “ + name + “.hugBack()”);
}
public void becomeFriend(Friendly partner) {
this.partner = partner;
}
}

Yih-Kuen Tsay PL 2012: Concurrent Programming 43 | 48

SVVRL () IM.NTU

An Example Deadlock (Part I1)

public static void main(String[] args) {
final Friendly jareth = new Friendly(“jareth”);
final Friendly cory = new Friendly(“cory”);
jareth.becomeFriend(cory);
cory.becomeFriend(jareth);

new Thread(new Runnable() {
public void run() { jareth.hug(); }
}, “Thread1”).start();

new Thread(new Runnable() {
public void run() { cory.hug(); }
}, “Thread?2”).start();

}

Yih-Kuen Tsay PL 2012: Concurrent Programming 44 | 48

SVVRL () IM.NTU

Thread Groups

Thread groups provide a way to manipulate
threads collectively.

A thread group is a set of threads and thread
groups.

Every thread belongs to exactly one thread
group.

Thread groups form a tree with the “system
thread group” at the root.

Yih-Kuen Tsay PL 2012: Concurrent Programming 45 [48

SVVRL () IM.NTU
Using ThreadGroup’s Methods

public class EnumerateTest {
public void listCurrentThreads() {

ThreadGroup currentGroup =
Thread.currentThread().getThreadGroup();

int numThreads = currentGroup.activeCount();
Thread[] listOfThreads = new
Thread[numThreads];
currentGroup.enumerate(listOfThreads);
for (inti = 0; i < numThreads; i++)
System.out.printin("Thread #" + i + " =" +
listOf Threadsl[i].getName());

§
J

Yih-Kuen Tsay PL 2012: Concurrent Programming 46 / 48

SVVRL () IM.NTU

Using ThreadGroup’'s Methods (cont.)

public class MaxPriorityTest {
public static void main(String[] args) {
ThreadGroup groupNORM = new ThreadGroup(
"A group with normal priority");
Thread priorityMAX = new Thread(groupNORM,
"A thread with maximum priority");

/] set Thread's priority to max (10)
priorityMAX.setPriority(Thread.MAX_PRIORITY);
/] set ThreadGroup's max priority to normal (5)
groupNORM.setMaxPriority(Thread.NORM_PRIORITY);
System.out.printin("Group's maximum priority = " +

groupNORM.getMaxPriority());
System.out.printin("Thread's priority = " +

priorityMAX.getPriority());

}

Yih-Kuen Tsay PL 2012: Concurrent Programming 47 | 48

	Concurrent Programming
	Processes and Threads
	Single vs. Multi-Threaded Processes
	Client and Server with Threads
	Performance Gain with Threads
	Other Threading Architectures
	Summary: When Are Multiple Threads Useful?
	Execution Environments
	Address Space
	Shared Regions
	Copy on Write
	An Execution Environment and Its Threads
	Multiple Threads vs. Multiple Processes
	Thread Scheduling
	Essential Concepts in �Concurrent (Threads) Programming
	A Multithreaded Java Program
	Threads and Runnables
	Threads and Runnables (cont.)
	A Print Server
	Improved Print Server
	Thread States
	Java Thread’s Methods (partial)
	More about Thread’s Methods
	Using yield() (Part I)
	Using yield() (Part II)
	A Race Condition
	Synchronization
	Synchronized Methods
	Synchronized Statements
	Synchronized Methods vs. Statements
	Granularity of Synchronization (Part I)
	Granularity of Synchronization (Part II)
	Synchronizing on an Enclosing Object
	Monitor: A Synchronization Abstraction
	wait and notify
	Implementation of a Shared Queue (Part I)
	Implementation of a Shared Queue (Part II)
	Java Thread Synchronization Methods (partial)
	Using join() (Part I)
	Using join() (Part II)
	Synchronization Designs
	Deadlocks
	An Example Deadlock (Part I)
	An Example Deadlock (Part II)
	Thread Groups
	Using ThreadGroup’s Methods
	Using ThreadGroup’s Methods (cont.)

