
Programming Languages 2012: Introduction

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 What

What They Are

• Programming languages are notations for speci-
fying, organizing, and reasoning about computa-
tions.

• According to Stroustrup, a programming lan-
guage is

– a tool for instructing machines,

– a means for communicating between pro-
grammers,

– a vehicle for expressing high-level designs,

– a notation for algorithms,

– a way of expressing relationships between
concepts,

– a tool for experimentation, and

– a means for controlling computerized de-
vices.

2 Why

Machines, Machine Language, and Assembly
Language

• Programming languages were invented to make
machines easier to use.

• Machine computations are low level, more about
the inner workings of the machine rather than
what the computation is for.

• Machine language is the native language to
which a computer responds directly.

• However, programs in machine language (con-
sisting only of 0’s and 1’s) is unintelligible to a
human.

• Assembly language is a variant of machine lan-
guage in which names and symbols take the place
of the actual codes for machine operations, val-
ues, and storage locations.

Assembly Code
1 : M [0] := 0
2 : read(M [1])
3 : if M [1] ≥ 0 then goto 5
4 : goto 7
5 : M [3] := M [0]−M [1]
6 : if M [3] ≥ 0 then goto 16
7 : write(M [1])
8 : read(M [2])
9 : M [3] := M [2]−M [1]

10 : if M [3] ≥ 0 then goto 12
11 : goto 14
12 : M [3] := M [1]−M [2]
13 : if M [3] ≥ 0 then goto 8
14 : M [1] := M [2] + M [0]
15 : goto 3
16 : halt

Assembly Code (cont.)
If we are allowed the following conditionals, the

code can become more readable.

• if M [j] = 0 then goto i

• if M [j] = M [k] then goto i

1 : M [0] := 0
2 : read(M [1])
3 : if M [1] = 0 then goto 9
4 : write(M [1])
5 : read(M [2])
6 : if M [2] = M [1] then goto 5
7 : M [1] := M [2] + M [0]
8 : goto 3
9 : halt

Toward Higher-Level Languages

• Language designers seek a balance between two
goals:

1



– making computing convenient for people

– making efficient use of computing machines

• Convenience comes first. Without it, efficiency
is irrelevant.

• Programming languages were invented to make
machines easier to use. They thrive because they
make problems easier to solve.

• Programming languages are designed to be both
higher level and general purpose.

– A language is higher level if it is indepen-
dent of the underlying machine.

– A language is general purpose if it can be
applied to a wide range of problems.

Benefits of Higher-Level Languages
Higher-level languages have replaced machine lan-

guage and assembly language in virtually all areas of
programming, because they provide benefits like the
following:

• Readable, familiar notations

• Machine independence (portability)

• Availability of program libraries

• Consistency checks during implementation that
can detect errors

Problems of Scale

• The problems of programming are ones of scale.

• Any one change to a program is easy to make.

• But, the effect of a change can ripple through
the program, perhaps introducing errors or bugs
into some forgotten corner.

• Programming languages can help in two ways:

– Their readable and compact notations re-
duce the likelihood of errors.

– They provide ways of organizing computa-
tions so that they can be understood one
piece at a time.

Problems of Scale (cont.)

• Code inspection and program testing are two
common techniques for detecting program er-
rors.

• But as Dijkstra said, program testing can be used
to show the presence of bugs, but never to show
their absence.

• We must organize the computations in such a
way that our limited powers are sufficient to
guarantee that the computation will establish
the desired effect.

3 Programming Paradigms

Programming Paradigms

• Imperative Programming Imperative languages
are action oriented; that is, a computation is
viewed as a sequence of actions. They include
Fortran, Algol, Pascal, C, etc.

• Functional Programming Simply put, functional
programming is programming without assign-
ments. Functional programming languages in-
clude Lisp, Scheme, ML, etc.

• Object-Oriented Programming Central to object-
oriented programming is the concept of objects
and their classification into classes and sub-
classes. Object-oriented programming languages
include Smalltalk, C++, Java, etc.

• Concurrent Programming

• Logic Programming

4 Language Implementation

Language Implementation
There are two basic approaches to implementing a

program in a higher-level language:

• Compilation The language is brought down to
the level of the machine, using a translator called
a compiler.

• Interpretation The machine is brought up to the
level of the language, by building a higher-level
machine called an interpreter.

2



Compilation vs. Interpretation

• Compilation is biased toward static properties,
while interpretation can deal with dynamic prop-
erties. They can be compared as follows.

• Compilation can be more efficient than interpre-
tation.

– Unlike a compiler, which translates the
source program once and for all, an inter-
preter examines the program repeatedly.

• Interpretation can be more flexible than compi-
lation.

– An interpreter allows programs to be
changed “on the fly” to add features or cor-
rect errors.

– It can also pinpoint an error in the source
text and report it accurately.

3


