Programming Languages 2012: Functional Programming: Lisp

(Based on [Sethi 1996] and [Steele 1990])

Yih-Kuen Tsay

1 Introduction

Interacting with a Lisp Interpreter

> 3.14159
3.14159

> (setq pi 3.14159) ; bind a variable to a value
3.14159

; a number evaluates to itself

> pi ; a variable evaluates to its value
3.14159
> pl ; pi and pl are the same name
3.14159

General form of a Lisp expression: (Ey Es -+ Ej)
> (*57) 15T
35
>(+4(*57) i 4+5x%T7
39

Dialects: Scheme vs. Common Lisp

Common Lisp

(setq pi 3.14159)

(defun sq (x) (* x x))
((lambda (x) (* x x)) 5)

Scheme

(define pi 3.14159)
(define (sq x) (* x x))
((lambda (x) (* x x)) 5)

#t t

#£ () or nil
number? numberp
symbol? symbolp
equal? equal
null? null
pair? consp

(map sq (1 2 3)) (mapcar (function sq) (1 2 3))
or (mapcar #’sq '(1 2 3))

(map list (a b c) (1 2 3)) (mapcar #’list '(a b ¢) (1 2 3))

Dialects: Scheme vs. Common Lisp (cont.)

e When f is a formal argument represent-
ing an mn-ary function, the Scheme expres-
sion (f Ep Es E,) translates into

(funcall f By Es -+ E,) in Common Lisp.

e There is no Common Lisp counterpart of the
Scheme expression (define sq (lambda (x) (* x

x)))-

2 A Quick Tour

Functions

> (defun square (x) (* x x)) ; let square x = x*x
SQUARE

> (square 5) ; apply function square to 5
25

General form of a function definition:

(defun (function — name) ({formals))
(expression))

> ((lambda (x) (* x x)) 5)
25

General form of an unnamed function:

(lambda ((formals)) {expression))

Conditionals
(lf P E1 EQ) N if P then E1 else E2

(cond (P, Ey) . if Py then Ey

(P2 Es) ; else if P, then Ey

(Pk Ek) ; else if Py then Fj

(t Ext1)) ; else Friq
Example:

(defun fact (n) ; let rec fact n =
(if (=n0) ; ifn=0
1 ; then 1
(*n (fact (-n1))))) ; elsen * fact (n—1)

; unnamed function applied to 5

The let Construct
General form:

(1et ((Zl El) (1’2 EQ) s (Ik Ek)) F)

The let construct allows subexpressions to be
named.

> (4 (square 3) (square 4))
25
> (let ((three-sq (square 3))
(four-sq (square 4)))
(4 three-sq four-sq))
25

The let Construct (cont.)
The let construct can also be used to factor out
common subexpressions.

> (4 (square 3) (square 3))

18

> (let ((three-sq (square 3)))
(4 three-sq three-sq))

18

The let* Construct
General form:

(let* ((.’L‘l El) (LI’,’Q EQ) s (xk Ek)) F)

The let* construct is the sequential version of let.

(setq x 0)

>

0

> (let ((x2) (y %)) y) ; bind y before redefining x
0

> (let* ((x 2) (y x)) y) ; bind y after redefining x

2

Quoting
General form:

(quote (item)) or ’(item,)
Quoting is needed to treat expression as data.

> (setq pi 3.14159)
3.14159

> pi

3.14159

> (quote pi)
PI

> 'pi

PI

Quoting (cont.)

> (setq x (+ 2 3))
5

> X

5

> (setq x (+ 2 3))
(+23)

> X

(+23)

Summary of Lisp Constructs

(setq pi 3.14159) ; give name pi to 3.14159
(defun sq (x) (* x x)) ; fun sq(z) =x *xx
(lambda (x) (* x x)) ; anonymous function value

; (lambda (x) (* xx)) 3) =9

(* E1 EQ) ; El * E2
(E1 Ey E3) ; apply the value of E; as a
; function to arguments Fo and Ej3
(if P Ey E5) ; if P then E4 else Eo
(COHd (Pl El) 3 if P1 then E1
(P2 EQ) ; else if PQ then E2
(t Es)) ; else Ej

Summary of Lisp Constructs (cont.)

(let ((x1 E1) ; evaluate F1 and Es; then

(zo Es)) ; evaluate F3 with z1 and x5
Es) ; bound to their values
(let* ((z1 E) ;let 1 = Fp in
(x2 E3)) s let o9 = E» in
E3) ; B3

(quote blue) ; symbol blue
(quote (blue green red)) ; list (blue green red)
(list By Es E3) ; list of the values of Ey, Es, E3

3 The Structure of Lists

Structure of a List

it °
seems []
that °
you .

like

(it seems that you like me)

Structure of a List (cont.)

/\
i . you °
/\ /\
PN PN /\
that () like () me ()

((it seems that) you (like) me)

Operations on Lists

(null x) true if x is the empty list
(car x) the first element of a nonempty list x
(cdr x) the rest of the list x after
the first element is removed
(cons a x) a value with car a and cdr x; that is

(car (cons a x)) = a
(cdr (cons a x)) =x

Operations on Lists (cont.)
> (setq x ’((it seems that) you (like) me)) ((IT
SEEMS THAT) YOU (LIKE) ME)

expression shorthand value
X x ((it seems that) you (like) me)
(car x) (car x) (it seems that)
(car (car x)) (caar x) it
(cdr (car x)) (cdar x) (seems that)
(cdr x) (cdr x) (you (like) me)
(car (cdr x)) (cadr x) you
(cdr (cdr x)) (cddr x) ((like) me)

Cons

> (it . (seems . (that . ())))
(IT SEEMS THAT)

> (cons it (cons ’seems (cons ’that ’())))
(IT SEEMS THAT)

> (list ’it ’seems ’that)
(IT SEEMS THAT)

4 List Manipulations

Functions on Lists

(defun my-length (x)
(cond ((null x) 0)
(t (+ 1 (my-length (cdr x))))))

(defun rev (x z)
(cond ((null x) z)
(t (rev (cdr x) (cons (car x) z)))))

(defun my-append (x z)
(cond ((null x) z)
(t (cons (car x) (my-append (cdr x) z)))))

Functions on Lists (cont.)

(defun my-mapcar (f x)
(cond ((null x) ’())
(t (cons (funcall { (car x))
(my-mapcar f (cdr x))))))

(defun my-remove-if (f x)
(cond ((null x) ’())
((funcall f (car x)) (my-remove-if f (cdr x)))
(t (cons (car x) (my-remove-if f (cdr x))))))

(defun my-reduce (f x v)
(cond ((null x) v)

(t (funcall f (car x) (my-reduce f (cdr x) v)))))

Flattening a List

We get a flattened form of a list if we ignore all
but the initial opening and final closing parentheses
in the written representation of a list.

> (defun flatten (x)
(cond ((null x) x)
((not (consp x)) (list x))
(t (append (flatten (car x))
(flatten (cdr x))))))
FLATTEN

Function flatten constructs a flattened list by
flattening the car and flattening the cdr of a list and
appending the resulting sublists.

Flattening a List (cont.)

> (flatten ’((a) ((b b)) (((c c ¢)))))
(ABBCCO

> (flatten (1 (2 3) ((4 5 6))))

(1 23456)

Association Lists

e An association list, or simply a-list, is a list of
pairs.

e Association lists are a traditional implementa-
tion of dictionaries and environments, which
map a key to an associated value.

> (defun bind (keys values env)
(cons (1list keys values) env))

BIND

> (bind ’a ’1 ()

(A 1))

Association Lists (cont.)

> (defun bind-all (keys values env)

(append (mapcar #’list keys values) env))
BIND-ALL
> (bind-all ’(a b ¢)
((a 1) (B 2) (C3)

(123) 70

> (assoc ’a ’((a 1) (b 2) (c 3)))
(A1)
> (assoc ’c *((a 1) (b 2) (c 3)))
(€ 3)

Lists of Expressions
Lisp dialects allow + and * to take a list of argu-
ments.

> (+ 2 3)
5

> (+ 2 35)
10

+ 2)

>
2
> (*x 2)
2

(+

(%)

5 An Application: Differentia-

tion
A Differentiation Function

fun d(z, E) =
if F is a constant then ...
else if F is a variable then ...
else if F is the sum Fy + F2 + --- + Ej then ...
else if F is the product E; * Fs % --- % Ej, then ...

(defun 4 (x E)
(cond ((constant? E) (diff-constant x E))
((variable? E) (diff-variable x E))
((sum? E) (diff-sum x E))
((product? E) (diff-product x E))
(t (error "d: cannot parse ~S" E))))

Differentiation of Constants and Variables
(defun constant? (x) (numberp x))
(defun diff-constant (x E) 0)

(defun variable? (x) (symbolp x))

(defun diff-variable (x E)
(if (equal x E) 1 0))

Differentiation of Sums

(defun
(and

sum? (E)
(consp E)
(equal ’+ (car E))))

(defun args (E) (cdr E))

(defun make-sum (x) (cons ’+ x))
(defun diff-sum (x E)
(make-sum (mapcar
(lambda (expr) (d x expr))
(args E))))

Differentiation of Products

(defun product? (E)

(and (consp E)
(equal ’* (car E))))

(defun diff-product (x E)

(let* ((arg-list (args E))
(nargs (length arg-list)))
(cond ((equal O nargs) 0)
((equal 1 nargs) (d x (car arg-list)))
(t (diff-product-args x arg-list)))))

Differentiation of Products (cont.)

d(z, E1+%Ep) = d(z, E1)*Ep+E1xd(z, Ep) where

Ep=Fy*---x E|

(defun make-product (x) (cons ’* x))

(defun diff-product-args (x arg-list)

(let* ((E1 (car arg-list))
(EP (make-product (cdr arg-list)))
(DE1 (d x E1))
(DEP (d x EP))
(terml (make-product (list DE1 EP)))
(term2 (make-product (list E1 DEP))))
(make-sum (list terml term2))))

Using the Differentiation Function

> (d v ’v)

1

> (d v ’w)

0

> @ ’v’(+uvw)
(+010)

>@'v'’(xv (+uvw))

+ 1 (x FUVW)) xV (+010)))

6 Simplification of Expressions

Simplification of Expressions

e The result of the differentiation function can be

made more readable by removing occurrences of

0 from sums, occurrences of 1 from products,
“flattening” sums and products, etc.

e We shall implement a function simplify that
accomplishes the simplification task.

> (simplify ’(+ 0 1 0))

1

> (simplify (d ’v *(+ u v w)))
1

>

(simplify *(+ (* 1 (*x (+ u v w)))
v (+010))
FUVWW
> (simplify (d v *(x v (+ u v w))))
+UTVWW

Simplification of Expressions (cont.)

(defun simplify (E)
(cond ((sum? E) (simplify-sum E))
((product? E) (simplify-product E))
(t E)))

(defun simplify-sum (E)
(simpl #’sum? #’make-sum O E))

(defun simplify-product (E)
(simpl #’product? #’make-product 1 E))

Simplification of Expressions (cont.)

(defun simpl (op? make-op id E)
(let* ((u (args E))

(v (mapcar #’simplify u))

(w (flat op? v))

(x (remove-if
(lambda (z) (equal id z))
W)

(y (proper make-op id x)))

vy))

Simplification of Expressions (cont.)

> (simplify (¥ 1 (* a (+ 0 b 0))))
(* A B)
> (simpl #’product? #’make-product 1
(k1 (xa (+0Db0))))
(* A B)
> (args (* 1 (x a (+ 0 b 0))))
(1 (x A (+0BO0)))
> (mapcar #’simplify (1 (x a (+ 0 b 0))))
(1 (x A B))
> (flat #’product? (1 (*x a b)))
(1 AB)
> (remove-if (lambda (z) (equal 1 z)) ’(1 a b))
(A B)
> (proper #’make-product 1 ’(a b))
(* A B)

Simplification of Expressions (cont.)

(defun flat (f x)
(cond ((null x) ’Q))
((not (comsp x)) (list x))
((funcall f (car x))
(append (flat f (args (car x)))
(flat £ (cdr x))))
(t (cons (car x) (flat f (cdr x))))))

> (flat #’sum? (2 (+ 3 4) 5 (x 6 7)))
(2345 (x67)

Simplification of Expressions (cont.)

(defun proper (make-op id x)
(cond ((null x) id)
((null (cdr x)) (car x))
(t (funcall make-op x))))

> (proper #’make-product 1 ’(a b))
(x A B)

> (proper #’make-product 1 ’())

1

7 Storage Allocation for Lists

Storage Allocation for Lists

e Lists are built out of cells capable of holding
pointers to the head and tail, or car and cdr,
respectively of a list.

e The car operation is named after “Contents of
the Address part of Register” and cdr is named
after “Contents of the Decrement part of Reg-
ister.” A word in the IBM 704 could hold two
pointers in the fields called the address part and
the decrement part.

e When Lisp was first implemented on the IBM
704, the cons operation allocated a word and
stuffed pointers to the head and tail in the ad-
dress and decrement parts, respectively.

e The empty list () is a special pointer (a special
address that is not used for anything else).

Storage Allocation for Lists (cont.)

(setq x ’(it seems that))

Equality

The eq function checks whether its two arguments
are identical pointers, while the equal function re-
cursively checks whether its two arguments are lists
with “equal” elements.

(equal ’hello ’hello)

>
T
> (eq ’hello ’hello)
T

> (equal ’(hello world) ’(hello world))

> (eq ’(hello world) ’(hello world))
NIL

Equality (cont.)

hello

[[[5—0

world

These two lists, though with the same elements,
are allocated in different locations (and hence must
be pointed to using different pointers).

Equality (cont.)

> (setq x ’(it seems that))

(IT SEEMS THAT)

> (setq y (cons (car x) (cdr x)))
(IT SEEMS THAT)

> (equal x y)
T

> (eq x)
NIL

Allocation and Deallocation

e Cells that are no longer in use have to be recov-
ered or deallocated.

e A standard technique for allocating and deallo-
cating cells is to link them on a list called a free
list.

e A language implementation performs garbage
collection when it returns cells to the free list
automatically.

e When should garbage collection be performed?

— Lazy approach
Wait until memory runs out and only then
collect dead cells.

— Fager approach

Each time a cell is reached, check whether
the cell will be needed after the operation.

Mark-Sweep Garbage Collection

e The mark-sweep approach consists of two phases:

— Mark phase
Mark all the cells that can be reached by
following the pointers.

— Sweep phase

Sweep through memory, looking for un-
marked cells. Unmarked cells are returned
to the free list.

e A copying collector avoids the expense of the
sweep phase by dividing memory into two halves,
the and the

— Cells are allocated from the working half.

— When the working half fills up, the reach-
able cells are copied into consecutive loca-
tions in the free half.

— The roles of the free and working halves are
then switched.

