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1 Functions on Lists
Lists

• Lists are the original data structure of functional
programming, just as arrays are that of impera-
tive programming.

• A list in ML is a sequence of zero or more el-
ements of the same type, enclosed by a pair of
brackets [ and ] and separated by ;. So, [1; 2; 3]
is a list of integers.

• [ ] denotes the empty list.

• Structure:

– A list is either empty (i.e., equals [ ]),
– or it has the form a :: y, where element a

is the head of the list, and the sublist y is
the tail of the list.

– For example, [1; 2; 3] ≡ 1 :: [2; 3] ≡ 1 :: 2 ::
[3] ≡ 1 :: 2 :: 3 :: [ ].

Operations on Lists

• OCaml provides the following basic functions
(operations) on lists:

Function Description
= equality test, particularly with [ ]
:: infix list constructor (read “cons”)

List.hd return the head
List.tl return the tail

• OCaml also provides the following functions
(which could have been left for the user to de-
fine):

Function Description
@ append/concatenate two lists

List.rev reverse the list
List.length count the number of elements

List.nth return the nth element

User-Defined Functions on Lists

• Most functions on lists consider the elements of
a list one by one and behave as follows:

let rec f x =
if “list x is empty” then …
else “something involving head/tail of x and f”

• A function like f is said to be linear recursive if
f appears only once on the right side of =. For
example,

let rec length x = if x = [ ] then 0
else 1 + length (List.tl x)

Precedence of Operations
The usual levels of precedence (from high to low):

function application
**
* / *. /. mod
+ - +. -.
::
@ ^
< <= = != <> >= >

Append
We may define a function that behaves the same

way as @.

let rec append x z =
if x = [ ] then z
else List.hd x :: append (List.tl x) z

append [2; 3; 4] [1] ≡ [2; 3; 4; 1]
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Append in Action
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Reverse
We may also define a function that behaves the

same way as List.rev.

let rec reverse x z =
if x = [ ] then z
else reverse (List.tl x) (List.hd x :: z)

reverse [2; 3; 4] [1] ≡ [4; 3; 2; 1]

let rev x = reverse x [ ]

rev [1; 2; 3; 4] ≡ [4; 3; 2; 1]

Reverse in Action
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2 Pattern Matching
Patterns and Cases

• Observe that

length [ ] ≡ 0
length (a :: y) ≡ 1 + length y

• We may define length according to the patterns
of the input as follows.

let rec length x =
match x with

[ ] → 0
| a :: y → 1 + length y

• Alternatively,

let rec length = function
[ ] → 0

| a :: y → 1 + length y

This construct of function permits exactly one
formal parameter.

Patterns and Cases (cont.)

• Similarly,

let rec append x z =
match x with

[ ] → z
| a :: y → a :: append y z

let rec reverse x z =
match x with

[ ] → z
| a :: y → reverse y (a :: z)

2



• Patterns on tuples can be expressed more com-
pactly.

let first (x, y) = x

let second (x, y) = y

Patterns and Cases (cont.)

• As we have seen, patterns and cases lead to more
readable code.

• An underscore _ denotes a “don’t-care” pattern.

let first (x,_) = x

• The same formal parameter may not be used
more than once in a pattern. So, the pair
(a, a :: y) is not a legal pattern.

3 Map and Reduce: Functions
as First-Class Values

Applying Functions Across List Elements

• A filter is a function that copies a list, making
useful changes to the elements as they are copied.

• The simplest one is copy:

# let rec copy x =
match x with
[] -> []

| a::y -> a::(copy y);;
val copy : 'a list -> 'a list = <fun>

Applying Functions Across List Elements
(cont.)

• Below is a filter function for squaring each list
element:

# let square n = n * n;;
val square : int -> int = <fun>

# let rec copysq x =
match x with
[] -> []

| a::y -> square a :: copysq y;;
val copysq : int list -> int list = <fun>

• We will study a function called map, which is a
tool for building a filter out of an input function.

Accumulate a Result

• Below is a function for computing the sum of a
list of integers:

# let rec sum_all = function
[] -> 0

| a::y -> a + sum_all y;;
val sum_all : int list -> int = <fun>

• And, below is a function for computing the prod-
uct of a list of integers:

# let rec product_all = function
[] -> 1

| a::y -> a * product_all y;;
val product_all : int list -> int = <fun>

• We will study a function called reduce, which is
a generalization of such accumulation functions.

Map and Reduce

• Below are the very useful map and reduce:

let rec map f x =
match x with

[ ] → [ ]
| a :: y → (f a) :: map f y

let rec reduce f x v =
match x with

[ ] → v
| a :: y → f a (reduce f y v)

• Both functions are “higher-order” functions, as
they take another function as an input.

• They are supported in OCaml as List.map and
List.fold_right.

The Utility of Map

• Suppose we have now defined map:

# let rec map f x =
match x with
[] -> []

| a::y -> (f a) :: (map f y);;
val map : ('a -> 'b) -> 'a list ->
'b list = <fun>

• And, also the following functions:
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# let square n = n * n;;
val square : int -> int = <fun>
# let first (x,y) = x;;
val first : 'a * 'b -> 'a = <fun>
# let second (x,y) = y;;
val second : 'a * 'b -> 'b = <fun>

The Utility of Map (cont.)
• Using map to apply a function to each list ele-

ment:

# map square [1; 2; 3];;
- : int list = [1; 4; 9]
# map first [(1,"a"); (2,"b"); (3,"c")];;
- : int list = [1; 2; 3]
# map second [(1,"a"); (2,"b"); (3,"c")];;
- : string list = ["a"; "b"; "c"]

• In OCaml, List.map may be used instead.

The Utility of Reducton
# let rec reduce f x v =

match x with
[] -> v

| a::y -> f a (reduce f y v);;
val reduce : ('a -> 'b -> 'b) -> 'a list
-> 'b -> 'b = <fun>
# let add x n = String.length x + n;;
val add : string -> int -> int = <fun>
# let mult x n = String.length x * n;;
val mult : string -> int -> int = <fun>
# reduce add ["1"; "23"; "456"] 0;;
- : int = 6
# reduce mult ["1"; "23"; "456"] 1;;
- : int = 6

In OCaml, List.fold_right may be used in-
stead.

Anonymous Functions
An anonymous function, a function without a

name, has the form

fun ⟨formal-parameter⟩ → ⟨body⟩
Examples:

# fun x n -> String.length x + n;;
- : string -> int -> int = <fun>

# reduce (fun x n -> String.length x + n)
["1"; "23"; "456"] 0;;

- : int = 6

4 Type Inference
Type Inference

Wherever possible, ML infers types without help
from the user.

# 3.0 * 4;;
Characters 0-3:

3.0 * 4;;
^^^

Error: This expression has type float but
an expression was expected of type int
# 3.0 *. 4;;
Characters 7-8:

3.0 *. 4;;
^

Error: This expression has type int but
an expression was expected of type float
# 3.0 *. 4.0;;
- : float = 12.

Type Inference (cont.)

# let add x y = x + y;;
val add : int -> int -> int = <fun>

# let add x y = x +. y;;
val add : float -> float -> float = <fun>

Parametric Polymorphism

• A definition of the identity function:

# let id x = x;;
val id : 'a -> 'a = <fun>

• The leading quote in 'a identifies it as a type
parameter.

• A polymorphic function can be applied to argu-
ments of more than one type.

• Parametric polymorphism is a special kind of
polymorphism in which type expressions are pa-
rameterized.

Parametric Polymorphism (cont.)

# [1; 2; 3];;
- : int list = [1; 2; 3]
# ["one"; "two"; "three"];;
- : string list = ["one"; "two"; "three"]
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# let rec len = function
[] -> 0

| a::y -> 1 + len y;;
val len : 'a list -> int = <fun>

# len ["one"; "two"; "three"];;
- : int = 3
# len [1; 2; 3];;
- : int = 3

Parametric Polymorphism and Type Infer-
ence

# let rec sum x =
match x with
[] -> 0

| a::y -> a + sum y;;
val sum : int list -> int = <fun>

# let rec sum = function
[] -> 0.

| a::y -> a +. sum y;;
val sum : float list -> float = <fun>

5 Types
Types

• Type declarations define types corresponding to
data structures.

• Value Constructors

# type direction = North | South | East | West;;
type direction = North | South | East | West

This declaration introduces a basic type
direction; the associated set of values is
{North, South, East, West}.

• Parameterized Value Constructors

# type bitree = Leaf | Node of bitree*bitree;;
type bitree = Leaf | Node of bitree * bitree

A value of type bitree is either the constant
Leaf or it is constructed by applying Node to a
pair of values of type bitree.

Types (cont.)
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Operations on Constructed Values

# let rec leafcount = function
Leaf -> 1

| Node (l,r) -> leafcount l + leafcount r;;
val leafcount : bitree -> int = <fun>
# leafcount (Node (Node (Leaf, Leaf), Leaf));;
- : int = 3

# let isleaf = function
Leaf -> true

| Node _ -> false;;
val isleaf : bitree -> bool = <fun>

Operations on Constructed Values (cont.)

# let left = function
Node (l,r) -> l;;

Characters 11-39:
...........function

Node (l,r) -> l..
Warning 8: this pattern-matching is not
exhaustive. Here is an example of a value
that is not matched:
Leaf
val left : bitree -> bitree = <fun>

# let right = function
Node (l,r) -> r;;

Operations on Constructed Values (cont.)

# let rec leafcount x =
if isleaf x then 1
else leafcount (left x) + leafcount (right x);;
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val leafcount : bitree -> int = <fun>

# leafcount (Node (Node (Leaf, Leaf), Leaf));;
- : int = 3

A Differentiation Function

let rec d x E =
if “E is a constant” then 0
else if “E is the variable x” then 1
else if “E is another variable” then 0
else if “E is the sum E1 + E2 ”

then d x E1 + d x E2

else if “E is the product E1 ∗ E2 ”
then (d x E1) ∗ E2 + E1 ∗ (d x E2)

A Differentiation Function (cont.)

type expr =
Constant of int

| Variable of string
| Sum of expr*expr
| Product of expr*expr

let zero = Constant 0
let one = Constant 1
let u = Variable "u"
let v = Variable "v"

“(u + v) ∗ 1” is represented as
“Product (Sum (u,v), one)”.

A Differentiation Function (cont.)

# let rec d x f =
match x, f with
_, Constant _ -> zero

| Variable s, Variable t ->
if s=t then one else zero

| x, Sum (e1,e2) -> Sum ((d x e1),(d x e2))
| x, Product (e1,e2) ->
let term1 = Product ((d x e1),e2) in
let term2 = Product (e1,(d x e2)) in
Sum (term1,term2);;

Polymorphic Types
# type 'a nulist = Nil | Cons of 'a * ('a nulist);;
type 'a nulist = Nil | Cons of 'a * 'a nulist

# Nil;;
- : 'a nulist = Nil
# Cons (1, Cons (2, Nil));;
- : int nulist = Cons (1, Cons (2, Nil))
# Cons ("1", Cons ("2", Nil));;
- : string nulist = Cons ("1", Cons ("2", Nil))

6 Exceptions
Exceptions

Exceptions are a mechanism for handling special
cases or failures that occur during the execution of a
program.

# List.hd [];;
Exception: Failure "hd".

# exception Nomatch;;
exception Nomatch

# let rec member a x =
if x=[] then raise Nomatch
else if a = List.hd x then x
else member a (List.tl x);;

val member : 'a -> 'a list -> 'a list = <fun>

# member 3 [1;2;3;1;2;3];;
- : int list = [3; 1; 2; 3]
# member 4 [1;2;3;1;2;3];;
Exception: Nomatch.

Exceptions with Arguments
Exceptions may be attached with one or more val-

ues.

# exception Nomatch of string;;
exception Nomatch of string

# let rec member a x =
if x=[] then raise (Nomatch "member")
else if a = List.hd x then x
else member a (List.tl x);;

val member : 'a -> 'a list -> 'a list = <fun>
# member 4 [1;2;3;1;2;3];;
Exception: Nomatch "member".

Exception Handling
Exceptions can be caught or handled by using the

following syntax:

try ⟨expr⟩1 with ⟨exception-name⟩ → ⟨expr⟩2

# exception Oops;;
exception Oops
# exception Other;;
exception Other

# try (raise Oops) with Oops -> 0;;
- : int = 0

# try (raise Other) with Oops -> 0;;
Exception: Other.
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Finding Exception Handlers
Exceptions are handled dynamically.
If f calls g, g calls h, and h raises an exception, then

we look for handlers along the call chain h, g, f . The
first handler along the chain catches the exception.

# exception Neg;;
exception Neg
# let s m n =

if m >= n then m - n
else raise Neg;;

val s : int -> int -> int = <fun>

# s 5 10;;
Exception: Neg.

Finding Exception Handlers (cont.)

# let subtract m n =
try (s m n)
with Neg -> 0;;

val subtract : int -> int -> int = <fun>

# subtract 5 10;;
- : int = 0

7 Little Quilt in ML
Little Quilt in ML

type texture = WTriangle | BTriangle
type direction = NE | SE | SW | NW

type square = texture * direction
type row = square list
type quilt = row list

let sqa = (WTriangle,NE)
let sqb = (BTriangle,NE)
let a = [[sqa]]
let b = [[sqb]]

Little Quilt in ML (cont.)

exception Failed

let rec sew q1 q2 =
match q1, q2 with
[], [] -> []

| l::x, r::y -> (l @ r) :: (sew x y)
| _, _ -> raise Failed

The sew Operation in Action

◹◺◣◹
[[(WTriangle,NE);(WTriangle,SW)];
[(BTriangle,SW);(WTriangle,NE)]]

◿◸◸◢
[[(WTriangle,SE);(WTriangle,NW)];
[(WTriangle,NW);(BTriangle,SE)]]

sew
↓

◹◺◿◸◣◹◸◢
[[(WTriangle,NE);(WTriangle,SW);(WTriangle,SE);(WTriangle,NW)];
[(BTriangle,SW);(WTriangle,NE);(WTriangle,NW);(BTriangle,SE)]]

Little Quilt in ML (cont.)

let clockwise = function
NE -> SE

| SE -> SW
| SW -> NW
| NW -> NE

let turnsq = function
(tex,dir) -> (tex, clockwise dir)

Little Quilt in ML (cont.)

let compose f g = fun x -> f (g x)

let rec emptyquilt = function
[] -> true

| []::tl -> emptyquilt tl
| _ -> false

let rec turn q =
if emptyquilt q then []
else (List.rev

(List.map (compose turnsq List.hd) q))
::
(turn (List.map List.tl q))

The turn Operation in Action
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◹◹◹◥◹◹◥◥◹

x =

[[(WTriangle,NE);(WTriangle,NE);(WTriangle,NE)];

[(BTriangle,NE);(WTriangle,NE);(WTriangle,NE)];

[(BTriangle,NE);(BTriangle,NE);(WTriangle,NE)]]

◹◥◥

List.map List.hd x =

[(WTriangle,NE);

(BTriangle,NE);

(BTriangle,NE)]

◿◢◢

List.map (compose turnsq List.hd) x =

[(WTriangle,SE);

(BTriangle,SE);

(BTriangle,SE)]

◢◢◿ List.rev (List.map (compose turnsq List.hd) x) =

[(BTriangle,SE);(BTriangle,SE);(WTriangle,SE)]

Little Quilt in ML (cont.)

let unturn q = turn (turn (turn q))

let pile q1 q2 =
unturn (sew (turn q2) (turn q1))

Little Quilt in ML (cont.)
The unturn function could be made more efficient

with the following auxiliary functions.

let counterclockwise = function
NE -> NW

| SE -> NE
| SW -> SE
| NW -> SW

let unturnsq = function
(tex,dir) -> (tex, counterclockwise dir)

Displaying a Quilt

let encode = function
(WTriangle,NE) -> ”◹”

| (WTriangle,SE) -> ”◿”
| (WTriangle,SW) -> ”◺”
| (WTriangle,NW) -> ”◸”
| (BTriangle,NE) -> ”◥”
| (BTriangle,SE) -> ”◢”
| (BTriangle,SW) -> ”◣”
| (BTriangle,NW) -> ”◤”

Displaying a Quilt (cont.)

let cat r = List.fold_right (^) r ""

let showrow r =
let encodings = List.map encode r in
print_endline (cat encodings)

let show q = List.map showrow q

Example Quilt One

◤◹◤◹◤◹◢◺◢◺◢◺◹◤◹◤◹◤◺◢◺◢◺◢

let slice =
let aa = pile a (turn (turn a)) in
let bb = pile (unturn b) (turn b) in
let p = sew bb aa in
let q = sew aa bb in
pile p q

let quilt1 =
let q = sew slice slice in
sew q slice

Example Quilt Two

◢◤◿◺◥◣◤◿◸◹◺◥◣◹◺◿◸◢◥◣◹◸◢◤

let quilt2 =
let bb = pile (turn b) (unturn b) in
let ba = pile (unturn b) (turn a) in
let c_nw = sew bb ba in
let c_ne = turn c_nw in
let c_se = turn c_ne in
let c_sw = turn c_se in
let p = pile (turn a) (unturn a) in
let q = pile (turn (turn a)) a in
let top = sew (sew c_nw p) (sew q c_ne) in
let bot = sew (sew c_sw q) (sew p c_se) in
pile top bot

8 Some Imperative Constructs
Arrays

# [|1;2;3|];;
- : int array = [|1; 2; 3|]

# Array.make 10 0;;
- : int array = [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|]
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# let a = [|1;2;3|];;
val a : int array = [|1; 2; 3|]

# Array.get a 1;;
- : int = 2
# a.(1);;
- : int = 2

Arrays (cont.)

# let a = [|1;2;3|];;
val a : int array = [|1; 2; 3|]

# Array.set a 1 4;;
- : unit = ()
# a;;
- : int array = [|1; 4; 3|]

# a.(2) <- 5;;
- : unit = ()
# a;;
- : int array = [|1; 4; 5|]

References

# let i = ref 0;;
val i : int ref = {contents = 0}

# i;;
- : int ref = {contents = 0}
# !i;;
- : int = 0
# i := 1;;
- : unit = ()
# !i;;
- : int = 1
# i := !i + 1;;
- : unit = ()
# !i;;
- : int = 2

The While-Do Statement

# let a = Array.make 10 0;;
val a : int array = [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0|]

# let i = ref 0;;
val i : int ref = {contents = 0}

# while !i <= 9 do
(a.(!i) <- !i; i := !i + 1)
done;;

- : unit = ()

# a;;
- : int array = [|0; 1; 2; 3; 4; 5; 6; 7; 8; 9|]
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