Programming Languages 2012: Functional Programming: ML

(Based on [Sethi 1996] and [Leroy et al. 2012; OCaml))

Yih-Kuen Tsay

1 Functions on Lists

Lists

o Lists are the original data structure of functional
programming, just as arrays are that of impera-
tive programming.

e A list in ML is a sequence of zero or more el-
ements of the same type, enclosed by a pair of
brackets [and] and separated by ;. So, [1;2;3]
is a list of integers.

o [] denotes the empty list.
o Structure:

— A list is either empty (i.e., equals []),

— or it has the form a :: y, where element a
is the head of the list, and the sublist y is
the tail of the list.

— For example, [1;2;3]=1:1(2;3] =122
Bl=1=2:3:]].

Operations on Lists

e OCaml provides the following basic functions
(operations) on lists:

Function Description
= equality test, particularly with []
:: infix list constructor (read “cons”)
List.hd return the head
List.tl return the tail

e OCaml also provides the following functions
(which could have been left for the user to de-
fine):

Function Description
Q@ append/concatenate two lists
List.rev reverse the list
List.length count the number of elements
List.nth ~ return the nth element

User-Defined Functions on Lists

e Most functions on lists consider the elements of
a list one by one and behave as follows:

let rec f z =
if “list x is empty” then ..
else “something involving head/tail of 2 and f”

o A function like f is said to be linear recursive if
f appears only once on the right side of =. For
example,

let rec length v = if x =[] then 0
else 1 + length (List.tl)

Precedence of Operations

The usual levels of precedence (from high to low):

function application

*ok

* / %. /. mod
+- 4. -

0-

<K <L==1=<3>=>

Append

We may define a function that behaves the same

way as Q.

let rec append x z =

if z =[] then z
else List.hd x :: append (List.tl z) z

append [2;3;4] [1] = [2;3;4;1]

Append in Action reverse

AA N A A

g 1 1] : 5 3 append 5\ 10
A AN N A\
N I T -

2 Pattern Matching

Patterns and Cases

2/\:: 2/\
3/\: : 3A ¢ Observe that
AN ZLA

4 append :: length [] = 0
/. /\ length (a :y) = 1+ lengthy
(1= T[]
A e We may define length according to the patterns
Ly of the input as follows.
Reverse let rec length v =
. match = with
We may also define a function that behaves the [1=0
same way as List.rev. | asy— 1+ lengthy
let rec reverse x z = « Alternatively,
if x =[] then z
else reverse (List.tl x) (List.hd x :: 2) let rec length — function
[]—0
reverse [2;3;4] [1] = [4;3;2;1] | a:y— 1+ lengthy
let rev x = reverse x | | This construct of function permits exactly one

formal parameter.

rev [1;2; 3;4] = [4;3;2; 1]
Patterns and Cases (cont.)

Reverse in Action e Similarly,

let rec append x z =
Teverse TEeverse reverse matCh z Wlth

N []=2

= o : o | a:y—a:appendy z
NN NN LD

A ACA A

)
)

Ll 413 let rec reverse x z =
A 401 1] 3 A mz[n};ci:z with
4 0] 1 (] | a:y— reversey (a:: 2)

o Patterns on tuples can be expressed more com-
pactly.

let first (z,y) ==
let second (z,y) =y

Patterns and Cases (cont.)

o As we have seen, patterns and cases lead to more
readable code.

e An underscore _ denotes a “don’t-care” pattern.
let first (z,)=«

e The same formal parameter may not be used
more than once in a pattern. So, the pair
(a,a ::y) is not a legal pattern.

3 Map and Reduce: Functions
as First-Class Values

Applying Functions Across List Elements

e A filter is a function that copies a list, making
useful changes to the elements as they are copied.

e The simplest one is copy:

let rec copy x =
match x with

a->10
| a::y => a::(copy y);;
val copy : 'a list -> 'a list = <fun>

Applying Functions Across List Elements
(cont.)

e Below is a filter function for squaring each list
element:

let square n = n * n;;

val square : int -> int = <fun>
let rec copysq x =
match x with
0 ->10
| a::y -> square a :: copysq ¥;;

val copysq : int list -> int list = <fun>

¢ We will study a function called map, which is a
tool for building a filter out of an input function.

Accumulate a Result

e Below is a function for computing the sum of a
list of integers:

let rec sum_all = function
0->0

| a::y -> a +

val sum_all : int

sum_all y;;
list -> int = <fun>
e And, below is a function for computing the prod-
uct of a list of integers:
let rec product_all = function
0 ->1
| a::y -> a * product_all y;;
val product_all : int list -> int = <fun>
e We will study a function called reduce, which is
a generalization of such accumulation functions.

Map and Reduce

e Below are the very useful map and reduce:

let rec map f x =
match x with
[1—=1]

| azy— (fa):map fy

let rec reduce f x v =
match z with
(1=
| a:y— fa(reduce fyv)

e Both functions are “higher-order” functions, as
they take another function as an input.

e They are supported in OCaml as List.map and
List.fold_right.

The Utility of Map
¢ Suppose we have now defined map:

let rec map f x =
match x with

0 ->10

| a::y > (£ a) (map f y);;
val map : ('a -> 'b) -> 'a list ->
'b list = <fun>

e And, also the following functions:

let square n = n * n;;

val square : int -> int = <fun>

let first (x,y) = x;;

val first 'a * 'b -> 'a = <fun>
let second (x,y) = y;;

val second : 'a * 'b -> 'b = <fun>

The Utility of Map (cont.)

o Using map to apply a function to each list ele-
ment:

map square [1; 2; 3];;

- : int list = [1; 4; 9]
map first [(1,"a"); (2,"b"); (3,"c")];;
- : int list = [1; 2; 3]

map second [(1,"a"); (2,"D"); (3,"c")];;
- : string list = ["a"; "b"; "c"]

e In OCaml, List.map may be used instead.

The Utility of Reducton

let rec reduce f x v =
match x with

0 ->v

| a::y -> £ a (reduce f y v);;
val reduce : ('a -> 'b -> 'b) -> 'a list
-> 'b => 'b = <fun>
let add x n = String.length x + n;;
val add : string -> int -> int = <fun>
let mult x n = String.length x * n;;
val mult string -> int -> int = <fun>
reduce add ["1"; "23"; "456"] 0;;
- : int =6
reduce mult ["1"; "23"; "456"] 1;;
- : int =6

In OCaml, List.fold_right may be used in-
stead.

Anonymous Functions
An anonymous function, a function without a
name, has the form

fun (formal-parameter) — (body)

Examples:

fun x n -> String.length x + n;;

- : string -> int -> int = <fun>

reduce (fun x n -> String.length x + n)
[lllll; ll23ll; l|456ll] O;;

- : int = 6

4 Type Inference

Type Inference
Wherever possible, ML infers types without help
from the user.

3.0 % 4;;
Characters 0-3:
3.0 x 4;;
Error: This expression has type float but
an expression was expected of type int
3.0 x. 4;;
Characters 7-8:
3.0 . 4;;
Error: This expression has type int but
an expression was expected of type float
3.0 x. 4.0;;
- : float = 12.

Type Inference (cont.)

let add x y = x + y;;

val add : int -> int -> int = <fun>
let add x y = x +. y;;
val add : float -> float -> float = <fun>

Parametric Polymorphism

o A definition of the identity function:

let id x = x;;

val id : 'a -> 'a = <fun>

e The leading quote in 'a identifies it as a type
parameter.

e A polymorphic function can be applied to argu-
ments of more than one type.

e Parametric polymorphism is a special kind of

polymorphism in which type expressions are pa-
rameterized.

Parametric Polymorphism (cont.)

[1; 2; 31;;

- : int list = [1; 2; 3]

["one"; "two"; "three"];;

- : string list = ["one"; "two"; "three"]

let rec len = function
1 ->0

| a::y => 1 + len y;;
val len : 'a list -> int = <fun>
len ["one"; "two"; "three"];;
- : int = 3
len [1; 2; 3];;
- : int = 3

Parametric Polymorphism and Type Infer-
ence

let rec sum x =
match x with

0->o0
| a::y => a + sum y;;
val sum : int list -> int = <fun>
let rec sum = function
0 ->o.
| a::y => a +. sum y;;
val sum : float list -> float = <fun>
5 Types

Types

e Type declarations define types corresponding to
data structures.

¢ Value Constructors

type direction = North | South | East | West;;
type direction = North | South | East | West

This declaration introduces a basic type
direction; the associated set of wvalues is
{North, South, East, West}.

o Parameterized Value Constructors

type bitree = Leaf | Node of bitreexbitree;;
type bitree = Leaf | Node of bitree * bitree

A value of type bitree is either the constant
Leaf or it is constructed by applying Node to a
pair of values of type bitree.

Types (cont.)

o Leaf

® Node (Leaf, Leaf)

® Node (Node (Leaf, Leaf), Leaf)

° Node (Leaf, Node (Leaf, Leaf))

Operations on Constructed Values

let rec leafcount = function
Leaf -> 1
| Node (1,r) -> leafcount 1 + leafcount r;;

val leafcount : bitree -> int = <fun>
leafcount (Node (Node (Leaf, Leaf), Leaf));;
- : int = 3

let isleaf = function
Leaf -> true
| Node _ -> false;;
val isleaf : bitree -> bool = <fun>

Operations on Constructed Values (cont.)

let left = function
Node (1,r) -> 1;;

Characters 11-39:

........... function

Node (1,r) -> 1..

Warning 8: this pattern-matching is not
exhaustive. Here is an example of a value
that is not matched:

Leaf
val left : bitree -> bitree = <fun>
let right = function

Node (1,r) -> r;;

Operations on Constructed Values (cont.)

let rec leafcount x =
if isleaf x then 1
else leafcount (left x) + leafcount (right x);;

val leafcount : bitree -> int = <fun>
leafcount (Node (Node (Leaf, Leaf), Leaf));;

- : int = 3

A Differentiation Function

let recdx F =

if “E is a constant” then 0

else if “F is the variable ” then 1

else if “F is another variable” then 0

else if “F is the sum E; + Ey 7
thendz F1 +d x F>

else if “F is the product Fy * Ey 7
then (d x El) *EQ —|—E1 * (d x Eg)

A Differentiation Function (cont.)

type expr =
Constant of int

| Variable of string

| Sum of expr*expr

| Product of exprxexpr
let zero = Constant O
let one = Constant 1
let u = Variable "u"

let v = Variable "v"

“lu + wv) x 17 is
“Product (Sum (u,v), one)”.

represented as

A Differentiation Function (cont.)

let rec d x f =

match x, f with
_, Constant _ -> zero

| Variable s, Variable t ->

if s=t then one else zero

| x, Sum (el,e2) -> Sum ((d x el),(d x e2))

| x, Product (el,e2) ->
let terml = Product ((d x el),e2) in
let term2 = Product (el,(d x e2)) in
Sum (terml,term2);;

Polymorphic Types

type 'a nulist = Nil | Cons of 'a * ('a nulist);;

type 'a nulist = Nil | Cons of 'a * 'a nulist

Nil;;

- : 'a nulist = Nil

Cons (1, Coms (2, Nil));;

- : int nulist = Cons (1, Coms (2, Nil))

Cons ("1", Coms ("2", Nil));;

- : string nulist = Cons ("1", Cons ("2", Nil))

6 Exceptions

Exceptions

Exceptions are a mechanism for handling special
cases or failures that occur during the execution of a
program.

List.hd [1;;
Exception: Failure "hd".

exception Nomatch;;
exception Nomatch

let rec member a x =
if x=[] then raise Nomatch
else if a = List.hd x then x
else member a (List.tl x);;
val member : 'a -> 'a list -> 'a list = <fun>

member 3 [1;2;3;1;2;3];;
- : int list = [3; 1; 2; 3]
member 4 [1;2;3;1;2;3];;
Exception: Nomatch.

Exceptions with Arguments
Exceptions may be attached with one or more val-
ues.

exception Nomatch of string;;
exception Nomatch of string

let rec member a x =
if x=[] then raise (Nomatch "member")
else if a = List.hd x then x
else member a (List.tl x);;
val member : 'a -> 'a list -> 'a list =
member 4 [1;2;3;1;2;3];;
Exception: Nomatch "member".

<fun>

Exception Handling
Exceptions can be caught or handled by using the
following syntax:

try (expr); with (exception-name) — {(expr),

exception Oops;;
exception Oops

exception Other;;
exception Other

try (raise Oops) with Oops -> 0;;
- :int =0

try (raise Other) with Oops -> 0;;
Exception: Other.

Finding Exception Handlers

Exceptions are handled dynamically.

If f calls g, g calls h, and h raises an exception, then
we look for handlers along the call chain h, g, f. The
first handler along the chain catches the exception.

exception Neg;;
exception Neg
let smn =
if m >> n thenm - n
else raise Neg;;
val s : int -> int -> int = <fun>

s 5 10;;
Exception: Neg.

Finding Exception Handlers (cont.)

let subtract m n =
try (s m n)
with Neg -> 0;;
val subtract : int -> int -> int = <fun>

subtract 5 10;;

- :int =0

7 Little Quilt in ML
Little Quilt in ML

type texture = WIriangle | BTriangle
type direction = NE | SE | SW | NW

type square = texture * direction
type row = square list
type quilt = row list

let sqa = (WTriangle,NE)
let sqb = (BTriangle,NE)
let a = [[sqall

a
let b = [[sqb]]

Little Quilt in ML (cont.)
exception Failed

let rec sew ql g2 =
match ql, g2 with
a, 0 > 1[0
| 1::x, r::y > (L @ r) :: (sew x y)
| _, _ =-> raise Failed

The sew Operation in Action

N 7

[[(WTriangle,NE); (WTriangle,SW)]; [[(WTriangle,SE); (WIriangle,NW)];
[(BTriangle,SW) ; (WTriangle,NE)]] [(WTriangle,NW) ; (BTriangle,SE)]]

sew

1
N7

[[(WTriangle,NE); (WTriangle,SW) ; (WTriangle,SE); (WTriangle,NW)];
[(BTriangle,SW) ; (WTriangle,NE) ; (WTriangle,NW) ; (BTriangle,SE)]]

Little Quilt in ML (cont.)

let clockwise = function

NE -> SE
| SE -> SW
| SW -> NW
| NW -> NE

let turnsq = function
(tex,dir) -> (tex, clockwise dir)

Little Quilt in ML (cont.)

let compose f g = fun x -> £ (g x)

let rec emptyquilt = function

[-> true
| [1::t1 -> emptyquilt tl
| _ -> false

let rec turn q =
if emptyquilt q then []
else (List.rev
(List.map (compose turnsq List.hd) q))

(turn (List.map List.tl q))

The turn Operation in Action

x =
sgg [[(WTriangle,NE); (WTriangle,NE) ; (WTriangle,NE)];
AR [(BTriangle,NE) ; (WTriangle,NE) ; (WTriangle,NE)];
[(BTriangle,NE) ; (BTriangle,NE) ; (WTriangle,NE)]]
List.map List.hd x =
[(WTriangle,NE);
i (BTriangle,NE);
(BTriangle,NE)]
List.map (compose turnsq List.hd) x =
[(WTriangle,SE);
é (BTriangle,SE);
(BTriangle,SE)]
List.rev (List.map (compose turnsq List.hd) x) =

AdA
[(BTriangle,SE) ; (BTriangle,SE) ; (WIriangle,SE)]

Little Quilt in ML (cont.)

let unturn q = turn (turn (turn q))

let pile q1 g2 =
unturn (sew (turn q2) (turn ql))

Little Quilt in ML (cont.)
The unturn function could be made more efficient
with the following auxiliary functions.

let counterclockwise = function

NE -> NW
| SE -> NE
| SW -> SE
| NW -> SW

let unturnsq = function
(tex,dir) —-> (tex, counterclockwise dir)

Displaying a Quilt

let encode = function

-
N
~
N

(WTriangle,NE) -> "N
| (WTriangle,SE) -> "4”
| (WTriangle,SW) -> "n"
| (WTriangle,NW) -> "p”
| (BTriangle,NE) -> "W”"
| (BTriangle,SE) -> "4"
| (BTriangle,SW) -> "w"
| (BTriangle,NW) -> "p”

Displaying a Quilt (cont.)

let cat r = List.fold_right (7) r ""

let showrow r
let encodings = List.map encode r in
print_endline (cat encodings)

let show q = List.map showrow q

Example Quilt One

let slice =
let aa = pile a (turn (turn a)) in
let bb = pile (unturn b) (turn b) in
let p = sew bb aa in

let q = sew aa bb in

pile p q

let quiltl =
let q = sew slice slice in

sew q slice

N
q
i

¥

v
b
A

V'

Example Quilt Two

let quilt2 =
let bb = pile (turn b) (unturn b) in

let ba = pile (unturn b) (turn a) in

let c_nw = sew bb ba in

let c_ne = turn c_nw in

let c_se = turn c_ne in

let c_sw = turn c_se in

let p = pile (turn a) (unturn a) in

let q = pile (turn (turn a)) a in

let top = sew (sew c_nw p) (sew q c_ne) in
let bot = sew (sew c_sw q) (sew p c_se) in

pile top bot

&2

8 Some Imperative Constructs

Arrays

#

[11;2;31]1;;

int array = [|1; 2; 31]

Array.make 10 O;;
: int array = [10; 0; 0; 0; 0; 0; 0; 0; 0; 0[]

let a = [11;2;311;;
val a : int array = [|1; 2; 3I]

Array.get a 1;;

- : int = 2
#a.(1);;
- : int = 2

Arrays (cont.)

let a = [11;2;31]5;
val a : int array = [|1; 2; 3I]

Array.set a 1 4;;

- : unit = O

a;;

- : int array = [|1; 4; 3]]
a.(2) <= 5;;

- : unit = Q)

a;;

- : int array = [I1; 4; 5]

References

let 1 = ref 0;;
val i : int ref = {contents = 0}

1i;;

- : int ref = {contents = 0}
1i;;

- : int =0
#1i:=1;;

- : unit = Q)

1i;;

- : int =1
#1i:=11+ 1;;
- : unit =

1i;;

- : int = 2

The While-Do Statement

let a = Array.make 10 O;;

: unit = ()

a;;

val a : int array = [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0]

let i = ref 0;;
val i : int ref = {contents = 0}

while 'i <= 9 do
(a.(1i) <= ti; i = 1i + 1)
done; ;

: int array = [10; 1; 2; 3; 4; 5; 6; 7; 8; 9]

