Programming Languages 2012: Object-Oriented Programming

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction 1. Describe the roles of the modules (in gen-

eral terms).

Decomposition and Abstraction 2. Design the interfaces.

3. Implement the interfaces, hiding design de-

e Decomposition o 3 -
cisions in the private part.

Large programs are partitioned into smaller

pieces that are implemented by one or more peo- Classes and Objects

ple.
e The term class is an abbreviation of “class of
e Forms of Abstraction objects.”
— Procedures e A class corresponds (essentially) to a type.
— Modules e An object is a run-time entity with data on which
— Abstract data operations can be performed.
— Objects e Objects can be created and deleted at run time.

Object-oriented programming treats an
overall system as a collection of interacting Classes and Objects (cont.)

objects. e Example (in pseudocode):

e The various forms of abstraction are supported

| Stack
by a technique called information hiding. class Stack {

public:
Stack();
Modules void push(int a);
int pop();
e The idea that data and operations go together is private:
the basis for modules. With modules, the group-
ings of variables and procedures are explicit in k;

the source text.

Procedures push and pop operate on private
e A module is a collection of declarations, typi- data.

cally including both variables and procedures.
We cannot create new modules or copies of ex-
isting modules dynamically as a program runs.

e The procedure Stack, with the same name as
the class, is a constructor. The constructor is
called automatically when an object of the class

e The interface of a module is a subset of decla- is created, so initialization code can be put in
rations in the module. An implementation of the constructor.
the module consists of everything else about the

e A class can also have a destructor procedure,
which is called automatically just before the ob-

e Programming with modules: ject disappears.

module.

2 Information Hldlng e A structure is traditionally a grouping of data;
C++ allows both data and functions to be struc-

Information Hiding ture members. Example:
e An abstract specification tells us the behavior struct Stack {
of an object independent of its implementation; int top;
that is, an abstract specification tells us what an char elements[101];

object does independent of how it works. char pop();

void push(char);
Stack() { top = 0; 2}
};

e A concrete representation tells us how an object
is implemented, how its data is laid out inside
a machine, and how this data is manipulated by

it tions.
1S operations char Stack::pop() {

e The implementation hiding principle: design a top = top - 1;
program so that the implementation of an object return elements[top+1];
can be changed without affecting the rest of the }
program.
void Stack::push(char c) {
e Scope rules, which control the visibility of names, top = top + 1;
are the primary tool for achieving implementa- elements[top] = c;
tion hiding. }
Data Invariants #include <stdio.h>
main() {
e A grouping of data and operations has a local Stack s;
state, consisting of the values of its variables. s.push(’!’); s.push(’@’); s.push(’#’);
printf ("%c %c %c\n", s.pop(O, s.pop(), s.popQ));
e A data invariant for an object is a property of }
its local state that holds whenever control is not
in the object. Overloaded Function Names
e Design an object around data invariants: e The same name can be given to more than one

function in a class, provided we can tell the over-

— Initialization of Private Variables loaded functions apart by looking at the number

Since the private data of an object is in- and types of their parameters.

accessible from outside, initialization of the

data belongs with the code for the object. e Constructors are functions, so they too can be
Initialization is needed to set up data in- overloaded.

variants when the object is created. e Example:

— Assignments to Public Variables

Assignments to public variables can change struct Complex {

the local state of an object. It is up to the float re;
user to ensure that such assignments do not float im;

disturb the desired data invariants. Complex(float r) {re=r; im=0; }
Complex(float r, i) { re = r; im i;

1
[

};
3 Constructs in C+-+

Public, Private, and Protected Members
Structures as Classes in C++
e Privacy and access control in C++ are class-
e Classes in C++ are a generalization of records, based. That is, access to members is restricted
called structures in C and C++. through keywords in a class declaration.

e C++ has three keywords—public, private,
and protected—for controlling the accessibility
of member names in a class declaration:

— Public members are accessible to outside
code.

— Private members are accessible to the mem-
ber functions in this class declaration. They
are accessible to all objects of this class.

— Protected members behave like private
members, except for derived classes. Pro-
tected members are visible through inher-
itance to derived classes but not to other
code.

Dynamic Allocation in C++
e C++ objects can be created in three ways:

1. through variable declarations,
dynamically through new, and

as static objects whose lifetime is the entire
life of the program.

Dynamic Allocation in C++ (cont.)

class Cell {
int info;
Cell *next;

Cell(int i) { info = i; next = this;}
Cell(int i, Cell *n) { info = i; next = n;}
friend class List;

};

class List {
Cell *rear;
public:
void put(int);
void push(int);
int popQ);
int empty() { return rear==rear->next; }
List() { rear = new Cell(0); }
“List() { while (lempty()) pop(Q); }
1

Dynamic Allocation in C++ (cont.)

void List::push(int x) {
rear->next = new Cell(x, rear->next);

}

void List::put(int x) {
rear->info = x;
rear = rear->next = new Cell(0, rear->next);

int List::pop() {

if (empty()) return O;

Cell *front = rear->next;
rear->next = front->next;

int x = front->info;

delete front;
return x;

Templates: Parameterized Types

template<class T> class Stack {

int top;

int size;

T *elements;
public:

Stack(int n) {

size = n; elements

3

= new T[size]; top = 0;

~“Stack() { delete elements;}
void push(T a) { top++; elements[top] = a;}

};

Usage:

Stack<int> s(99);
Stack<char> t(80);

T pop() { top—-; return elements[top+1]; }

Implementation of a C++ Program in C

struct Stack {
int top;
char elements[101];

char popQ);

void push(char);

Stack() { top = 0; }
}

char Stack::pop() {
top = top - 1;
return elements[top+1];

struct Stacklay {
int top;

char elements[101];
};

void StackStack(struct Stacklay *p) {
p->top = 0;
}

char Stackpop(struct Stacklay *p) {
char c;
¢ = p->elements[p->top] ;
p->top = p->top - 1;
return c;

¥

Implementation of a C++ Program in C

(cont.)

void Stack::push(char c) {
top = top + 1;
elements[top] = c;

¥

#include <stdio.h>
main() {
Stack s;
s.push(’1’);
s.push(’°@’);
s.push(C#’);
printf("%c %c %c\n",
s.pop(),
s.pop(),
s.pop());
¥

void Stackpush(struct Stacklay #*p, char c) {
p->top = p->top + 1;
p->elements [p->top] = c;

¥

#include <stdio.h>
main() {
struct Stacklay s;
StackStack(&s) ;
Stackpush(&s, ’!’);
Stackpush(&s, ’@’);
Stackpush(&s, ’#’);
printf ("%c %c %c\n",
Stackpop (&s) ,
Stackpop (&s) ,
Stackpop(&s)) ;
}

In-Line Expansion

e Implementation hiding can result in lots of little
functions that manipulate the data in an object.

C++ implements such functions efficiently by
using in-line expansion, which replaces a call by
the function body. In-line expansion in C++
preserves the semantics of call-by-value parame-
ter passing.

Suppose a public function isempty is added to
class stack:

int isempty() { return top == 0;}

With in-line expansion, the following conditional
statement

if (s.isempty())

expands to

if ((s.top == 0))

In-line expansion eliminates the overhead of

function calls at run time, so it encourages free
use of functions. It also encourages data hiding.

4 Derived Classes

Base and Derived Classes

e The extension of a base class is called a derived

class. Example:

class B { // declaration of class B

public:
int x; // the full name is B::x
char £(); // public member function
BQO;

};

class D : public B { // D derived from B
int x; // D::x is added,
// B::x is inherited
int gQ; // added member function
};

A member added by a derived class D can have
the same name as a member of its base class B.

B::m and D::m refer to the member m in B and
D, respectively.

Public Base Classes

e A distinguishing feature of object-oriented pro-

gramming in any language is that an object of
a derived class can appear where an object of a
base class is expected. That is, a derived object
can behave like a base object.

In C++, members of a public base class retain
their visibility in the derived class. That is, a
public member of the base class is a public mem-
ber of the derived class, and similarly for pro-
tected and private members. Therefore,

an object of a derived class can ap-
pear wherever an object of a public
base class is expected.

Virtual Functions

e Virtual functions in C++ allow a derived class

to supply the function body.

class B {

public:

virtual char f() { return ’B’;}
char g() { return ’B’;}
char testF() { return f(); }
char textG() { return g(Q; }

};

class D : public B {
public:
char £() { return ’D’; }
char g() { return ’D’; }
3

main() {

D d;

print d.textF(), d.testGQ);
}

Private Base Classes

e C++ also supports private base classes. The

purpose of a private base class is quite different
from that of a public base class.

A derived class simply shares the code of the pri-
vate base class. Such code sharing is sometimes
called implementation inheritance.

All members of a private base class become pri-
vate in the derived class. Nonprivate inherited
members can be made visible by writing their
full names in the derived class.

The Privacy Principle

e Functions in a derived class cannot access the
private members of its base class.

e Otherwise, the following principle would be vio-
lated:

Privacy principle: The private mem-
bers of a class are accessible only to
member functions of the class.

