
Programming Languages 2012: Object-Oriented Programming

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Decomposition and Abstraction

• Decomposition

Large programs are partitioned into smaller
pieces that are implemented by one or more peo-
ple.

• Forms of Abstraction

– Procedures

– Modules

– Abstract data

– Objects

Object-oriented programming treats an
overall system as a collection of interacting
objects.

• The various forms of abstraction are supported
by a technique called information hiding .

Modules

• The idea that data and operations go together is
the basis for modules. With modules, the group-
ings of variables and procedures are explicit in
the source text.

• A module is a collection of declarations, typi-
cally including both variables and procedures.
We cannot create new modules or copies of ex-
isting modules dynamically as a program runs.

• The interface of a module is a subset of decla-
rations in the module. An implementation of
the module consists of everything else about the
module.

• Programming with modules:

1. Describe the roles of the modules (in gen-
eral terms).

2. Design the interfaces.

3. Implement the interfaces, hiding design de-
cisions in the private part.

Classes and Objects

• The term class is an abbreviation of “class of
objects.”

• A class corresponds (essentially) to a type.

• An object is a run-time entity with data on which
operations can be performed.

• Objects can be created and deleted at run time.

Classes and Objects (cont.)

• Example (in pseudocode):

class Stack {
public:

Stack();
void push(int a);
int pop();

private:
· · ·

};

Procedures push and pop operate on private
data.

• The procedure Stack, with the same name as
the class, is a constructor . The constructor is
called automatically when an object of the class
is created, so initialization code can be put in
the constructor.

• A class can also have a destructor procedure,
which is called automatically just before the ob-
ject disappears.

1

2 Information Hiding

Information Hiding

• An abstract specification tells us the behavior
of an object independent of its implementation;
that is, an abstract specification tells us what an
object does independent of how it works.

• A concrete representation tells us how an object
is implemented, how its data is laid out inside
a machine, and how this data is manipulated by
its operations.

• The implementation hiding principle: design a
program so that the implementation of an object
can be changed without affecting the rest of the
program.

• Scope rules, which control the visibility of names,
are the primary tool for achieving implementa-
tion hiding.

Data Invariants

• A grouping of data and operations has a local
state, consisting of the values of its variables.

• A data invariant for an object is a property of
its local state that holds whenever control is not
in the object.

• Design an object around data invariants:

– Initialization of Private Variables

Since the private data of an object is in-
accessible from outside, initialization of the
data belongs with the code for the object.
Initialization is needed to set up data in-
variants when the object is created.

– Assignments to Public Variables

Assignments to public variables can change
the local state of an object. It is up to the
user to ensure that such assignments do not
disturb the desired data invariants.

3 Constructs in C++

Structures as Classes in C++

• Classes in C++ are a generalization of records,
called structures in C and C++.

• A structure is traditionally a grouping of data;
C++ allows both data and functions to be struc-
ture members. Example:

struct Stack {

int top;

char elements[101];

char pop();

void push(char);

Stack() { top = 0; }

};

char Stack::pop() {

top = top - 1;

return elements[top+1];

}

void Stack::push(char c) {

top = top + 1;

elements[top] = c;

}

#include <stdio.h>

main() {

Stack s;

s.push(’!’); s.push(’@’); s.push(’#’);

printf("%c %c %c\n", s.pop(), s.pop(), s.pop());

}

Overloaded Function Names

• The same name can be given to more than one
function in a class, provided we can tell the over-
loaded functions apart by looking at the number
and types of their parameters.

• Constructors are functions, so they too can be
overloaded.

• Example:

struct Complex {

float re;

float im;

Complex(float r) { re = r; im = 0; }

Complex(float r, i) { re = r; im = i; }

};

Public, Private, and Protected Members

• Privacy and access control in C++ are class-
based. That is, access to members is restricted
through keywords in a class declaration.

2

• C++ has three keywords—public, private,
and protected—for controlling the accessibility
of member names in a class declaration:

– Public members are accessible to outside
code.

– Private members are accessible to the mem-
ber functions in this class declaration. They
are accessible to all objects of this class.

– Protected members behave like private
members, except for derived classes. Pro-
tected members are visible through inher-
itance to derived classes but not to other
code.

Dynamic Allocation in C++

• C++ objects can be created in three ways:

1. through variable declarations,

2. dynamically through new, and

3. as static objects whose lifetime is the entire
life of the program.

Dynamic Allocation in C++ (cont.)

class Cell {

int info;

Cell *next;

Cell(int i) { info = i; next = this;}

Cell(int i, Cell *n) { info = i; next = n;}

friend class List;

};

class List {

Cell *rear;

public:

void put(int);

void push(int);

int pop();

int empty() { return rear==rear->next; }

List() { rear = new Cell(0); }

~List() { while (!empty()) pop(); }

};

Dynamic Allocation in C++ (cont.)

void List::push(int x) {

rear->next = new Cell(x, rear->next);

}

void List::put(int x) {

rear->info = x;

rear = rear->next = new Cell(0, rear->next);

}

int List::pop() {

if (empty()) return 0;

Cell *front = rear->next;

rear->next = front->next;

int x = front->info;

delete front;

return x;

}

Templates: Parameterized Types

template<class T> class Stack {

int top;

int size;

T *elements;

public:

Stack(int n) {

size = n; elements = new T[size]; top = 0;

}

~Stack() { delete elements;}

void push(T a) { top++; elements[top] = a;}

T pop() { top--; return elements[top+1]; }

};

Usage:

Stack<int> s(99);

Stack<char> t(80);

Implementation of a C++ Program in C
struct Stack {

int top;

char elements[101];

char pop();

void push(char);

Stack() { top = 0; }

};

char Stack::pop() {

top = top - 1;

return elements[top+1];

}

struct Stacklay {

int top;

char elements[101];

};

void StackStack(struct Stacklay *p) {

p->top = 0;

}

char Stackpop(struct Stacklay *p) {

char c;

c = p->elements[p->top];

p->top = p->top - 1;

return c;

}

Implementation of a C++ Program in C
(cont.)

void Stack::push(char c) {

top = top + 1;

elements[top] = c;

}

#include <stdio.h>

main() {

Stack s;

s.push(’!’);

s.push(’@’);

s.push(’#’);

printf("%c %c %c\n",

s.pop(),

s.pop(),

s.pop());

}

void Stackpush(struct Stacklay *p, char c) {

p->top = p->top + 1;

p->elements[p->top] = c;

}

#include <stdio.h>

main() {

struct Stacklay s;

StackStack(&s);

Stackpush(&s, ’!’);

Stackpush(&s, ’@’);

Stackpush(&s, ’#’);

printf("%c %c %c\n",

Stackpop(&s),

Stackpop(&s),

Stackpop(&s));

}

3

In-Line Expansion

• Implementation hiding can result in lots of little
functions that manipulate the data in an object.

• C++ implements such functions efficiently by
using in-line expansion, which replaces a call by
the function body. In-line expansion in C++
preserves the semantics of call-by-value parame-
ter passing.

• Suppose a public function isempty is added to
class stack:

int isempty() { return top == 0;}

With in-line expansion, the following conditional
statement

if (s.isempty())

expands to

if ((s.top == 0))

• In-line expansion eliminates the overhead of
function calls at run time, so it encourages free
use of functions. It also encourages data hiding.

4 Derived Classes

Base and Derived Classes

• The extension of a base class is called a derived
class. Example:

class B { // declaration of class B

public:

int x; // the full name is B::x

char f(); // public member function

B();

};

class D : public B { // D derived from B

int x; // D::x is added,

// B::x is inherited

int g(); // added member function

};

• A member added by a derived class D can have
the same name as a member of its base class B.

B::m and D::m refer to the member m in B and
D, respectively.

Public Base Classes

• A distinguishing feature of object-oriented pro-
gramming in any language is that an object of
a derived class can appear where an object of a
base class is expected. That is, a derived object
can behave like a base object.

• In C++, members of a public base class retain
their visibility in the derived class. That is, a
public member of the base class is a public mem-
ber of the derived class, and similarly for pro-
tected and private members. Therefore,

an object of a derived class can ap-
pear wherever an object of a public
base class is expected.

Virtual Functions

• Virtual functions in C++ allow a derived class
to supply the function body.

class B {

public:

virtual char f() { return ’B’;}

char g() { return ’B’;}

char testF() { return f(); }

char textG() { return g(); }

};

class D : public B {

public:

char f() { return ’D’; }

char g() { return ’D’; }

};

main() {

D d;

print d.textF(), d.testG();

}

Private Base Classes

• C++ also supports private base classes. The
purpose of a private base class is quite different
from that of a public base class.

• A derived class simply shares the code of the pri-
vate base class. Such code sharing is sometimes
called implementation inheritance.

• All members of a private base class become pri-
vate in the derived class. Nonprivate inherited
members can be made visible by writing their
full names in the derived class.

4

The Privacy Principle

• Functions in a derived class cannot access the
private members of its base class.

• Otherwise, the following principle would be vio-
lated:

Privacy principle: The private mem-
bers of a class are accessible only to
member functions of the class.

5

