
Programming Languages 2012: Imperative Programming:

Structured Programs

(Based on [Sethi 1996])

Yih-Kuen Tsay

1 Introduction

Imperative Programming

• Actions: the basic units of imperative program-
ming.

– The assignment statement specifies a typ-
ical action (and is a distinguishing feature
of imperative programming as opposed to
functional programming).

– For example,

x := 2 + 3

is an assignment specifying the action of
computing the value 5 of the expression 2+3
and assigning it to the variable x; the old
value of x is forgotten.

• Control Flow: the order in which actions are
performed.

The control flow of a program is specified by
(control) statements.

Structured Programming

• The structure of the program text should help
us understand what the program does.

• Specifically, a program is structured if

the flow of control through the pro-
gram is evident from the syntactic
structure of the program text.

Why Structured Programming

Eventually, one of our aims is to make such
well-structured programs that the intellec-
tual effort (. . .) needed to understand them
is proportional to program length (. . .). –
Dijkstra

• Two characteristics of imperative programming:

– Programs and computations are not the
same thing.

Programs are what we write, while compu-
tations are the actions that occur when a
program runs.

– The values of variables may change as a pro-
gram runs.

• Two desirable concepts:

– Structured Statements

– Invariants

Computations vs. Programs

• A (sequential) computation consists of a se-
quence of actions.

• A program is a succinct representation of the
computation that occurs when the program runs.

Computation Program

writeln(1, 1*1) for i:=1 to 3 do writeln(i, i*i)
writeln(2, 2*2)
writeln(3, 3*3)

• The static text of a program is distinct from the
dynamic computations that occur when the pro-
gram runs.

1

Structured Statements

With goto’s Structured

read(x);
2: if x=0 then goto 8;

writeln(x);
4: read(next);

if next=x then goto 4;
x := next;
goto 2;

8: . . .;

read(x);
while x 6=0 do begin

writeln(x);
repeat

read(next);
until next 6=x;
x := next;

end;

Invariants

• An invariant at some point in a program is an as-
sertion that holds whenever control reaches that
point.

• Consider the problem of removing adjacent du-
plicates from a list of integers. For example,
given the input 1 1 2 2 2 3 1 4 4, the output
should be 1 2 3 1 4. View 1 1 2 2 2 3 1 4 4 as a
sequence of runs 1 1 2 2 2 3 1 4 4 .

• Design the program around invariants:

read(x);
while x is not the end marker do begin
{ x is the first element of a run }
writeln(x);
repeat read(next) until next 6=x;
{ we have read one element too many }
x := next;

end;

2 Syntax-Directed Control
Flow

Syntax-Directed Control Flow

• Sequencing: sequential composition of state-
ments

– Control flows sequentially through a se-
quence of statements.

– temp := x; x := y; y := temp

• Selection: conditional (and case) statements

– if 〈expression〉 then 〈statement1〉 else
〈statement2〉

– A variant: if 〈expression〉 then
〈statement〉

• Looping: while, repeat, and for statements

– while 〈expression〉 do 〈statement〉
– repeat 〈statement〉 until 〈expression〉
– for 〈name〉 := 〈expr〉 to 〈expr〉 do
〈statement〉

– for 〈name〉 := 〈expr〉 downto 〈expr〉 do
〈statement〉

Principle: single-entry/single-exit

Syntax of Statements in Pascal

〈statement〉 ::= 〈expr〉 := 〈expr〉
| 〈name〉 (〈expr list〉)
| begin 〈statement list〉 end
| if 〈expr〉 then 〈statement〉
| if 〈expr〉 then 〈statement〉 else 〈statement〉
| while 〈expr〉 do 〈statement〉
| repeat 〈statement〉 until 〈expr〉
| for 〈name〉 := 〈expr〉 to 〈expr〉 do
〈statement〉

| for 〈name〉 := 〈expr〉 downto 〈expr〉 do
〈statement〉

| case 〈expr〉 of 〈cases〉

Syntax of Statements in Pascal (cont.)

〈statement list〉 ::= 〈empty〉
| 〈statement〉 ; 〈statement list〉

〈cases〉 ::= 〈constant〉 : 〈statement〉
| 〈constant〉 : 〈statement〉 ; 〈cases〉

A Style of Nesting Conditionals
When conditionals are nested, the following style

guideline improves readability.

if · · · then · · ·
else if · · · then · · ·
else if · · · then · · ·
else · · ·

Example:

if (year mod 400) = 0 then leap := true
else if (year mod 100) = 0 then leap :=
false else if (year mod 4) = 0 then leap
:= true else leap := false

2

Definite vs. Indefinite Iterations

• Looping constructs can be divided roughly into
two groups.

• Definite Iteration

– A definite iteration (definite loop) is exe-
cuted a predetermined number of times.

– Constructs: for statements (in most lan-
guages).

• Indefinite Iteration

– The number of executions of an indefi-
nite iteration (indefinite loop) is not known
when control reaches the loop; the number
is determined by the course of the compu-
tation.

– Constructs: while and repeat statements;
for statements in C.

Design Issues of For Statements

• The design of for statements in a language de-
pends on the treatment of the index variable, the
step, and the limit .

• Are the step and the limit computed once or are
they recomputed each time control flows through
the loop?

• Is the limit tested at the beginning or at the end
of each pass through the loop?

• Can the value of the index variable be changed
within the loop?

• Is the index variable defined upon loop exit?

Case Statements

• A case statement uses the value of an expression
to select one of several substatements for execu-
tion.

case 〈expression〉 of
〈constant1〉 : 〈statement1〉;
〈constant2〉 : 〈statement2〉;
· · ·
〈constantn〉 : 〈statementn〉;
end

• Most languages agree on the following points:

– Case constants can appear in any order.

– Case constants need not be consecutive.

– Several case constants can select the same
substatement.

– Case constants must be distinct.

• Further issues:

– Can there be a default case?

– Are ranges of case constants allowed?

Implementation of Case Statements

• The implementation of case statements can af-
fect their usage.

• The code generated by good compilers depends
on the distribution of case constants:

1. A small number of cases is implemented us-
ing conditionals.

2. For a larger number of cases, the compiler
uses a “jump table” if, say, at least half the
entries will be used.

3. If the number of cases is large enough and
too many entries in a jump table would re-
main unused, the compiler uses a hash ta-
ble.

3 Other Design Considerations

Sequences: Separators vs. Terminators

• Sequences of statements, declarations, or param-
eters can be classified by asking the following
questions:

– Can the sequence be empty?

– If there is a delimiter, does it separate ele-
ments or terminate them?

• A delimiter separates elements if it appears be-
tween them; it terminates elements if it appears
after each element.

• Fewer programming errors are believed to occur
if semicolons terminate statements than if they
separate statements.

3

Semicolons as Separators

• Pascal uses semicolons primarily to separate
statements, as in

begin stmt1 ; stmt2 ; stmt3 end

• Inserting an empty statement between stmt3
and end makes semicolons look like terminators:

begin stmt1 ; stmt2 ; stmt3 ; end

• But empty statements make the placement of
semicolons significant; insertion of a semicolon
can change the meaning of a program in Pascal.

if expr then ; stmt

is not the same as

if expr then stmt

• Modula-2 avoids the problem by attaching a clos-
ing keyword end:

if expr then stmt end

Avoiding Dangling Elses

• Modula-2 avoids the dangling-else ambiguity be-
cause conditionals have a closing keyword end.

• But, closing delimiters can lead to a proliferation
of keywords.

if expr1 then stmt1
else if expr2 then stmt2

else if expr3 then stmt3
else stmt4
end

end
end

• Optional elsif parts solve the problem.

if expr1 then stmt1

elsif expr2 then stmt2

elsif expr3 then stmt3

else stmt4

end

Break and Continue Statements

• Break and continue statements facilitate the
handling of special cases in loops.

• A break statement sends control out of the en-
closing loop to the statement following the loop.

It can be used to jump out of a loop after estab-
lishing the conditions upon exit from the loop.

• A continue statement repeats the enclosing loop
by sending control to the beginning of the loop.

It can be used to restart the loop after establish-
ing the loop invariant, the condition that holds
upon loop entry.

Break and Continue Statements (cont.)

• One use of break statements is to break out of a
loop after handling a special case:

while condition do
if special case then

take care of the special case;
break;

end if ;
handle the normal cases;

end while

Break and Continue Statements (cont.)

• A corresponding fragment for continue state-
ments:

while condition do
if normal case then

handle the normal case;
continue;

end if ;
take care of the special cases;

end while

Return Statements

• Execution of a statement

return 〈expression〉

sends control back from a procedure to a caller,
carrying the value of 〈expression〉. If the retrun
statement is not in a procedure, then the pro-
gram halts.

4

• Both return and break statements send control
out of an enclosing construct:

– a return out of an enclosing procedure, and

– a break out of an enclosing loop.

Goto Statements

• A statement goto L interrupts the normal flow
of control from one statement to the next in se-
quence; control flows instead to the statement
labeled L somewhere in the program:

L : 〈statement〉

• By itself, goto L gives no indication of where
label L is to be found. Similarly, L : 〈statement〉
does not indicate from where control might come
to it.

• Although goto statements can be misused to
write unreadable programs, there is still a need
for them, e.g., in automatically generated pro-
grams.

4 Programming with Invari-
ants

Pre and Post-Conditions

• With single-entry/single-exit constructs, the be-
havior of a statement can be characterized purely
by conditions at the entry and exit to the state-
ment.

• A precondition is attached just before and a post-
condition is attached just after a statement; both
are assertions. In particular,

– a precondition just before a loop can cap-
ture the conditions for executing the loop,

– an assertion just within a loop body (i.e.,
before the first statement of the loop body)
can capture the conditions for staying in the
loop, and

– a postcondition just after a loop can cap-
ture the conditions upon leaving the loop.

Pre and Post-Conditions (cont.)

{ x ≥ 0 and y > 0 }
while x ≥ y do begin
{ y > 0 and x ≥ y }
x := x− y
{ y > 0 and x ≥ 0 }

end
{ y > 0 and x < y }

An Annotated Program

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}
while x 6= 0 and y 6= 0 do
begin
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}
if x < y
then swap(x, y);
{x ≥ y ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}
x := x− y;
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x, y) = gcd(m,n)}

end;
{(x = 0 ∧ y ≥ 0 ∧ y = gcd(x, y) = gcd(m,n))∨

(x ≥ 0 ∧ y = 0 ∧ x = gcd(x, y) = gcd(m,n))}

Note: m and n are two arbitrary non-negative in-
tegers, at least one of which is nonzero.

Example: Linear Search

A table supports two operations, insert(x) and
find(x). Elements are inserted from left to right,
starting at position 1.

?

0

?

1

?

n

?

limit

� -used � -free

The table will be maintained so that the elements
of the table are in the subarray A[1..n], for 0 ≤ n,
and 0 ≤ n ≤ limit.

Operation find(x) returns 0 if x is not in the table;
otherwise, it returns the position in the table at which
x was inserted most recently.

5

Development of a Search Program
Initial Code Sketch

initialization;
do the search;
{ (x is not in the table) or

(the most recent x is A[i] and 0 < i ≤ n) }
if x is not in the table then

return 0;
else

return i;

Development of a Search Program (cont.)
Simplified Computation of the Result

initialization;
do the search;
{ x = A[i] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
return i;

Making the Sentinel Explicit

A[0] := x;
further initialization;
{ x = A[0] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
while not yet time to stop and x not found at i do

i := i− 1;
{ x = A[i] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
return i;

Development of a Search Program (cont.)
Final Developed Program Fragment

A[0] := x;
i := n;
while x 6= A[i] do

i := i− 1;
return i;

Proof Rules
{Q[E/x]} x := E {Q} (Assignment Axiom)

{P} S1 {Q}, {Q} S2 {R}
{P} S1;S2 {R}

(Composition Rule)

{P ∧ E} S1 {Q}, {P ∧ ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

(Condi-

tional Rule)

{P ∧ E} S {P}
{P} while E do S {P ∧ ¬E} (while Rule)

P implies P ′, {P ′} S {Q′}, Q′ implies Q
{P} S {Q} (Rule

of Consequence)

5 Statements in C

Control Flow in C

C Pascal

if (E) S if E then S
if (E) S1 else S2 if E then S1 else S2

while (E) S while E do S
do S while (E) ; repeat S until (not E)
for (i=1; i<=n; i++) S for i:=1 to n do S
for (i=n; i>=1; i−−) S for i:=n downto 1 do S

The correspondence between the for statements
holds only if S in the C statement does not change
the values of i and n.

Assignments in C

• The assignment operator in C is =.

• C allows assignments to appear within expres-
sions.

• An expression E1 = E2 is evaluated by placing
the value of E2 into the location of E1. The value
of E1 = E2 is the value assigned to the left side.

while ((c = getchar()) != EOF)

putchar(c);

is semantically equivalent to

while (1) {

c = getchar();

if (c == EOF) break;

putchar(c);

}

For Loops in C

• The for statement has the form

for (E1; E2; E3) S

E1 is evaluated just before loop entry, E2 is the
condition for staying within the loop, and E3 is
evaluated just before every next iteration of the
loop.

• The while vs. for statements:

while (x != A[i])

--i;

6

can be rewritten as

for (; x != A[i]; --i)

;

• A missing E2 is taken to be true; for(;;) can
thus be read as “forever” because it sets up an
infinite loop.

Syntax of Statements in C
S ::= ;

| E ;
| { Slist }
| if (E) S
| if (E) S else S
| while (E) S
| do S while (E) ;
| for (Eopt ; Eopt ; Eopt) S
| switch (E) S
| case Constant : S
| default : S
| break ;
| continue ;
| return ;
| return E ;
| goto L ;
| L : S

Syntax of Statements in C (cont.)
Slist ::= 〈empty〉

| Slist S

Eopt ::= 〈empty〉
| E

7

