
Imperative Programming:
Structured Programs

(Based on [Sethi 1996])

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 1 / 36

Imperative Programming

Actions: the basic units of imperative programming.

The assignment statement specifies a typical action (and is a
distinguishing feature of imperative programming as opposed to
functional programming).
For example,

x := 2 + 3

is an assignment specifying the action of computing the value 5
of the expression 2 + 3 and assigning it to the variable x; the old
value of x is forgotten.

Control Flow: the order in which actions are performed.
The control flow of a program is specified by (control)
statements.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 2 / 36

Structured Programming

The structure of the program text should help us understand
what the program does.

Specifically, a program is structured if

the flow of control through the program is evident
from the syntactic structure of the program text.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 3 / 36

Why Structured Programming

Eventually, one of our aims is to make such well-structured
programs that the intellectual effort (. . .) needed to
understand them is proportional to program length (. . .).

– Dijkstra

Two characteristics of imperative programming:

Programs and computations are not the same thing.
Programs are what we write, while computations are the actions
that occur when a program runs.
The values of variables may change as a program runs.

Two desirable concepts:

Structured Statements
Invariants

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 4 / 36

Computations vs. Programs

A (sequential) computation consists of a sequence of actions.

A program is a succinct representation of the computation that
occurs when the program runs.

Computation Program

writeln(1, 1*1) for i :=1 to 3 do writeln(i , i*i)
writeln(2, 2*2)
writeln(3, 3*3)

The static text of a program is distinct from the dynamic
computations that occur when the program runs.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 5 / 36

Structured Statements

With goto’s Structured

read(x);
2: if x=0 then goto 8;

writeln(x);
4: read(next);

if next=x then goto 4;
x := next;
goto 2;

8: . . .;

read(x);
while x 6=0 do begin

writeln(x);
repeat

read(next);
until next 6=x ;
x := next;

end;

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 6 / 36

Invariants

An invariant at some point in a program is an assertion that
holds whenever control reaches that point.

Consider the problem of removing adjacent duplicates from a list
of integers. For example, given the input 1 1 2 2 2 3 1 4 4, the
output should be 1 2 3 1 4. View 1 1 2 2 2 3 1 4 4 as a
sequence of runs 1 1 2 2 2 3 1 4 4 .

Design the program around invariants:

read(x);
while x is not the end marker do begin
{ x is the first element of a run }
writeln(x);
repeat read(next) until next 6=x ;
{ we have read one element too many }
x := next;

end;

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 7 / 36

Syntax-Directed Control Flow

Sequencing: sequential composition of statements

Control flows sequentially through a sequence of statements.
temp := x ; x := y ; y := temp

Selection: conditional (and case) statements

if 〈expression〉 then 〈statement1〉 else 〈statement2〉
A variant: if 〈expression〉 then 〈statement〉

Looping: while, repeat, and for statements

while 〈expression〉 do 〈statement〉
repeat 〈statement〉 until 〈expression〉
for 〈name〉 := 〈expr〉 to 〈expr〉 do 〈statement〉
for 〈name〉 := 〈expr〉 downto 〈expr〉 do 〈statement〉

Principle: single-entry/single-exit

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 8 / 36

Syntax of Statements in Pascal

〈statement〉 ::= 〈expr〉 := 〈expr〉
| 〈name〉 (〈expr list〉)
| begin 〈statement list〉 end
| if 〈expr〉 then 〈statement〉
| if 〈expr〉 then 〈statement〉 else 〈statement〉
| while 〈expr〉 do 〈statement〉
| repeat 〈statement〉 until 〈expr〉
| for 〈name〉 := 〈expr〉 to 〈expr〉 do
〈statement〉

| for 〈name〉 := 〈expr〉 downto 〈expr〉 do
〈statement〉

| case 〈expr〉 of 〈cases〉

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 9 / 36

Syntax of Statements in Pascal (cont.)

〈statement list〉 ::= 〈empty〉
| 〈statement〉 ; 〈statement list〉

〈cases〉 ::= 〈constant〉 : 〈statement〉
| 〈constant〉 : 〈statement〉 ; 〈cases〉

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 10 / 36

A Style of Nesting Conditionals

When conditionals are nested, the following style guideline improves
readability.

if · · · then · · ·
else if · · · then · · ·
else if · · · then · · ·
else · · ·

Example:

if (year mod 400) = 0 then leap := true
else if (year mod 100) = 0 then leap := false
else if (year mod 4) = 0 then leap := true
else leap := false

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 11 / 36

Definite vs. Indefinite Iterations

Looping constructs can be divided roughly into two groups.

Definite Iteration

A definite iteration (definite loop) is executed a predetermined
number of times.
Constructs: for statements (in most languages).

Indefinite Iteration

The number of executions of an indefinite iteration (indefinite
loop) is not known when control reaches the loop; the number
is determined by the course of the computation.
Constructs: while and repeat statements; for statements in C.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 12 / 36

Design Issues of For Statements

The design of for statements in a language depends on the
treatment of the index variable, the step, and the limit.

Are the step and the limit computed once or are they
recomputed each time control flows through the loop?

Is the limit tested at the beginning or at the end of each pass
through the loop?

Can the value of the index variable be changed within the loop?

Is the index variable defined upon loop exit?

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 13 / 36

Case Statements
A case statement uses the value of an expression to select one of
several substatements for execution.

case 〈expression〉 of
〈constant1〉 : 〈statement1〉;
〈constant2〉 : 〈statement2〉;
· · ·
〈constantn〉 : 〈statementn〉;
end

Most languages agree on the following points:
Case constants can appear in any order.
Case constants need not be consecutive.
Several case constants can select the same substatement.
Case constants must be distinct.

Further issues:
Can there be a default case?
Are ranges of case constants allowed?

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 14 / 36

Implementation of Case Statements

The implementation of case statements can affect their usage.

The code generated by good compilers depends on the
distribution of case constants:

1. A small number of cases is implemented using conditionals.
2. For a larger number of cases, the compiler uses a “jump table”

if, say, at least half the entries will be used.
3. If the number of cases is large enough and too many entries in a

jump table would remain unused, the compiler uses a hash table.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 15 / 36

Sequences: Separators vs. Terminators

Sequences of statements, declarations, or parameters can be
classified by asking the following questions:

Can the sequence be empty?
If there is a delimiter, does it separate elements or terminate
them?

A delimiter separates elements if it appears between them; it
terminates elements if it appears after each element.

Fewer programming errors are believed to occur if semicolons
terminate statements than if they separate statements.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 16 / 36

Semicolons as Separators

Pascal uses semicolons primarily to separate statements, as in
begin stmt1 ; stmt2 ; stmt3 end

Inserting an empty statement between stmt3 and end makes
semicolons look like terminators:
begin stmt1 ; stmt2 ; stmt3 ; end

But empty statements make the placement of semicolons
significant; insertion of a semicolon can change the meaning of a
program in Pascal.
if expr then ; stmt
is not the same as
if expr then stmt

Modula-2 avoids the problem by attaching a closing keyword
end:
if expr then stmt end

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 17 / 36

Avoiding Dangling Elses
Modula-2 avoids the dangling-else ambiguity because
conditionals have a closing keyword end.
But, closing delimiters can lead to a proliferation of keywords.

if expr1 then stmt1
else if expr2 then stmt2

else if expr3 then stmt3
else stmt4
end

end
end

Optional elsif parts solve the problem.
if expr1 then stmt1
elsif expr2 then stmt2
elsif expr3 then stmt3
else stmt4
end

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 18 / 36

Break and Continue Statements

Break and continue statements facilitate the handling of special
cases in loops.

A break statement sends control out of the enclosing loop to the
statement following the loop.
It can be used to jump out of a loop after establishing the
conditions upon exit from the loop.

A continue statement repeats the enclosing loop by sending
control to the beginning of the loop.
It can be used to restart the loop after establishing the loop
invariant, the condition that holds upon loop entry.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 19 / 36

Break and Continue Statements (cont.)

One use of break statements is to break out of a loop after
handling a special case:

while condition do
if special case then

take care of the special case;
break;

end if;
handle the normal cases;

end while

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 20 / 36

Break and Continue Statements (cont.)

A corresponding fragment for continue statements:

while condition do
if normal case then

handle the normal case;
continue;

end if;
take care of the special cases;

end while

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 21 / 36

Return Statements

Execution of a statement

return 〈expression〉

sends control back from a procedure to a caller, carrying the
value of 〈expression〉. If the retrun statement is not in a
procedure, then the program halts.

Both return and break statements send control out of an
enclosing construct:

a return out of an enclosing procedure, and
a break out of an enclosing loop.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 22 / 36

Goto Statements

A statement goto L interrupts the normal flow of control from
one statement to the next in sequence; control flows instead to
the statement labeled L somewhere in the program:

L : 〈statement〉

By itself, goto L gives no indication of where label L is to be
found. Similarly, L : 〈statement〉 does not indicate from where
control might come to it.

Although goto statements can be misused to write unreadable
programs, there is still a need for them, e.g., in automatically
generated programs.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 23 / 36

Pre and Post-Conditions

With single-entry/single-exit constructs, the behavior of a
statement can be characterized purely by conditions at the entry
and exit to the statement.

A precondition is attached just before and a postcondition is
attached just after a statement; both are assertions. In
particular,

a precondition just before a loop can capture the conditions for
executing the loop,
an assertion just within a loop body (i.e., before the first
statement of the loop body) can capture the conditions for
staying in the loop, and
a postcondition just after a loop can capture the conditions
upon leaving the loop.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 24 / 36

Pre and Post-Conditions (cont.)

{ x ≥ 0 and y > 0 }
while x ≥ y do begin
{ y > 0 and x ≥ y }
x := x − y
{ y > 0 and x ≥ 0 }

end
{ y > 0 and x < y }

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 25 / 36

An Annotated Program

{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
while x 6= 0 and y 6= 0 do
begin
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
if x < y
then swap(x , y);
{x ≥ y ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}
x := x − y ;
{x ≥ 0 ∧ y ≥ 0 ∧ gcd(x , y) = gcd(m, n)}

end;
{(x = 0 ∧ y ≥ 0 ∧ y = gcd(x , y) = gcd(m, n))∨

(x ≥ 0 ∧ y = 0 ∧ x = gcd(x , y) = gcd(m, n))}

Note: m and n are two arbitrary non-negative integers, at least one
of which is nonzero.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 26 / 36

Example: Linear Search

A table supports two operations, insert(x) and find(x). Elements are
inserted from left to right, starting at position 1.

?

0
?

1
?

n
?

limit

� -used � -free

The table will be maintained so that the elements of the table are in
the subarray A[1..n], for 0 ≤ n, and 0 ≤ n ≤ limit.
Operation find(x) returns 0 if x is not in the table; otherwise, it
returns the position in the table at which x was inserted most
recently.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 27 / 36

Development of a Search Program

Initial Code Sketch

initialization;
do the search;
{ (x is not in the table) or

(the most recent x is A[i] and 0 < i ≤ n) }
if x is not in the table then

return 0;
else

return i ;

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 28 / 36

Development of a Search Program (cont.)
Simplified Computation of the Result

initialization;
do the search;
{ x = A[i] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
return i ;

Making the Sentinel Explicit

A[0] := x ;
further initialization;
{ x = A[0] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
while not yet time to stop and x not found at i do

i := i − 1;
{ x = A[i] and x is not in A[i + 1..n] and 0 ≤ i ≤ n }
return i ;

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 29 / 36

Development of a Search Program (cont.)

Final Developed Program Fragment

A[0] := x ;
i := n;
while x 6= A[i] do

i := i − 1;
return i ;

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 30 / 36

Proof Rules

{Q[E /x]} x := E {Q} (Assignment Axiom)

{P} S1 {Q}, {Q} S2 {R}
{P} S1;S2 {R}

(Composition Rule)

{P ∧ E} S1 {Q}, {P ∧ ¬E} S2 {Q}
{P} if E then S1 else S2 {Q}

(Conditional Rule)

{P ∧ E} S {P}
{P} while E do S {P ∧ ¬E} (while Rule)

P implies P ′, {P ′} S {Q ′}, Q ′ implies Q
{P} S {Q} (Rule of Consequence)

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 31 / 36

Control Flow in C

C Pascal

if (E) S if E then S
if (E) S1 else S2 if E then S1 else S2

while (E) S while E do S
do S while (E) ; repeat S until (not E)
for (i=1; i<=n; i++) S for i :=1 to n do S
for (i=n; i>=1; i−−) S for i :=n downto 1 do S

The correspondence between the for statements holds only if S in the
C statement does not change the values of i and n.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 32 / 36

Assignments in C

The assignment operator in C is =.

C allows assignments to appear within expressions.

An expression E1 = E2 is evaluated by placing the value of E2

into the location of E1. The value of E1 = E2 is the value
assigned to the left side.

while ((c = getchar()) != EOF)

putchar(c);

is semantically equivalent to

while (1) {

c = getchar();

if (c == EOF) break;

putchar(c);

}

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 33 / 36

For Loops in C

The for statement has the form

for (E1; E2; E3) S

E1 is evaluated just before loop entry, E2 is the condition for
staying within the loop, and E3 is evaluated just before every
next iteration of the loop.

The while vs. for statements:

while (x != A[i])

--i;

can be rewritten as

for (; x != A[i]; --i)

;

A missing E2 is taken to be true; for(;;) can thus be read as
“forever” because it sets up an infinite loop.

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 34 / 36

Syntax of Statements in C
S ::= ;

| E ;
| { Slist }
| if (E) S
| if (E) S else S
| while (E) S
| do S while (E) ;
| for (Eopt ; Eopt ; Eopt) S
| switch (E) S
| case Constant : S
| default : S
| break ;
| continue ;
| return ;
| return E ;
| goto L ;
| L : S

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 35 / 36

Syntax of Statements in C (cont.)

Slist ::= 〈empty〉
| Slist S

Eopt ::= 〈empty〉
| E

Yih-Kuen Tsay (IM.NTU) Imperative Programming: Structured Programs PL 2012 36 / 36

	Introduction
	Syntax-Directed Control Flow
	Other Design Considerations
	Programming with Invariants
	Statements in C

