Software Development Methods [Compiled on November 4, 2004] ~ Fall 2004

Midterm

Note

This is an open-book exam. You may consult any books, papers, or notes, but discussion

is strictly forbidden.

Problems

1. Under what condition are A[w/x][z/y] and A[z/y][w/z] equal? Give an inductive
proof of the equality (under that condition). (10%)

2. Prove the following sequents using Gentzen’s System LK. You may treat I' and A
in a sequent I' = A as multisets of formulas (to shorten the proof, as the Exchange

rules will no longer be needed).

(a) F(A— B) — ((A— —-B) — -A) (10%)
(b) FVa(P(z) AQ(z)) — JyP(y) AV2Q(z) (10%)

3. Recall that a set I' of propositions is inconsistent if, for any proposition B, the

sequent I' = B is provable (using the propositional part of System LK).

Prove that, if there is some proposition A such that I' = A and I' = = A are provable,
then I' is inconsistent. (Hint: think of the Cut rule and the sequents “I" = =—=A”
and “I', == A F B”, for an arbitrary proposition B) (10%)

4. Give a pair of pre-condition and post-condition that specifies the correctness re-
quirement of the following code segment for finding the smallest element of an

array of numbers. Prove that the code indeed satisfies the requirement.

min,i = A[l], 1;
while i < n do begin
1 =1+ 1;
if Ali] < min then min := A[i];

end

To handle multiple assignments of the form “x,y := E, F”, the following axiom

may be added to Hoare Logic:

{P|E,F/z,y|} x,y .= E,F {P}

Note: Alt,u/x,y| (T'[t,u/x,y]) denotes the formula (term) obtained from simulta-
neously substituting term ¢ for free occurrences of x and term u for y in formula A
(term T'). For example, (x +1 > y)[y,z/z,y] =y +1 > . (20%)

5. In a virtual department store, customers purchase products from various stores.
The department also allows customers to make gift packages (say, Alice’s gift from
Bob) so that other customers may choose them.

Consider the following classes:

class Shoe : Product {
public Shoe (int p, String v);
public int price ();
public String vendor ();
/] ...
s

class Clothing : Product {
public Clothing (int p, String v);
public int price ();
public String vendor ();
/...
}

Shoe nike (1000, "Nike");
Clothing levis (800, "Levi’s");

(a) Use the Composite pattern to design two classes: Product as component and

Gift as composite. Write down their class definitions. (5%)

(b) Suppose Alice’s gift contains nike and levis. Write down the class definition
of Alicesgift. (3%)

(c) Use the Prototype pattern to design the class Catalog that contains meth-
ods MakeNike, MakeLevis, MakeAlicesGift. Redefine classes Product, Shoe,

Clothing if necessary. (5%)

6. Consider the following definitions:

class A {
public void foo () {};

public void bar () {};
s

class B : A {
public void foo (O ;
public void bar ();

}
class C {
public void foo () { a.foo O; };
public void bar () { a.bar O; 1};
private A a;
}
(a) Is class B a subclass of class A? (2%)
(b) Is type B a subtype of type A? (2%)
(c) Is class C a subclass of class A? (2%)
(d) Is type C a subtype of type A? (2%)
(e) If a pattern is defined by using class inheritance (like B), we call it
_class pattern ___object pattern (2%)
(f) If a pattern is defined by using forwarding (like C), we call it
_class pattern ___object pattern (2%)

. Suppose we would like to implement class Collection:

class Collection {
public void add (Node n);
public void remove ();
public Node peek ();
/...

But there are several randomly access data structures that may be used in the
implementation. For instance, we may have linked lists:

class LinkedList {
public void insert (int idx, Node n);
public void delete (int idx);
public Node first ();
public Node last ();
};

Or arrays:

class Array {
public void insert (int idx, Node n);
public void delete (int idx);
public Node first (O);
public Node last ();
s

(a) Apply the Bridge pattern to define the class RADS that allows Collection to
change the underlying randomly access data structure implementations. Re-

define the class Collection if necessary. (5%)

(b) Apply the Factory method pattern to define and implement the Collection
subclasses Stack and Queue by the classes Array and LinkedList respectively.

(4%)
(c) Apply the Abstract Factory pattern to define Stack and Queue so that the

client can choose randomly access data structures while creating Stack or

Queue objects. (6%)

