
Software Development Methods [Compiled on January 10, 2005] Fall 2004

Suggested Solutions to Midterm Problems

1. Under what condition are A[w/x][z/y] and A[z/y][w/x] equal? Give an inductive

proof of the equality (under that condition). (10%)

Solution. A trivial condition is when x and y are the same variable (denoted by

x = y) and w and z are the same (w = z); doing the same substitution twice

consecutively is the same as doing it once. A less trivial condition is when x 6= y,

w 6= y, and z 6= x. We shall give an inductive proof for this case. (It is possible to

generalize the result for A[t/x][u/y] and A[u/y][t/x] where t and u are terms; the

two formulae are equal if x 6= y, y is not free in t, and x is not free in u.)

We first show that, for any term t, t[w/x][z/y] and t[z/y][w/x] are equal when

x 6= y, w 6= y, and z 6= x:

Base case: (1) constants: c[w/x][z/y] = c = c[z/y][w/x]. (2) variables: x[w/x][z/y] =

w[z/y] = w (as w 6= y) = x[w/x] = (x[z/y])[w/x] (as x 6= y) = x[z/y][w/x]; analo-

gously for y. For v 6= x and v 6= y, v[w/x][z/y] = v = v[z/y][w/x].

Induction step: For every k-ary (k > 0) function f :

f(t1, t2, · · · , tk)[w/x][z/y]
= f(t1[w/x], t2[w/x], · · · , tk[w/x])[z/y] , definition of substitution
= f(t1[w/x][z/y], t2[w/x][z/y], · · · , tk[w/x][z/y]) , definition of substitution
= f(t1[z/y][w/x], t2[z/y][w/x], · · · , tk[z/y][w/x]) , induction hypothesis
= f(t1[z/y], t2[z/y], · · · , tk[z/y])[w/x] , definition of substitution
= f(t1, t2, · · · , tk)[z/y][w/x] , definition of substitution

We now prove that, for any formula A, A[w/x][z/y] and A[z/y][w/x] are equal when

x 6= y, w 6= y, and z 6= x:

Base case (atomic formulae): (1) ⊥[w/x][z/y] = ⊥ = ⊥[z/y][w/x]. (2) For every

0-ary predicate p, p[w/x][z/y] = p = p[z/y][w/x]. (3) For k-ary (k > 0) predicates,

the proof is analogous to that for functions.

Induction step (formulae): (1) Boolean combinations: we prove the case of A ∧ B;

other cases are similar.

(A ∧B)[w/x][z/y]
= (A[w/x] ∧B[w/x])[z/y] , definition of substitution
= A[w/x][z/y] ∧B[w/x][z/y] , definition of substitution
= A[z/y][w/x] ∧B[z/y][w/x] , induction hypothesis
= (A[z/y] ∧B[z/y])[w/x] , definition of substitution
= (A ∧B)[z/y][w/x] , definition of substitution

1



(2) Quantified formulae: we prove the two cases of (∀xA) and (∀vA) where v 6= x

and v 6= y; other cases are similar.

(∀xA)[w/x][z/y]
= (∀xA)[z/y] , x does not occur free in (∀xA)
= ∀x(A[z/y]) , x 6= y
= (∀x(A[z/y]))[w/x] , x does not occur free in (∀x(A[z/y]))
= (∀xA)[z/y][w/x] , definition of substitution

(∀vA)[w/x][z/y]
= (∀v(A[w/x]))[z/y] , v 6= x
= ∀v(A[w/x][z/y]) , v 6= y
= ∀v(A[z/y][w/x]) , induction hypothesis
= (∀v(A[z/y]))[w/x] , v 6= x
= (∀vA)[z/y][w/x] , v 6= y

2

2. Prove the following sequents using Gentzen’s System LK. You may treat Γ and ∆

in a sequent Γ ` ∆ as multisets of formulas (to shorten the proof, as the Exchange

rules will no longer be needed).

(a) ` (A → B) → ((A → ¬B) → ¬A) (10%)

Solution. Left as an exercise (since most of you were able to find a proof). 2

(b) ` ∀x(P (x) ∧Q(x)) → ∃yP (y) ∧ ∀zQ(z) (10%)

Solution.

P (w) ` P (w)
(axiom)

P (w) ∧Q(w) ` P (w) {w as t in P (y)[t/y]}
(∧L)

P (w) ∧Q(w) {= (P (x) ∧Q(x))[w/x]} ` ∃yP (y)
(∃R)

∀x(P (x) ∧Q(x)) ` ∃yP (y)
(∀L)

Q(w) ` Q(w)
(axiom)

P (w) ∧Q(w) ` Q(w)
(∧L)

∀x(P (x) ∧Q(x)) ` Q(w)
(∀L)

∀x(P (x) ∧Q(x)) ` ∀zQ(z)
(∀R)

∃x(P (x) ∧Q(x)) ` ∃yP (y) ∧ ∀zQ(z)
(∧R)

` ∀x(P (x) ∧Q(x)) → ∃yP (y) ∧ ∀zQ(z)
(→ R)

2

3. Recall that a set Γ of propositions is inconsistent if, for any proposition B, the

sequent Γ ` B is provable (using the propositional part of System LK).

Prove that, if there is some proposition A such that Γ ` A and Γ ` ¬A are provable,

then Γ is inconsistent. (Hint: think of the Cut rule and the sequents “Γ ` ¬¬A”

and “Γ,¬¬A ` B”, for an arbitrary proposition B) (10%)

Solution. We give a proof of Γ ` B for an arbitrary B under the assumption that
there is some proposition A such that Γ ` A and Γ ` ¬A are provable. To shorten

2



the proof, we shall take the multiset view of sequents.

assumed proof
Γ ` A

Γ,¬A `
(¬L)

Γ ` ¬¬A
(¬R)

assumed proof
Γ ` ¬A

Γ,¬¬A `
(¬L)

Γ,¬¬A ` B
(WR)

Γ,Γ ` B
(Cut (¬¬A))

Γ ` B
(Repeated CL)

2

4. Give a pair of pre-condition and post-condition that specifies the correctness re-

quirement of the following code segment for finding the smallest element of an

array of numbers. Prove that the code indeed satisfies the requirement.

min, i := A[1], 1;

while i < n do begin

i := i + 1;

if A[i] < min then min := A[i];

end

To handle multiple assignments of the form “x, y := E, F”, the following axiom

may be added to Hoare Logic:

{P [E, F/x, y]} x, y := E, F {P}

Note: A[t, u/x, y] (T [t, u/x, y]) denotes the formula (term) obtained from simulta-

neously substituting term t for free occurrences of x and term u for y in formula A

(term T ). For example, (x + 1 > y)[y, x/x, y] = y + 1 > x. (20%)

Solution. The program finds (and assigns to min) the smallest element of array A

if array A has at least one element (n ≥ 1). This correctness requirement may be

specified by the following pair of pre and post-conditions.

Pre-condition: n ≥ 1.

Post-condition: (∃j : 1 ≤ j ≤ n : min = A[j]) ∧ (∀k : 1 ≤ k ≤ n : min ≤ A[k])

(or ∃j(1 ≤ j ≤ n ∧min = A[j]) ∧ ∀k(1 ≤ k ≤ n → min ≤ A[k]), using the syntax

defined in class).

We annotate the program as follows to show the main steps of the correctness proof.

{n ≥ 1}

3



S1: min, i := A[1], 1;

{1 ≤ i ≤ n ∧ (∃j : 1 ≤ j ≤ i : min = A[j]) ∧ (∀k : 1 ≤ k ≤ i : min ≤ A[k])}
S2: while i < n do begin

i := i + 1;

if A[i] < min then min := A[i];

end

{i ≥ n ∧ 1 ≤ i ≤ n ∧ (∃j : 1 ≤ j ≤ i : min = A[j]) ∧ (∀k : 1 ≤ k ≤ i : min ≤ A[k])}

The last assertion in the annotation implies the post-condition of the correctness

requirement. By the rule of (sequential) composition, the rule of consequence, and

the preceding implication, correctness of the program follows from correctness of

the above annotation. Let P (i) denote ∃j : 1 ≤ j ≤ i : min = A[j] and Q(i) denote

∀k : 1 ≤ k ≤ i : min ≤ A[k]. We are now left with two proof obligations (proving

the correctness of two Hoare triples):

{n ≥ 1} S1 {1 ≤ i ≤ n ∧ P (i) ∧Q(i)}

and

{1 ≤ i ≤ n ∧ P (i) ∧Q(i)} S2 {i ≥ n ∧ 1 ≤ i ≤ n ∧ P (i) ∧Q(i)}.

The rest should be just a simple exercise of the Hoare logic. 2

5. In a virtual department store, customers purchase products from various stores.

The department also allows customers to make gift packages (say, Alice’s gift from

Bob) so that other customers may choose them.

Consider the following classes:

class Shoe extends Product {
public Shoe (int p, String v);
public int price ();
public String vendor ();
// ...

};

class Clothing extends Product {
public Clothing (int p, String v);
public int price ();
public String vendor ();
// ...

}

Shoe nike (1000, "Nike");
Clothing levis (800, "Levi’s");

4



(a) Use the Composite pattern to design two classes: Product as component and

Gift as composite. Write down their class definitions. (5%)

Solution.

class Product {
public int price ();
public String vendor ();
public void add (Product);
public void remove (Product);

};

class Gift extends Product {
public add (Product) { /* ... */ }
public void remove (Product) { /* ... */ }

private Product products[];
};

2

(b) Suppose Alice’s gift contains nike and levis. Write down the class definition

of Alicesgift. (3%)

Solution.

class Alicesgift extends Gift {
public Alicegift () {

add (nike);
add (levis);

}
};

2

(c) Use the Prototype pattern to design the class Catalog that contains meth-

ods MakeNike, MakeLevis, MakeAlicesGift. Redefine classes Product, Shoe,

Clothing if necessary. (5%)

Solution.

class Shoe extends Product {
// ...
public Shoe clone ();

}

class Clothing extends Product {
// ...
public Clothing clone ();

}

class Gift extends Product {

5



// ...
public Gift clone ();

}

class Catalog {
public Catalog (Shoe s, Clothing c, Gift g) {

_shoe = s; _clothing = c; _gift = g;
}
public Shoe MakeNike () {

_shoe.clone ();
}
public Clothing MakeLevis () {

_clothing.clone ();
}
public Gift MakeGift () {

_gift.clone ();
}

private Shoe _shoe;
private Clothing _clothing;
private Gift _gift;

}

2

6. Consider the following definitions:

class A {
public void foo () {};
public void bar () {};

};

class B : A {
public void foo () ;
public void bar ();

}

class C {
public void foo () { a.foo (); };
public void bar () { a.bar (); };
private A a;

}

(a) Is class B a subclass of class A? (2%)

Answer : Yes.

(b) Is type B a subtype of type A? (2%)

Answer : Yes.

6



(c) Is class C a subclass of class A? (2%)

Answer : No.

(d) Is type C a subtype of type A? (2%)

Answer : Yes.

(e) If a pattern is defined by using class inheritance (like B), we call it

© class pattern object pattern (2%)

(f) If a pattern is defined by using forwarding (like C), we call it

class pattern © object pattern (2%)

7. Suppose we would like to implement class Collection:

class Collection {
public void add (Node n);
public void remove ();
public Node peek ();
// ...

};

But there are several randomly access data structures that may be used in the
implementation. For instance, we may have linked lists:

class LinkedList {
public void insert (int idx, Node n);
public void delete (int idx);
public Node first ();
public Node last ();

};

Or arrays:

class Array {
public void insert (int idx, Node n);
public void delete (int idx);
public Node first ();
public Node last ();

};

(a) Apply the Bridge pattern to define the class RADS that allows Collection to

change the underlying randomly access data structure implementations. Re-

define the class Collection if necessary. (5%)

Solution.

7



class RADS {
public void insert (int idx, Node n);
public void delete (int idx);
public Node first ();
public Node last ();

};

class Collection {
public Collection (RADS r)

{ _rads = r; }
// ...
private _rads;

};

2

(b) Apply the Factory method pattern to define and implement the Collection

subclasses Stack and Queue by the classes Array and LinkedList respectively.

(4%)

Solution.

class Stack extends Collection {
public Stack ()

{ super (new Array); top = 0; }
public void add (Node n)

{ insert (top++, n); }
public void remove ()

{ delete (--top); }
public Node peek ()

{ return last (); }

private int top;
};

class Queue extends Collection {
public Stack ()

{ super (new LinkedList); head = tail = 0; }
public void add (Node n)

{ insert (tail++, n); }
public void remove ()

{ delete (head++); }
public Node peek ()

{ return first (); }

private int head, tail;
};

2

8



(c) Apply the Abstract Factory pattern to define Stack and Queue so that the

client can choose randomly access data structures while creating Stack or

Queue objects. (6%)

Solution.

class Stack extends Collection {
public Stack (RADS factory)

{ super (factory); top = 0; }
// ...

};

class Queue extends Collection {
public Queue (RADS factory)

{ super (factory); head = tail = 0; }
// ...

};

Stack arrayStack (new Array);
Stack linkedListStack (new LinkedList);
Stack arrayQueue (new Array);
Stack linkedListQueue (new LinkedList);

2

9


