
Software Development Methods [Compiled on December 20, 2006] Fall 2006

Suggested Solutions to Midterm Problems

1. Prove the following sequents using Gentzen’s System LK. You may take the set

view of a sequent to shorten your proofs. (10 %)

(a) ` (A → B) → (¬B → ¬A)

Solution. (Ming-Hsien Tsai)

Axiom
A ` A

Axiom
B, A ` B

→: Left
A → B, A ` B

¬: Left
A → B,¬B, A `

¬: Right
A → B,¬B ` ¬A

→: Right
A → B ` ¬B → ¬A →: Right

` (A → B) → (¬B → ¬A)

�

(b) ` ∃x(P (x) ∧Q(x)) → (∃yP (y) ∧ ∃zQ(z))

Solution. (Ming-Hsien Tsai)

Axiom
P (w), Q(w) ` P (y)[w/y]

∃: Right
P (w), Q(w) ` ∃yP (y)

Axiom
P (w), Q(w) ` Q(z)[w/z]

∃: Right
P (w), Q(w) ` ∃zQ(z)

∧: Right
P (w), Q(w) ` (∃yP (y) ∧ ∃zQ(z))

∧: Left
(P (x) ∧Q(x))[w/x] ` (∃yP (y) ∧ ∃zQ(z))

∃: Left
∃x(P (x) ∧Q(x)) ` (∃yP (y) ∧ ∃zQ(z))

→: Right
` ∃x(P (x) ∧Q(x)) → (∃yP (y) ∧ ∃zQ(z))

�

2. The first-order theory for monoids contains the following two axioms:

• ∀a∀b∀c(a · (b · c) = (a · b) · c). (Associativity)

• ∀a((a · e = a) ∧ (e · a = a)). (Identity)

Here e is a constant, called the identity, and · is the binary operation. Let M

denote the set of the two axioms. Prove using Gentzen’s System LK the sequent

M ` ∀e′(∀a((a · e′ = a) ∧ (e′ · a = a)) → e′ = e), which says that the identity

element of a monoid is unique. (Hint: a typical proof in algebra books is the

following: assuming e′ is an identity, e′ = e′ · e = e.) (15 %)

Solution. (Ming-Hsien Tsai)

Let M1 denote ∀a∀b∀c(a ·(b ·c) = (a ·b) ·c) and M2 denote ∀a((a ·e = a)∧(e ·a = a)).

1



Axiom` e = e
Axiom1

w · e = w,w · e = e, e = e ` w = e
Cut

w · e = w, w · e = e ` w = e
Weakening: Left

M1, w · e = w, e · w = w, e · w = e, w · e = e ` w = e
∧: Left

M1, ((a · e = a) ∧ (e · a = a))[w/a], e · w = e, w · e = e ` w = e
∀: Left

M1, M2, e · w = e, w · e = e ` w = e
∧: Left

M1, M2, ((a · w = a) ∧ (w · a = a))[e/a] ` w = e
∀: Left

M1, M2,∀a((a · w = a) ∧ (w · a = a)) ` w = e
→: Right

M1, M2 ` (∀a((a · e′ = a) ∧ (e′ · a = a)) → e′ = e)[w/e′]
∀: Right

M1, M2 ` ∀e′(∀a((a · e′ = a) ∧ (e′ · a = a)) → e′ = e)

Note 1: For binary predicate P (x, y), we have the following axiom.

Axiom
s1 = t1, s2 = t2, P (s1, s2) ` P (t1, t2)

By choosing P (x, y) as x = y, s1 as w · e, s2 as e, t1 as w, and t2 as e. The following

is also an axiom,

Axiom
w · e = w, e = e, w · e = e ` w = e

, which is the same as

Axiom
w · e = w, w · e = e, e = e ` w = e

�

3. For each of the following informal requirement descriptions, write a formal specifi-

cation in the form of “{pre} y := ? {post}” where y is a single variable or a list of

variables that may be changed by the program. (10 %)

(a) The input is an array A of size n. The output d is 1 if all elements of A are

distinct; otherwise, the output d is 0.

Solution. (Ming-Hsien Tsai)

Assume size is a function which counts the size of a given array. We can define

the predicate distinct.

distinct , ∀i∀j(1 ≤ i ≤ n ∧ 1 ≤ j ≤ n ∧ i 6= j → A[i] 6= A[j])

The specification would be:

{size(A) = n} d := ? {(distinct ∧ d = 1) ∨ (¬distinct ∧ d = 0)} �

2



(b) The inputs are two sorted arrays A and B of sizes m and n respectively.

Assuming that A and B have common elements, the output x is the smallest

common element of A and B.

Solution. (Ming-Hsien Tsai)

Assume size is a function which counts the size of a given array. We can define

two predicates as follows.

in(x, A) , ∃i(1 ≤ i ≤ size(A) ∧ A[i] = x)

common(A, B) , ∃x(in(x, A) ∧ in(x, B))

The specification would be:

{size(A) = m ∧ size(B) = n ∧ common(A, B)} x := ? {in(x, A) ∧ in(x, B) ∧
∀y(in(y, A) ∧ in(y, B) → x <= y)} �

4. Prove the (partial) correctness of the following program. (20 %)

{(x = n) ∧ (n ≥ 0)}
S1: y := 0;

S2: while x > 0 do

S3: y := y + (2x− 1);

S4: x := x− 1

od

{y = n2}

Solution. (Ming-Hsien Tsai)

A

pred. calculus + algebra

x ≥ 0 ∧ y = n2 − x2 ∧ ¬(x > 0) → y = n2

WP
{x = n ∧ n ≥ 0} S1; S2 {y = n2}

A:

C
Assign

{x ≥ 0 ∧ 0 = n2 − x2} S1 {x ≥ 0 ∧ y = n2 − x2}
SP

{x = n ∧ n ≥ 0} S1 {x ≥ 0 ∧ y = n2 − x2} B
Sequence

{x = n ∧ n ≥ 0} S1; S2 {x ≥ 0 ∧ y = n2 − x2 ∧ ¬(x > 0)}

B:

3



D
Assign

{x− 1 ≥ 0 ∧ y = n2 − (x− 1)2} S4 {x ≥ 0 ∧ y = n2 − x2}
Sequence

{x ≥ 0 ∧ y = n2 − x2 ∧ x > 0} S3; S4 {x ≥ 0 ∧ y = n2 − x2}
While

{x ≥ 0 ∧ y = n2 − x2} S2 {x ≥ 0 ∧ y = n2 − x2 ∧ ¬(x > 0)}

C:

pred. calculus + algebra

x = n ∧ n ≥ 0 → x ≥ 0 ∧ 0 = n2 − x2

D:

E
Assign

{x− 1 ≥ 0 ∧ y + (2x− 1) = n2 − (x− 1)2} S3 {x− 1 ≥ 0 ∧ y = n2 − (x− 1)2}
{x ≥ 0 ∧ y = n2 − x2 ∧ x > 0} S3 {x− 1 ≥ 0 ∧ y = n2 − (x− 1)2}

E:

pred. calculus + algebra

x ≥ 0 ∧ y = n2 − x2 ∧ x > 0 → x− 1 ≥ 0 ∧ y + (2x− 1) = n2 − (x− 1)2

�

5. Describe as complete as possible in words what the following UML diagram is

specifying: (10 %)

4



Solution. (Chi-Jian Luo)

• Builder :

– specifies an abstract interface for creating parts of a Product object.

– includes an abstract method BuildPart().

• ConcreteBuilderA and ConcreteBuilderB :

– constructs and assembles parts of the product by implementing the Builder

interface.

– defines and keeps track of the representation it creates.

– provides an interface for retrieving the product.

– includes two methods BuildPart() and GetResult().

• Director :

– constructs an object using the Builder interface.

– includes a method Construct().

• ProductA and ProductB :

– represents the complex object under construction. ConcreteBuilder builds

the product’s internal representation and defines the process by which it’s

assembled.

– includes classes that define the constituent parts, including interfaces for

assembling the parts into the final result.

• Aggregation builder :

– each Director has a Builder.

– when a Director is destroyed, the Builder may continue to exist.

• Generalization between Builder and ConcreteBuilder :

– each ConcreteBuilder has all methods of the Builder.

– the methods must be implemented.

• Denendency between ConcreteBuilder and Product :

– a change to the definition of Product will result in a change to Concrete-

Builder.

�

6. Suppose you are designing a programmable roving robot. The robot has the fol-

lowing classes for its sensor and controller:

5



• GPS: a Global Positioning System class which supports the method locate

(double & longitude, double & latitude).

• Stepper: a robot mobility unit which supports the method move (double &

dx, double & dy).

• Arm: a robotic arm which supports the methods retrieve (void) and deliver

(void).

Suppose the class Robot has the following definition:

class Robot {

public:

GPS gps;

Stepper stepper;

Arm arm;

...

};

Your goal is to define its programmable interface so that the robot can follow in-

structions programmed by users. Answer the following questions by writing pseudo

C++ or Java code.

(a) Please use the Command pattern to define the class hierarchy and all classes

that support the following instructions: (5 %)

• GOTO X, Y: goes to the absolute location (X, Y).

• GET: extends its arm to retrieve item(s).

• PUT: extends its arm to deliver item(s).

Solution.

class Command {

public:

virtual void Execute () = 0;

protected:

virtual Command ();

};

class GotoCommand : public Command {

public:

6



GotoCommand (GPS *gps, Stepper *stepper, int x, int y);

virtual void Execute ();

private:

GPS *_gps;

Stepper *_stepper;

int _x, _y;

};

class GetCommand : public Command {

public:

Get (Arm *arm);

virtual void Execute ();

private:

Arm *_arm;

};

class PutCommand : public Command {

public:

Put (Arm arm);

virtual void Execute ();

private:

Arm *_arm;

};

�

(b) Suppose we would like the robot to accept a sequence of instructions. How

would you modify your design? (5 %)

Solution. Use macro commands.

class MacroCommand : public Command {

public:

MacroCommand ();

virtual ~MacroCommand ();

virtual void Add (Command *);

virtual void Remove (Command *);

virtual void Execute ();

7



private:

List<Command *> *_cmds;

};

�

(c) After programming the robot a while, we realize macro instructions such as

GET X, Y and PUT X, Y are very useful. How would you add them in your

design? (5 %)

Solution.

class PosGetCommand : public MacroCommand {

public:

PosGetCommand (GPS *gps, Stepper *stepper, Arm *arm,

int x, int y) {

GotoCommand goto (gps, stepper, x, y);

GetCommand get (arm);

Add (&goto);

Add (&get);

}

};

class PosPutCommand : public MacroCommand {

public:

PosPutCommand (GPS *gps, Stepper *stepper, Arm *arm,

int x, int y) {

GotoCommand goto (gps, stepper, x, y);

PutCommand put (arm);

Add (&goto);

Add (&put);

}

};

�

(d) Consider the following sequence of instructions: GET 0.0, 0.0, PUT 1.0,

1.0, GET 0.0, 0.0, PUT 2.0, 2.0. Clearly, it is more efficient if the robot

retrieves all items at once. That is, it executes the following instructions in-

stead: GET 0.0, 0.0, GET 0.0, 0.0, PUT 1.0, 1.0, PUT 2.0, 2.0. Which

8



design pattern would you use to make it smarter? Please modify your design

properly. (5 %)

Solution. Use Chain of Responsibility.

class TaskHandler {

public:

TaskHandler (TaskHandler *s) : _successor (s) { }

virtual void HandleTask () {

if (_successor) { _successor->HandleTask (); }

}

private:

TaskHandler *_successor;

};

class GotoCommand : public Command, public TaskHandler {

public:

GotoCommand (GPS *gps, Stepper *stepper, int x, int y,

TaskHandler *s);

virtual void Execute ();

...

};

�

7. A simplistic car consists of an engine, a steering wheel, a brake, and wheels. Suppose

you are designing a car controller which can be used in Ford Anglia of years 1962

and 1963.

(a) Among Abstract Factory, Builder, Factory Method, and Prototype patterns,

which one would you choose in your design? Please explain your design decision

in English or Chinese. (5 %)

Solution. Pick any one of Abstract Factory, Builder, Factory Method, and

Prototype patterns with any explanation. �

(b) Please realize your design choice in pseudo C++ or Java code. (5 %)

Solution. Implement your choice properly. �

(c) Since there can be at most four wheels in a car, please modify your code to

ensure others would not create more wheels unwillingly. (5 %)

Solution. Use Singleton on wheels.

9



class Wheel {

public:

static Wheel *Instance () {

if (counter > 0) {

--counter;

return new Wheel ();

}

}

protected:

Wheel ();

private:

static int counter;

};

int Wheel::counter = 4;

�

Appendix

• System LK: Axioms for Equality

Let t, s1, · · · , sn, t1, · · · , tn be arbitrary terms.

` t = t

For every n-ary function f ,

s1 = t1, · · · , sn = tn ` f(s1, · · · , sn) = f(t1, · · · , tn)

For every n-ary predicate P (including =),

s1 = t1, · · · , sn = tn, P (s1, · · · , sn) ` P (t1, · · · , tn)

Note: The = sign is part of the object language, not a meta symbol.

10


