First-Order Logic

(Based on [Gallier 1986], [Goubault-Larrecq and
Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Development Methods, Fall 2009: First-Order Logic — 1/31



Introduction

Logic concerns mainly two concepts: and
(of truth from assumed truth).

symbolic approaches logic by rules for
manipulating symbols:
rules: for writing statements (or formulae).

rules: for giving meanings (truth values) to
statements.

rules: for obtaining true statements from
other true statements.

We shall introduce two main branches of formal logic:
and

The following slides cover

IM\@%NTU

iy
et

Software Development Methods, Fall 2009: First-Order Logic — 2/31



Predicates

A IS a “parameterized” statement that, when
supplied with actual arguments, is either or
such as the following:

Leslie is a teacher.
Chris is a teacher.
Leslie is a pop singer.
Chris Is a pop singer.

Like propositions, simplest (atomic) predicates may be
combined to form compound predicates.

“‘ NTU Software Development Methods, Fall 2009: First-Order Logic — 3/31



Inferences

We are given the following assumptions:

person, the person is not a teacher
the person is not rich.

person, if the person is a pop singer,
the person is rich.

We wish to conclude the following:

person, it the person is a teacher, the
person is not a pop singer.

Agaiwan ¢

IM\@%NTU

S Software Development Methods, Fall 2009: First-Order Logic — 4/31



Symbolic Predicates

Like propositions, predicates are represented by
symbols.

® p(z): x IS a teacher.

® g(x): z IS rich.

® r(y): y IS a pop singer.

Compound predicates can be expressed:

@ Forall x, r(z) — ¢(x): For any person, if the person is
a pop singer, then the person is rich.

@ Forally, ply) — —r(y): For any person, if the person
IS a teacher, then the person is not a pop singer.

Al
IM 2% NTU Software Development Methods, Fall 2009: First-Order Logic — 5/31



Symbolic Inferences

We are given the following assumptions:
For all z, —p(x) VvV —q(x).
For all x,r(z) — q(x).

We wish to conclude the following:
For all z,p(x) — —r(x).

To check the correctness of the inference above, we
ask:

IS
valid?

NTU Software Development Methods, Fall 2009: First-Order Logic — 6/31



First-Order Logic: Syntax

Logical symbols:
A countable set V' of L TL,Y, 2,

(operators): —, A, V, —, <, L,V
(for all), 3 (there exists);

Auxiliary symbols: “(”, )".
Non-logical symbols:

A countable set of with associated
ranks (arities);
A countable set of :

A countable set of with associated
ranks (arities);

We refer to a first-order language as Language L, where
__ Listhe set of non-logical symbols (e.g., {+,0,1,<}).

Software Development Methods, Fall 2009: First-Order Logic — 7/31



First-Order Logic: Syntax (cont.)

Terms:
Every constant and every variable is a term.

If t1,t0,---,t; are terms and f Is a k-ary function
symbol (k > 0), then f(t,to,---,t;) IS @ term.

formulae:

Every predicate symbol of 0-arity Is an atomic
formula and so Is L.

If t1,t2,-- -, 1, are terms and p is a k-ary predicate
symbol (k > 0), then p(tq, o, -+, 1) IS @an atomic
formula.

For example, consider Language {+,0, 1, <}.
0, z,z+ 1, x + (z + 1), etc. are terms.
0<1,z<(x+1),etc. are atomic formulae.

A Calwan
& WY
¥y A
£ A

WN(E
IM m*f NTU Software Development Methods, Fall 2009: First-Order Logic — 8/31



First-Order Logic: Syntax (cont.)

Formulae:
Every atomic formula is a formula.

If A and B are formulae, then so are , ,
, . and

If 2 IS a variable and A is a formula, then so are
and

First-order logic with equality includes equality (=) as
an additional logical symbol, which behaves like a
predicate symbol.

Example formulae in Language {+,0,1, <}:
0<z)V(r<l)
Ve(Jy(x +y =0))

Software Development Methods, Fall 2009: First-Order Logic — 9/31



First-Order Logic: Syntax (cont.)

We may give the logical connectives different binding
powers, or , to avoid excessive
parentheses, usually in this order:

—|7 {\v/7 3}7 {/\7 \/}7 _>7 .

For example, (A A B) — C becomes AN B — C.

Common Abbreviations:
r=y=zMeansr =y ANy = z.
p — g — r means p — (¢ — r). Implication associates
to the right, so do other logical symbols.

Va,y,zA means Vx(Vy(VzA)).

Software Development Methods, Fall 2009: First-Order Logic — 10/31



Free and Bound Variables

In a formula VzA (or 3z A), the variable z Is by the
guantifier v (or 3).

A variable I1s one that is not bound.

The same variable may have both a free and a bound
occurrence.

For example, consider

(Ve(R(z,y) — P(x)) AVy(—R(z,y) A VeP(x))).

The underlined occurrences of x and y are free, while
others are bound.

A formula is - also called a f it does
not contain a free variable.

AP alwan g0
03 3%

W[E |
IM mﬁ NTU Software Development Methods, Fall 2009: First-Order Logic — 11/31



Free Variables Formally Defined

For a term ¢, the set F'V(t) of free variables of ¢ is defined
iInductively as follows:

FV(x) = {z}, for a variable z;
FV(c) =10, for a contant c;

FV(f(ti,te, -, tn)) = FV(t1) UFV(ta)U---UFV(t,), for
an n-ary function f applied to n terms t1,¢9, - -, t,.

"
1= Nay
- %N
5

Ay

=1

3 |

IM S NTU Software Development Methods, Fall 2009: First-Order Logic — 12/31



Free Variables Formally Defined (cont.)

For a formula A, the set F'V(A) of free variables of A Is
defined inductively as follows:

FV(P(t1,to, -+ ,ty)) = FV(t1) U FV(ts) U---U FV (t,), for
an n-ary predicate P applied to n terms tq,t9, -, tn;

FV(tl = ) = FV(tl) U FV(tQ);

FV(-B) = FV(B);
FV(BxC)=FV(B)UFV(C),where x € {A,V,—, < };
FV(L)=0;

FV(VxB) = FV(B) — {z};

FV(dxB) = FV(B) — {x}.

Ve’ NTU Software Development Methods, Fall 2009: First-Order Logic — 13/31



Bound Variables Formally Defined

For a formula A, the set BV (A) of bound variables in A is
defined inductively as follows:

BV (P(ty,ts,---,t,)) = 0, for an n-ary predicate P applied
tonterms tq,to, -, ty;

BV(t1 — ¢ ) = ();
BV(-B) = BV(B);
BV (B« (C) = BV(B)UBV(C),where « € {A\,V,—,<};
BV (1) =10;
BV (VxB) = BV (B) U {z};
BV (3zB) = BV(B) U {z}.

\
1 |
i
H
X/

IM 5% NTU Software Development Methods, Fall 2009: First-Order Logic — 14/31



Substitutions

Let ¢t be aterm and A a formula.

The result of substituting ¢ for a free variable z In A Is
denoted by Alt/x].

Consider A = Va(P(x )—>Q(x f())).
When ¢ = g(y), [t/y] Vo (P(r) — Q(z, f(g ( )))-
For any ¢, Alt/x] = Vz(P(x) — Q(x, f(y))) = A, since

there Is no free occurrence of x In A.

A substitution Is If no free variable of + would
become bound after the substitution.

For example, when t = g(z,y), Alt/y] IS not admissible,
as the free variable = of +t would become bound.

IM “J“ 'NTU

Software Development Methods, Fall 2009: First-Order Logic — 15/31



Substitutions Formally Defined

Let s and ¢ be terms. The result of substituting ¢ in s for a
variable z, denoted s[t/z], Is defined inductively as follows:

zlt/x] =t;
y[t/x] =y, for a variable y that Is not z;

c[t/x] = ¢, for a contant ¢;

[t ta, - tn)[t/a] = f(ta[t/x], talt /], - - -, tp[t/x]), TOr @n
n-ary function f applied to n terms ¢q,t9,- -, t,.

Pty
oNay 0
‘Jf‘," .'
- NN
A
1 |
=

II\/I““’Q NTU Software Development Methods, Fall 2009: First-Order Logic — 16/31



Substitutions Formally Defined (cont.)

For a formula A, Aft/z] Iis defined inductively as follows:

P(ty,to, -, tp)[t/x] = P(t1[t/x], to[t/x], - - -, tp[t/x]), fOr @an
n-ary predicate P applied to n terms t1,ts,-- -, tp;

(t1 = t2)[t/x] = (Llt/x] = ta2[t/x]);

(—=B)[t/x] = ~Blt/x];

(B C)[t/x] = (B[t/x] « C[t/x]), where x € {A,V,—, —};
Lt/x] = 1;

osolw
o ‘-a‘\
Fs,
&)

£ 1

:%\ [ i‘
|\ f
IM Nt
—

VxB)|t
YyB)|t
dzB)|t

)

(
(
(
(Fy

Sy

an g%
"'/, N
\-..;\

NTU

/T
e
o
it/

2] 8 8

3

Software Development Methods, Fall 2009: First-Order Logic — 17/31



First-Order Structures

A first-order structure M Is a pair , Where
M (a non-empty set) is the of the structure,
and
I1s the , that assigns functions
and predicates over M to the function and predicate
symbols.

An interpretation may be represented by simply listing
the functions and predicates.

For instance, (7, {+,,0}) Is a structure for the
language {+,0}. The subscripts are omitted, as
(Z,{+,0}), when no confusion may arise.

Agaiwan ¢
Fs =%

WNEl
IM mf NTU Software Development Methods, Fall 2009: First-Order Logic — 18/31



Semantics of First-Order Logic

Since a formula may contain free variables, its truth
value depends on the specific values that are assigned
to these variables.

Given a first-order language and a structure M = (M, I),
an IS a function from the set of variables to

M.

The structure M along with an assignment s determines
the truth value of a formula A, denoted as A, |s|.

For example, (z 4+ 0 = 7)(z (4 oy := 1] evaluates to 7.

Ji
IM ‘,ﬁﬁ NTU Software Development Methods, Fall 2009: First-Order Logic — 19/31



Semantics of First-Order Logic (cont.)

We say M, s = Awhen Ay [s]is T (true) and M, s = A
otherwise.

Alternatively, = may be defined as follows (propositional
part is as in propositional logic):
M ;s =VrA <— M,slz:=m|E A forallme M.

M,s =EdrA <— M,slx:=m]E A forsomem e M.

where s[z := m] denotes an updated assignment s’ from
s such that s'(y) = s(y) for y £ x and s'(z) = m.

For example, (Z,{+,0}),s & Vz(x + 0 = z) holds, since
(Z,{+,0}),slr :==m]=Ez+0==xforallme Z.

IM\@“NTU

Py 3o
s

Software Development Methods, Fall 2009: First-Order Logic — 20/31



Satisfiability and Validity

A formula A is If there Is an assignment
s such that M, s = A.
A formula A is ,denoted M = A, If M, s = A

for every assignment s.
For instance, Vz(z +0 =) Isvalid in (Z,{+,0}).

M is called a of Aif Aisvalid in M.
A formula A iIs If it Is valid In every structure,
denoted  A.

Tip,
oNay 0
)\l\ 04,‘," h
- NN
A
1 |
=

|M"'::’ta‘,,knrr‘,t\.¢f.f NTU Software Development Methods, Fall 2009: First-Order Logic — 21/31



Relating the Quantifiers

Lemma.
— V1A — dr—A

— —drA — VA
— V1A «— —dr—A
— Jr A «— —Vr—A

Note: These equivalences show that, with the help of
negation, either quantifier can be expressed by the other.

.
A - Nay oy
- NN
A
1 |
H |

IM S NTU Software Development Methods, Fall 2009: First-Order Logic — 22/31



The Sequent Calculus: Quantifier Rules

LAt x] F A 'FAly/x|, A
(VL) (VR)

I'"'VxAF A ['-VzA A

I'NAly/z| H A I'=Alt/z|, A
y/x] AL /] aR)

[I'dxAF A ['-dzA, A

In the rules above, we assume that all substitutions are
admissible, y Is not free In A, and y does not occur free in
the lower sequent.

e NTU Software Development Methods, Fall 2009: First-Order Logic — 23/31



Soundness and Completeness

The quantifier rules, together with the structural rules,
logical rules, and axioms introduced in Part | (Propositional
Logic), constitute Gentzen’s System LK.

Theorem.
System LK IS ,l.e., ifasequentI' - A s provable
In LK, thenT"' - A Is valid.

Theorem.
System LK IS ,L.e., IfasequentI' - A is valid,
thenI' - A is provable in LK.

Note: assume In the logic language.

W[l
IM 2 NTU

Tl M
N

Software Development Methods, Fall 2009: First-Order Logic — 24/31



Compactness

PN o Ny iy
oot S ey, W
P
§E ‘ L
£ 4 |
¢ |
iz s
A ’ ~F
W, &7 4
N P
SR
Fanp g F

Theorem.

For any (possibly infinite) set I of formulae, If

flable.

of I" Is satisflable then I' Is satis-

Software Development Methods, Fall 2009: First-Order Logic — 25/31



Consistency

Recall that a set I" of formulae Is If there exists
some formula B such that the sequent I" - B Is not
provable. Otherwise, I' is

Lemma.

For System LK, a set I' of formulae is inconsistent if
and only if there is some formula A such that both "+ A
and I' - - A are provable.

Theorem.
For System LK, a set I of formulae is satisfiable if and

only if T" Is consistent.

s
IM mﬁ NTU Software Development Methods, Fall 2009: First-Order Logic — 26/31



he Sequent Calculus: Axioms for Equality

Let¢,s1,---,sn,t1,- -, t, D€ arbitrary terms.

—t=t1

For every n-ary function f,

Slztla7Sn:tn|_f(31775n):f(t177tn)

For every n-ary predicate P (including =),

S1 =11, , 80 =tn, P(s1,--+,8pn) F P(t1, -, tn)

Note: The = sign Is part of the object language, not a meta
symbol.

W2
IM m*f NTU Software Development Methods, Fall 2009: First-Order Logic — 27/31



heory

Assume a fixed first-order language.
A set S of sentences is closed under provabillity if

S={A| Alis asentence and S+ A Is provable}.

A set of sentences is called a If It IS closed under
provability.

A theory Is typically represented by a smaller set of
sentences, called its

Wy
IM mf NTU Software Development Methods, Fall 2009: First-Order Logic — 28/31



Group as a First-Order Theory

The set of non-logical symbols is {-, e}, where - is a
binary function (operation) and ¢ Iis a constant (the

identity).
AXxioms:
Va,b,c(a-(b-c)=(a-b)-c) (Associativity)
Va(a-e=e-a=a) (Identity)
Va(3b(a-b=b-a =e)) (Inverse)
and are models of the theory.
Additional axiom for Abelian groups:
Va,b(a-b=">-a) (Commutativity)

|M\@%NTU

iy s
e

Software Development Methods, Fall 2009: First-Order Logic — 29/31



Quantifier Rules of Natural Deduction

' Aly/x] ['-VzA VE
trvea D TR
'+ Alt/x] an I'-dxA T, Aly/x|+ B EE)
['FdzA I'+B

In the rules above, we assume that all substitutions are
admissible and y does not occur free in T" or A.

il
A "'044:'.-
- NN
A
1 |
H |

II\/I“‘ NTU Software Development Methods, Fall 2009: First-Order Logic — 30/31



Equality Rules of Natural Deduction

Let ¢,¢1,t2 De arbitrary terms; again, assume all
substitutions are admissible.

(: [) F|—t1:t2 F|—A[t1/m]
I'rt=t [ - Alty/1]

(= E)

Note: The = sign is part of the object language, not a meta
symbol.

II\/I““’Q NTU Software Development Methods, Fall 2009: First-Order Logic — 31/31



	Introduction
	Predicates
	Inferences
	Symbolic Predicates
	Symbolic Inferences
	First-Order Logic: Syntax
	First-Order Logic: Syntax (cont.)
	First-Order Logic: Syntax (cont.)
	First-Order Logic: Syntax (cont.)
	Free and Bound Variables
	Free Variables Formally Defined
	Free Variables Formally Defined (cont.)
	Bound Variables Formally Defined
	Substitutions
	Substitutions Formally Defined
	Substitutions Formally Defined (cont.)
	First-Order Structures
	Semantics of First-Order Logic
	Semantics of First-Order Logic (cont.)
	Satisfiability and Validity
	Relating the Quantifiers
	The Sequent Calculus: Quantifier Rules
	Soundness and Completeness
	Compactness
	Consistency
	The Sequent Calculus: Axioms for Equality
	Theory
	Group as a First-Order Theory
	Quantifier Rules of Natural Deduction
	Equality Rules of Natural Deduction

