
IM NTU

First-Order Logic
(Based on [Gallier 1986], [Goubault-Larrecq and

Mackie 1997], and [Huth and Ryan 2004])

Yih-Kuen Tsay

Dept. of Information Management

National Taiwan University

Software Development Methods, Fall 2009: First-Order Logic – 1/31



IM NTU

Introduction

Logic concerns mainly two concepts: truth and
provability (of truth from assumed truth).

Formal (symbolic) logic approaches logic by rules for
manipulating symbols:

Syntax rules: for writing statements (or formulae).
Semantic rules: for giving meanings (truth values) to
statements.
Inference rules: for obtaining true statements from
other true statements.

We shall introduce two main branches of formal logic:
propositional logic and first-order logic.

The following slides cover first-order logic.

Software Development Methods, Fall 2009: First-Order Logic – 2/31



IM NTU

Predicates

A predicate is a “parameterized” statement that, when
supplied with actual arguments, is either true or false
such as the following:

Leslie is a teacher.
Chris is a teacher.
Leslie is a pop singer.
Chris is a pop singer.

Like propositions, simplest (atomic) predicates may be
combined to form compound predicates.

Software Development Methods, Fall 2009: First-Order Logic – 3/31



IM NTU

Inferences

We are given the following assumptions:
For any person, either the person is not a teacher or
the person is not rich.
For any person, if the person is a pop singer, then
the person is rich.

We wish to conclude the following:
For any person, if the person is a teacher, then the
person is not a pop singer.

Software Development Methods, Fall 2009: First-Order Logic – 4/31



IM NTU

Symbolic Predicates

Like propositions, predicates are represented by
symbols.

p(x): x is a teacher.
q(x): x is rich.
r(y): y is a pop singer.

Compound predicates can be expressed:
For all x, r(x) → q(x): For any person, if the person is
a pop singer, then the person is rich.
For all y, p(y) → ¬r(y): For any person, if the person
is a teacher, then the person is not a pop singer.

Software Development Methods, Fall 2009: First-Order Logic – 5/31



IM NTU

Symbolic Inferences

We are given the following assumptions:
For all x,¬p(x) ∨ ¬q(x).
For all x, r(x) → q(x).

We wish to conclude the following:
For all x, p(x) → ¬r(x).

To check the correctness of the inference above, we
ask:
Is ((for all x,¬p(x) ∨ ¬q(x)) ∧ (for all x, r(x) → q(x))) →
(for all x, p(x) → ¬r(x)) valid?

Software Development Methods, Fall 2009: First-Order Logic – 6/31



IM NTU

First-Order Logic: Syntax

Logical symbols:
A countable set V of variables: x, y, z, . . .;
Logical connectives (operators): ¬, ∧, ∨, →, ↔, ⊥ , ∀
(for all), ∃ (there exists);
Auxiliary symbols: “(”, “)”.

Non-logical symbols:
A countable set of function symbols with associated
ranks (arities);
A countable set of constants;
A countable set of predicate symbols with associated
ranks (arities);

We refer to a first-order language as Language L, where
L is the set of non-logical symbols (e.g., {+, 0, 1, <}).

Software Development Methods, Fall 2009: First-Order Logic – 7/31



IM NTU

First-Order Logic: Syntax (cont.)

Terms:
Every constant and every variable is a term.
If t1, t2, · · · , tk are terms and f is a k-ary function
symbol (k > 0), then f(t1, t2, · · · , tk) is a term.

Atomic formulae:
Every predicate symbol of 0-arity is an atomic
formula and so is ⊥.
If t1, t2, · · · , tk are terms and p is a k-ary predicate
symbol (k > 0), then p(t1, t2, · · · , tk) is an atomic
formula.

For example, consider Language {+, 0, 1, <}.
0, x, x + 1, x + (x + 1), etc. are terms.
0 < 1, x < (x + 1), etc. are atomic formulae.

Software Development Methods, Fall 2009: First-Order Logic – 8/31



IM NTU

First-Order Logic: Syntax (cont.)

Formulae:
Every atomic formula is a formula.
If A and B are formulae, then so are ¬A, (A ∧ B),
(A ∨ B), (A → B), and (A ↔ B).
If x is a variable and A is a formula, then so are ∀xA
and ∃xA.

First-order logic with equality includes equality (=) as
an additional logical symbol, which behaves like a
predicate symbol.

Example formulae in Language {+, 0, 1, <}:
(0 < x) ∨ (x < 1)

∀x(∃y(x + y = 0))

Software Development Methods, Fall 2009: First-Order Logic – 9/31



IM NTU

First-Order Logic: Syntax (cont.)

We may give the logical connectives different binding
powers, or precedences, to avoid excessive
parentheses, usually in this order:

¬, {∀,∃}, {∧,∨},→,↔ .

For example, (A ∧ B) → C becomes A ∧ B → C.

Common Abbreviations:
x = y = z means x = y ∧ y = z.
p → q → r means p → (q → r). Implication associates
to the right, so do other logical symbols.
∀x, y, zA means ∀x(∀y(∀zA)).

Software Development Methods, Fall 2009: First-Order Logic – 10/31



IM NTU

Free and Bound Variables

In a formula ∀xA (or ∃xA), the variable x is bound by the
quantifier ∀ (or ∃).

A free variable is one that is not bound.

The same variable may have both a free and a bound
occurrence.

For example, consider
(∀x(R(x, y) → P (x)) ∧ ∀y(¬R(x, y) ∧ ∀xP (x))).
The underlined occurrences of x and y are free, while
others are bound.

A formula is closed , also called a sentence, if it does
not contain a free variable.

Software Development Methods, Fall 2009: First-Order Logic – 11/31



IM NTU

Free Variables Formally Defined

For a term t, the set FV (t) of free variables of t is defined
inductively as follows:

FV (x) = {x}, for a variable x;

FV (c) = ∅, for a contant c;

FV (f(t1, t2, · · · , tn)) = FV (t1) ∪ FV (t2) ∪ · · · ∪ FV (tn), for
an n-ary function f applied to n terms t1, t2, · · · , tn.

Software Development Methods, Fall 2009: First-Order Logic – 12/31



IM NTU

Free Variables Formally Defined (cont.)

For a formula A, the set FV (A) of free variables of A is
defined inductively as follows:

FV (P (t1, t2, · · · , tn)) = FV (t1) ∪ FV (t2) ∪ · · · ∪ FV (tn), for
an n-ary predicate P applied to n terms t1, t2, · · · , tn;

FV (t1 = t2) = FV (t1) ∪ FV (t2);

FV (¬B) = FV (B);

FV (B ∗ C) = FV (B) ∪ FV (C), where ∗ ∈ {∧,∨,→,↔};

FV (⊥) = ∅;

FV (∀xB) = FV (B) − {x};

FV (∃xB) = FV (B) − {x}.

Software Development Methods, Fall 2009: First-Order Logic – 13/31



IM NTU

Bound Variables Formally Defined

For a formula A, the set BV (A) of bound variables in A is
defined inductively as follows:

BV (P (t1, t2, · · · , tn)) = ∅, for an n-ary predicate P applied
to n terms t1, t2, · · · , tn;

BV (t1 = t2) = ∅;

BV (¬B) = BV (B);

BV (B ∗ C) = BV (B) ∪ BV (C), where ∗ ∈ {∧,∨,→,↔};

BV (⊥) = ∅;

BV (∀xB) = BV (B) ∪ {x};

BV (∃xB) = BV (B) ∪ {x}.

Software Development Methods, Fall 2009: First-Order Logic – 14/31



IM NTU

Substitutions

Let t be a term and A a formula.

The result of substituting t for a free variable x in A is
denoted by A[t/x].

Consider A = ∀x(P (x) → Q(x, f(y))).
When t = g(y), A[t/y] = ∀x(P (x) → Q(x, f(g(y)))).
For any t, A[t/x] = ∀x(P (x) → Q(x, f(y))) = A, since
there is no free occurrence of x in A.

A substitution is admissible if no free variable of t would
become bound after the substitution.

For example, when t = g(x, y), A[t/y] is not admissible,
as the free variable x of t would become bound.

Software Development Methods, Fall 2009: First-Order Logic – 15/31



IM NTU

Substitutions Formally Defined

Let s and t be terms. The result of substituting t in s for a
variable x, denoted s[t/x], is defined inductively as follows:

x[t/x] = t;

y[t/x] = y, for a variable y that is not x;

c[t/x] = c, for a contant c;

f(t1, t2, · · · , tn)[t/x] = f(t1[t/x], t2[t/x], · · · , tn[t/x]), for an
n-ary function f applied to n terms t1, t2, · · · , tn.

Software Development Methods, Fall 2009: First-Order Logic – 16/31



IM NTU

Substitutions Formally Defined (cont.)

For a formula A, A[t/x] is defined inductively as follows:

P (t1, t2, · · · , tn)[t/x] = P (t1[t/x], t2[t/x], · · · , tn[t/x]), for an
n-ary predicate P applied to n terms t1, t2, · · · , tn;

(t1 = t2)[t/x] = (t1[t/x] = t2[t/x]);

(¬B)[t/x] = ¬B[t/x];

(B ∗ C)[t/x] = (B[t/x] ∗ C[t/x]), where ∗ ∈ {∧,∨,→,↔};

⊥[t/x] = ⊥;

(∀xB)[t/x] = (∀xB);

(∀yB)[t/x] = (∀yB[t/x]), if variable y is not x;

(∃xB)[t/x] = (∃xB);

(∃yB)[t/x] = (∃yB[t/x]), if variable y is not x;

Software Development Methods, Fall 2009: First-Order Logic – 17/31



IM NTU

First-Order Structures

A first-order structure M is a pair (M, I), where
M (a non-empty set) is the domain of the structure,
and
I is the interpretation function, that assigns functions
and predicates over M to the function and predicate
symbols.

An interpretation may be represented by simply listing
the functions and predicates.

For instance, (Z, {+Z , 0Z}) is a structure for the
language {+, 0}. The subscripts are omitted, as
(Z, {+, 0}), when no confusion may arise.

Software Development Methods, Fall 2009: First-Order Logic – 18/31



IM NTU

Semantics of First-Order Logic

Since a formula may contain free variables, its truth
value depends on the specific values that are assigned
to these variables.

Given a first-order language and a structure M = (M, I),
an assignment is a function from the set of variables to
M .

The structure M along with an assignment s determines
the truth value of a formula A, denoted as AM[s].

For example, (x + 0 = x)(Z,{+,0})[x := 1] evaluates to T .

Software Development Methods, Fall 2009: First-Order Logic – 19/31



IM NTU

Semantics of First-Order Logic (cont.)

We say M, s |= A when AM[s] is T (true) and M, s 6|= A
otherwise.

Alternatively, |= may be defined as follows (propositional
part is as in propositional logic):

M, s |= ∀xA ⇐⇒ M, s[x := m] |= A for all m ∈ M.

M, s |= ∃xA ⇐⇒ M, s[x := m] |= A for some m ∈ M.

where s[x := m] denotes an updated assignment s′ from
s such that s′(y) = s(y) for y 6= x and s′(x) = m.

For example, (Z, {+, 0}), s |= ∀x(x + 0 = x) holds, since
(Z, {+, 0}), s[x := m] |= x + 0 = x for all m ∈ Z.

Software Development Methods, Fall 2009: First-Order Logic – 20/31



IM NTU

Satisfiability and Validity

A formula A is satisfiable in M if there is an assignment
s such that M, s |= A.

A formula A is valid in M, denoted M |= A, if M, s |= A
for every assignment s.

For instance, ∀x(x + 0 = x) is valid in (Z, {+, 0}).

M is called a model of A if A is valid in M.

A formula A is valid if it is valid in every structure,
denoted |= A.

Software Development Methods, Fall 2009: First-Order Logic – 21/31



IM NTU

Relating the Quantifiers

Lemma.

|= ¬∀xA ↔ ∃x¬A

|= ¬∃xA ↔ ∀x¬A

|= ∀xA ↔ ¬∃x¬A

|= ∃xA ↔ ¬∀x¬A

Note: These equivalences show that, with the help of
negation, either quantifier can be expressed by the other.

Software Development Methods, Fall 2009: First-Order Logic – 22/31



IM NTU

The Sequent Calculus: Quantifier Rules

Γ, A[t/x] ⊢ ∆
(∀L)

Γ,∀xA ⊢ ∆

Γ ⊢ A[y/x],∆
(∀R)

Γ ⊢ ∀xA,∆

Γ, A[y/x] ⊢ ∆
(∃L)

Γ,∃xA ⊢ ∆

Γ ⊢ A[t/x],∆
(∃R)

Γ ⊢ ∃xA,∆

In the rules above, we assume that all substitutions are
admissible, y is not free in A, and y does not occur free in
the lower sequent.

Software Development Methods, Fall 2009: First-Order Logic – 23/31



IM NTU

Soundness and Completeness

The quantifier rules, together with the structural rules,
logical rules, and axioms introduced in Part I (Propositional
Logic), constitute Gentzen’s System LK.

Theorem.
System LK is sound , i.e., if a sequent Γ ⊢ ∆ is provable
in LK, then Γ ⊢ ∆ is valid.

Theorem.
System LK is complete, i.e., if a sequent Γ ⊢ ∆ is valid,
then Γ ⊢ ∆ is provable in LK.

Note: assume no equality in the logic language.

Software Development Methods, Fall 2009: First-Order Logic – 24/31



IM NTU

Compactness

Theorem.
For any (possibly infinite) set Γ of formulae, if every fi-
nite non-empty subset of Γ is satisfiable then Γ is satis-
fiable.

Software Development Methods, Fall 2009: First-Order Logic – 25/31



IM NTU

Consistency

Recall that a set Γ of formulae is consistent if there exists
some formula B such that the sequent Γ ⊢ B is not
provable. Otherwise, Γ is inconsistent .

Lemma.
For System LK, a set Γ of formulae is inconsistent if
and only if there is some formula A such that both Γ ⊢ A
and Γ ⊢ ¬A are provable.

Theorem.
For System LK, a set Γ of formulae is satisfiable if and
only if Γ is consistent .

Software Development Methods, Fall 2009: First-Order Logic – 26/31



IM NTU

The Sequent Calculus: Axioms for Equality

Let t, s1, · · · , sn, t1, · · · , tn be arbitrary terms.

⊢ t = t

For every n-ary function f ,

s1 = t1, · · · , sn = tn ⊢ f(s1, · · · , sn) = f(t1, · · · , tn)

For every n-ary predicate P (including =),

s1 = t1, · · · , sn = tn, P (s1, · · · , sn) ⊢ P (t1, · · · , tn)

Note: The = sign is part of the object language, not a meta
symbol.

Software Development Methods, Fall 2009: First-Order Logic – 27/31



IM NTU

Theory

Assume a fixed first-order language.

A set S of sentences is closed under provability if

S = {A | A is a sentence and S ⊢ A is provable}.

A set of sentences is called a theory if it is closed under
provability.

A theory is typically represented by a smaller set of
sentences, called its axioms.

Software Development Methods, Fall 2009: First-Order Logic – 28/31



IM NTU

Group as a First-Order Theory

The set of non-logical symbols is {·, e}, where · is a
binary function (operation) and e is a constant (the
identity).

Axioms:
∀a, b, c(a · (b · c) = (a · b) · c) (Associativity)
∀a(a · e = e · a = a) (Identity)
∀a(∃b(a · b = b · a = e)) (Inverse)

(Z, {+, 0}) and (Q \ {0}, {×, 1}) are models of the theory.

Additional axiom for Abelian groups:
∀a, b(a · b = b · a) (Commutativity)

Software Development Methods, Fall 2009: First-Order Logic – 29/31



IM NTU

Quantifier Rules of Natural Deduction

Γ ⊢ A[y/x]
(∀I)

Γ ⊢ ∀xA

Γ ⊢ ∀xA
(∀E)

Γ ⊢ A[t/x]

Γ ⊢ A[t/x]
(∃I)

Γ ⊢ ∃xA

Γ ⊢ ∃xA Γ, A[y/x] ⊢ B
(∃E)

Γ ⊢ B

In the rules above, we assume that all substitutions are
admissible and y does not occur free in Γ or A.

Software Development Methods, Fall 2009: First-Order Logic – 30/31



IM NTU

Equality Rules of Natural Deduction

Let t, t1, t2 be arbitrary terms; again, assume all
substitutions are admissible.

(= I)
Γ ⊢ t = t

Γ ⊢ t1 = t2 Γ ⊢ A[t1/x]
(= E)

Γ ⊢ A[t2/x]

Note: The = sign is part of the object language, not a meta
symbol.

Software Development Methods, Fall 2009: First-Order Logic – 31/31


	Introduction
	Predicates
	Inferences
	Symbolic Predicates
	Symbolic Inferences
	First-Order Logic: Syntax
	First-Order Logic: Syntax (cont.)
	First-Order Logic: Syntax (cont.)
	First-Order Logic: Syntax (cont.)
	Free and Bound Variables
	Free Variables Formally Defined
	Free Variables Formally Defined (cont.)
	Bound Variables Formally Defined
	Substitutions
	Substitutions Formally Defined
	Substitutions Formally Defined (cont.)
	First-Order Structures
	Semantics of First-Order Logic
	Semantics of First-Order Logic (cont.)
	Satisfiability and Validity
	Relating the Quantifiers
	The Sequent Calculus: Quantifier Rules
	Soundness and Completeness
	Compactness
	Consistency
	The Sequent Calculus: Axioms for Equality
	Theory
	Group as a First-Order Theory
	Quantifier Rules of Natural Deduction
	Equality Rules of Natural Deduction

