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Introduction

Logic concerns two concepts: truth and provability (of
truth from assumed truth).

Formal (symbolic) logic approaches logic by rules for
manipulating symbols:

Syntax rules: for writing statements (or formulae).
Inference rules: for obtaining true statements from
other true statements.

We shall introduce two main branches of formal logic:
propositional logic and first-order logic.

The following slides cover propositional logic.
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Propositions

A proposition is a statement that is either true or false
such as the following:

Leslie is a teacher.
Leslie is rich.
Leslie is a pop singer.

Simplest (atomic) propositions may be combined to
form compound propositions:

Leslie is not a teacher.
Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.
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Inferences

We are given the following assumptions:
Leslie is a teacher.
Either Leslie is not a teacher or Leslie is not rich.
If Leslie is a pop singer, then Leslie is rich.

We wish to conclude the following:
Leslie is not a pop singer.

The above process is an example of inference
(deduction). Is it correct?
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Symbolic Propositions

Propositions are represented by symbols, when only
their truth values are of concern.

P : Leslie is a teacher.
Q: Leslie is rich.
R: Leslie is a pop singer.

Compound propositions can then be more succinctly
written.

not P : Leslie is not a teacher.
not P or not Q: Either Leslie is not a teacher or Leslie
is not rich.
R implies Q: If Leslie is a pop singer, then Leslie is
rich.
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Symbolic Inferences

We are given the following assumptions:
P (Leslie is a teacher.)
not P or not Q (Either Leslie is not a teacher or Leslie
is not rich.)
R implies Q (If Leslie is a pop singer, then Leslie is
rich.)

We wish to conclude the following:
not R (Leslie is not a pop singer.)

Correctness of the inference may be checked by asking:
Is (P and (not P or not Q) and (R implies Q)) implies

(not R) a tautology (valid formula)?
Or, is (A and (not A or not B) and (C implies B))
implies (not C) a tautology (valid formula)?
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Propositional Logic: Syntax

Vocabulary:
A countable set P of proposition symbols (variables):
P,Q,R, . . . (also called atomic propositions);
Logical connectives (operators): ¬, ∧, ∨, →, and ↔
and sometimes the constant ⊥ (false);
Auxiliary symbols: “(”, “)”.

Propositional Formulae:
Any A ∈ P is a formula (and so is ⊥).
If A and B are formulae, then so are ¬A, (A ∧ B),
(A ∨ B), (A → B), and (A ↔ B).
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Propositional Logic: Semantics

The meanings of positional formulae may be
conveniently summarized by the truth table:

A B ¬A A ∧ B A ∨ B A → B A ↔ B

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

The meaning of ⊥ is always F (false).

There is an implicit inductive definition in the table. We
shall try to make this precise.
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Truth Assignment and Valuation

The semantics of propositional logic assigns a truth
function to each propositional formula.

Let BOOL be the set of truth values {T, F}.

A truth assignment (valuation) is a function from P (the
set of proposition symbols) to BOOL.

Let PROPS be the set of all propositional formulae.

A truth assignment v may be extended to a valuation
function v̂ from PROPS to BOOL as follows:
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Truth Assignment and Valuation (cont.)

v̂(⊥) = F

v̂(P ) = v(P ) for all P ∈ P

v̂(P ) = as defined by the table below, otherwise

v̂(A) v̂(B) v̂(¬A) v̂(A ∧ B) v̂(A ∨ B) v̂(A → B) v̂(A ↔ B)

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T
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Truth Assignment and Satisfaction

We say v |= A (v satisfies A) if v̂(A) = T and v 6|= A (v
falsifies A) if v̂(A) = F .

Alternatively, |= may be defined as follows:

v 6|= ⊥

v |= P ⇐⇒ v(P ) = T, for all P ∈ P

v |= ¬A ⇐⇒ v 6|= A (it is not the case that v |= A)

v |= A ∧ B ⇐⇒ v |= A and v |= B

v |= A ∨ B ⇐⇒ v |= A or v |= B

v |= A → B ⇐⇒ v 6|= A or v |= B

v |= A ↔ B ⇐⇒ (v |= A and v |= B)

or (v 6|= A and v 6|= B)
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Object vs. Meta Language

The language that we study is referred to as the object
language.

The language that we use to study the object language
is referred to as the meta language.

For example, not , and , and or that we used to define the
satisfaction relation |= are part of the meta language.
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Satisfiability

A proposition A is satisfiable if there exists an
assignment v such that v |= A.

v(P ) = F, v(Q) = T |= (P ∨ Q) ∧ (¬P ∨ ¬Q)

A proposition is unsatisfiable if no assignment satisfies
it.

(¬P ∨ Q) ∧ (¬P ∨ ¬Q) ∧ P is unsatisfiable.

The problem of determining whether a given proposition
is satisfiable is called the satisfiability problem.
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Tautology and Validity

A proposition A is a tautology if every assignment
satisfies A, written as |= A.

|= A ∨ ¬A

|= (A ∧ B) → (A ∨ B)

The problem of determining whether a given proposition
is a tautology is called the tautology problem.

A proposition is also said to be valid if it is a tautology.

So, the problem of determining whether a given
proposition is valid (a tautology) is also called the
validity problem.

Note: The notion of a tautology is restricted to propositional
logic. In first-order logic, we also speak of valid formulae.

Software Development Methods, Fall 2009: Propositional Logic – 14/33



IM NTU

Validity vs. Satisfiability

Theorem.
A proposition A is valid (a tautology) if and only if ¬A is
unsatisfiable.

So, there are two ways of proving that a proposition A is a
tautology:

A is satisfied by every truth assignment (or A cannot be
falsified by any truth assignment).

¬A is unsatisfiable.
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Semantic Entailment

Consider two sets of propositions Γ and ∆.

We say that v |= Γ (v satisfies Γ) if v |= B for every B ∈ Γ;
analogously for ∆.

We say that ∆ is a semantic consequence of Γ if every
assignment that satisfies Γ also satisfies ∆, written as
Γ |= ∆.

A,A → B |= A,B

A → B,¬B |= ¬A

We also say that Γ semantically entails ∆ when Γ |= ∆.
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Relating the Logical Connectives

Lemma.

|= (A ↔ B) ↔ ((A → B) ∧ (B → A))

|= (A → B) ↔ (¬A ∨ B)

|= (A ∨ B) ↔ ¬(¬A ∧ ¬B)

|= ⊥ ↔ (A ∧ ¬A)

Note: These equivalences imply that some connectives
could be dispensed with. We normally want a smaller set of
connectives when analyzing properties of the logic and a
larger set when actually using the logic.
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Normal Forms

A literal is an atomic proposition or its negation.

A propositional formula is in Conjunctive Normal Form
(CNF) if it is a conjunction of disjunctions of literals.

(P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q) ∧ P

(P ∨ Q ∨ ¬R) ∧ (¬P ∨ ¬Q ∨ R) ∧ (P ∨ ¬Q ∨ ¬R)

A propositional formula is in Disjunctive Normal Form
(DNF) if it is a disjunction of conjunctions of literals.

(P ∧ Q ∧ ¬R) ∨ (¬P ∧ ¬Q) ∨ P

(¬P ∧ ¬Q ∧ R) ∨ (P ∧ Q ∧ ¬R) ∨ (¬P ∧ Q ∧ R)

A propositional formula is in Negation Normal Form
(NNF) if negations occur only in literals.

CNF or DNF is also NNF (but not vice versa).
(P ∧¬Q)∧ (P ∨ (Q∧¬R)) in NNF, but not CNF or DNF.
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Falsification: Search for Counter Examples

To prove that “(A ∧ (¬A ∨ ¬B) ∧ (C → B)) → ¬C” is a
tautology, we may try to find a valuation that falsifies it.

In the attempt of falsification, we consider pairs of the form
(Γ,∆), where Γ is a list of propositions we try to make true
and ∆ a list of propositions we try to make false.

similar to the right branch

(〈A,¬A, C → B〉, 〈¬C〉)

(〈A,¬B, B〉, 〈¬C〉) (〈A,¬B〉, 〈¬C, C〉)

(〈A,¬B, C → B〉, 〈¬C〉)

(〈A,¬A ∨ ¬B, C → B〉, 〈¬C〉)

(〈A, (¬A ∨ ¬B) ∧ (C → B)〉, 〈¬C〉)

(〈A ∧ (¬A ∨ ¬B) ∧ (C → B)〉, 〈¬C〉)

(〈〉, 〈(A ∧ (¬A ∨ ¬B) ∧ (C → B)) → ¬C〉)

Note: read the above from bottom to top.
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Sequents

A (propositional) sequent is an expression of the form
Γ ⊢ ∆, where Γ = A1, A2, · · · , Am and ∆ = B1, B2, · · · , Bn

are finite (possibly empty) sequences of (propositional)
formulae.

In a sequent Γ ⊢ ∆, Γ is called the antecedent (also
context) and ∆ the consequent

Note: Many authors prefer to write a sequent as Γ −→ ∆ or
Γ =⇒ ∆, while reserving the symbol ⊢ for provability
(deducibility) in the proof (deduction) system under
consideration.
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Sequents (cont.)

A sequent A1, A2, · · · , Am ⊢ B1, B2, · · · , Bn is falsifiable if
there exists a valuation v such that
v |= (A1 ∧ A2 ∧ · · · ∧ Am) ∧ (¬B1 ∧ ¬B2 ∧ · · · ∧ ¬Bn).

A ∨ B ⊢ B is falsifiable, as
v(A) = T, v(B) = F |= (A ∨ B) ∧ ¬B.

A sequent A1, A2, · · · , Am ⊢ B1, B2, · · · , Bn is valid if, for
every valuation v,
v |= A1 ∧ A2 ∧ · · · ∧ Am → B1 ∨ B2 ∨ · · · ∨ Bn.

A ⊢ A,B is valid.
A,B ⊢ A ∧ B is valid.

A sequent is valid if and only if it is not falsifiable.
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The Sequent Calculus: Logical Rules (I)

Γ, A ⊢ ∆
(∧L1)

Γ, A ∧ B ⊢ ∆

Γ, B ⊢ ∆
(∧L2)

Γ, A ∧ B ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆
(∧R)

Γ ⊢ A ∧ B,∆

Γ, A ⊢ ∆ Γ, B ⊢ ∆
(∨L)

Γ, A ∨ B ⊢ ∆

Γ ⊢ A,∆
(∨R1)

Γ ⊢ A ∨ B,∆

Γ ⊢ B,∆
(∨R2)

Γ ⊢ A ∨ B,∆

In an inference rule, the one or two upper sequents (above
the horizontal line) are called the premises and the lower
sequent is called the conclusion.
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The Sequent Calculus: Logical Rules (I’)

Some authors have taken the following alternatives:

Γ, A,B ⊢ ∆
(∧L)

Γ, A ∧ B ⊢ ∆

Γ ⊢ A,∆ Γ ⊢ B,∆
(∧R)

Γ ⊢ A ∧ B,∆

Γ, A ⊢ ∆ Γ, B ⊢ ∆
(∨L)

Γ, A ∨ B ⊢ ∆

Γ ⊢ A,B,∆
(∨R)

Γ ⊢ A ∨ B,∆
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The Sequent Calculus: Logical Rules (II)

Γ ⊢ A,∆1 Γ, B ⊢ ∆2
(→ L)

Γ, A → B ⊢ ∆1,∆2

Γ, A ⊢ B,∆
(→ R)

Γ ⊢ A → B,∆

Γ ⊢ A,∆
(¬L)

Γ,¬A ⊢ ∆

Γ, A ⊢ ∆
(¬R)

Γ ⊢ ¬A,∆
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The Sequent Calculus: Axioms

A ⊢ A

All sequents of the form A ⊢ A are immediately provable. It
is convenient to extend this to the following:

Γ, A ⊢ A,∆

In other words, Γ ⊢ ∆ is an axiom if Γ and ∆ contain some
common proposition.

Note: For a sequent Γ ⊢ ∆ that is an axiom, it is not
possible to make all propositions in Γ true and all
propositions in ∆ false.
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The Sequent Calculus: Structural Rules

Γ ⊢ ∆
(WL)

Γ, A ⊢ ∆

Γ ⊢ ∆
(WR)

Γ ⊢ A,∆

Γ, A,A ⊢ ∆
(CL)

Γ, A ⊢ ∆

Γ ⊢ A,A,∆
(CR)

Γ ⊢ A,∆

Γ1, A,B,Γ2 ⊢ ∆
(EL)

Γ1, B,A,Γ2 ⊢ ∆

Γ ⊢ ∆1, A,B,∆2
(ER)

Γ ⊢ ∆1, B,A,∆2

Note: If we treat Γ, ∆, etc. as sets, A, B as {A}, {B}, and
the comma (in “Γ, A” etc.) as set union, then we can do
without these rules, but will need the extended notion of an
axiom.
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Proofs

A deduction tree is a tree where each node is labeled
with a sequent such that, for every internal (non-leaf)
node, the label of the node and those of its children
correspond respectively to the conclusion and the
premises of an instance of an inference rule.

A proof tree is a deduction tree, each of whose leaves is
labeled with an axiom.

The root of a deduction or proof tree is called the
conclusion.

A sequent is provable if there exists a proof tree of
which it is the conclusion.
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The Sequent Calculus: The Cut Rule

Γ1 ⊢ A,∆1 Γ2, A ⊢ ∆2
(Cut)

Γ1,Γ2 ⊢ ∆1,∆2

Note: The cut rule has a very special status. Its usage,
though not essential as far as completeness is concerned
(from the “cut elimination” theorem), often results in much
shorter proofs.
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Soundness and Completeness

The preceding structural rules, logical rules, and axioms
constitute the propositional part LK0 of Gentzen’s System
LK.

Theorem.
System LK0 is sound , i.e., if a sequent Γ ⊢ ∆ is prov-
able in LK0, then Γ ⊢ ∆ is valid.

Theorem.
System LK0 is complete, i.e., if a sequent Γ ⊢ ∆ is valid,
then Γ ⊢ ∆ is provable in LK0.
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Compactness

A set Γ of propositions is satisfiable if some valuation
satisfies every proposition in Γ. For example, {A ∨ B,¬B} is
satisfiable.

Theorem.
For any (possibly infinite) set Γ of propositions, if ev-
ery finite non-empty subset of Γ is satisfiable then Γ is
satisfiable.

Proof hint: by contradiction and the completeness of LK.
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Consistency

A set Γ of propositions is consistent if there exists some
proposition B such that the sequent Γ ⊢ B is not
provable.

Otherwise, Γ is inconsistent ; e.g., {A,¬(A ∨ B)} is
inconsistent.

Lemma.
For System LK0, a set Γ of propositions is inconsistent
if and only if there is some proposition A such that both
Γ ⊢ A and Γ ⊢ ¬A are provable.

Theorem.
For System LK0, a set Γ of propositions is satisfiable if
and only if Γ is consistent .
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Natural Deduction in the Sequent Form

(Ax)
Γ, A ⊢ A

Γ ⊢ A Γ ⊢ B
(∧I)

Γ ⊢ A ∧ B

Γ ⊢ A ∧ B
(∧E1)

Γ ⊢ A

Γ ⊢ A ∧ B
(∧E2)

Γ ⊢ B

Γ ⊢ A
(∨I1)

Γ ⊢ A ∨ B

Γ ⊢ B
(∨I2)

Γ ⊢ A ∨ B

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C
(∨E)

Γ ⊢ C
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Natural Deduction (cont.)

Γ, A ⊢ B
(→ I)

Γ ⊢ A → B

Γ ⊢ A → B Γ ⊢ A
(→ E)

Γ ⊢ B

Γ, A ⊢ B ∧ ¬B
(¬I)

Γ ⊢ ¬A

Γ ⊢ A Γ ⊢ ¬A
(¬E)

Γ ⊢ B

Γ ⊢ A
(¬¬I)

Γ ⊢ ¬¬A

Γ ⊢ ¬¬A
(¬¬E)

Γ ⊢ A
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