SVVRL) IM.NTU

UML Part II:
Advanced Modeling

(Based on [Booch et al. 2005])

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

2009/12/3 Software Development Methods, Fall 2009 1/17

SVVRL () IM.NTU

Outline

Advanced Structural Modeling
0 Object Diagrams
o Components

Advanced Behavioral Modeling
0 State Machines

0 Processes and Threads

o Timing Constraints

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part 1l: Advanced Modeling 2117

SVVRL) IM.NTU

Instances

An instance is a concrete manifestation of an
abstraction

o Set of operations
o State

Graphical notation: named object

d2 : Department b—’/
/qname ="R&D"

attribute value

anonymous object
N - ContactInformation
address = "1472 Miller St."

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 3 /17

SVVRL () IM.NTU

Object Diagrams

An object diagram shows a set of objects and
their relationships at a point in time.

¢ : Company
department department
/Jdl : Department d2 : Department
name = "Sales"

= ' name = "R&D"
object l._J link /—ﬂ

d3 . Department attribute value
name = "US Sales" (anonymous object
p.. Person : ContactInformation
name = "Erin" @] .
ddress = "1472 Miller St."
emplyeelD = 4362 contact AcCress i

title = "VP of sales"

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 4 |17

SVVRL () IM.NTU

Modeling Object Structures

r: Robot
[moving]
w : World
al : Area a2 : Area
wl : Wall w2 : Wall d& : Door w3 : Wall
width = 36 width = 96 width = 36 width = 96

2009/12/3 Yih-Kuen Tsay

Software Development Methods, Fall 2009: UML Part Il: Advanced Modeling

5 /17

SVVRL () IM.NTU

Components

A component is a logical, replaceable part of a
system that conforms to and realizes a set of
interfaces.

Relevant concepts

g

o 0O 0O O

Interface: a collection of operations. Interfaces are the
glue that binds components together.

Port: a window for accepting and sending messages
Internal structure: implementation of a component
Part: a unit of the implementation

Connector: a communication relationship between
two parts or ports

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 6 /17

SVVRL () IM.NTU

Component Diagrams

Components are bound by interfaces.

required interface provided interface

=] S =

L

Motion < —.\ —>O Imaging

.j dependency

component

usage realization

Interface declaration

=1 Z <<interface>> 2 J o =1

Motion _®_ _ > ImageObserver Imaging
+ImageUpdate() : bool
component

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 7117

SVVRL () IM.NTU

Component Diagrams (cont.)

Components can be nested.

Compiler %
lex: Lexical Analyzer parse: Parser
—O Compile
gen: Code Generator opt: Optimizer[1.,3] e:érnal
/. /. f interface
i | Nt |

| | \ \
part name Dart type part part multiplicity
component being defined

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 8 /17

SVVRL () IM.NTU

Events and Signals

“Things that happen” are called events.

They are used to model the occurrence of a
stimulus that changes the state of a system.
Events may include

o Signals

o Calls,

o The passing of time, or

2o A change in state

Events may synchronous or asynchronous.

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part 1l: Advanced Modeling 9 /17

SVVRL () IM.NTU

State Machines

A state machine models the lifetime of an object.

time event :
./ ./ send signal

mitial state pfyer (2 seconds)/ send c.1sAlive

self-transition

./ event trigger

noise completion transition

Idle Searching final state

o

event trigeger with parameters
ouard condition
targetAt(p) [1sThreat]/

t.addTgreet(p)
“\ Tracking j

action
2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 10 /17

contact

Engaging

A

SVVRL () IM.NTU

Advanced States and Transitions

Entry/exit effects
nternal transitions
Do-activities

Deferred events

Submachines

Nonorthogonal vs. orthogonal states
(sequential vs. concurrent states)
History states

Fork and Join

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 11 /17

SVVRL () IM.NTU

State (Statemachine) Diagrams

nitial state transition \

L Receiving nested state
ringing
headerOk
compl@tion Connected Processing
transitions

checkSumOk
hangUp Cleaning up)/ .\
> event
o event
Transmitting

_® Error | entry / pickUp :y action
/ / printReport \ exit / disconnect /. J
transition action \/‘

Idle

sendFax

composite state

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 12 /17

SVVRL () IM.NTU

Processes and Threads

Flow of control
Active object
Process

Thread
Communication
Synchronization

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 13 /17

SVVRL () IM.NTU

Communication

{ active object
synchronous message

\. b : Blackboard

cl: initialize(ﬁ
/\2: placePartialSolution()
c : BlackboardController 1: hasAHint(k)
anonymous role

=
-

active object 5. startSearC%’
_ KnowledgeSource

c3: k.evaluate()

flow sequence asynchronous message

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 14 /17

SVVRL () IM.NTU

Timing Constraints

Some systems may be time-critical.

Even if not time-critical, meeting more stringent
timing constraints is a good indicator of
efficiency.

Typical timing constraints:

0 Duration

o Frequency

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part 1l: Advanced Modeling 15 /17

SVVRL () IM.NTU

Duration Constraints

{b-a< 10 ms} !

|
C !
duration ‘\
constraint

¢ : Client m: MapServer k: MapCache
I | I
: ' '
getMap(region) | |
q — L getMap(region) |
/. |
timing marks A — |
|
b— | Kom------- . |
|
|
|
|
|

time expression

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 16 /17

SVVRL () IM.NTU

Improvements Made in UML 2.0

Hierarchical decomposition of structures and
support for component-based development:

2 Composite structure diagrams
Hierarchical decomposition of behavior

mproved integration between structural and
behavioral models

Support for executable models

o fully integrated Action Semantics

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part 1l: Advanced Modeling 17 /117

	UML Part II:�Advanced Modeling�(Based on [Booch et al. 2005])
	Outline
	Instances
	Object Diagrams
	Modeling Object Structures
	Components
	Component Diagrams
	Component Diagrams (cont.)
	Events and Signals
	State Machines
	Advanced States and Transitions
	State (Statemachine) Diagrams
	Processes and Threads
	Communication
	Timing Constraints
	Duration Constraints
	Improvements Made in UML 2.0

