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Outline

Advanced Structural Modeling
0 Object Diagrams
o Components

Advanced Behavioral Modeling
0 State Machines

0 Processes and Threads

o Timing Constraints
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Instances

An instance is a concrete manifestation of an
abstraction

o Set of operations
o State

Graphical notation: named object

d2 : Department b—’/
/qname ="R&D"

attribute value

anonymous object
N - ContactInformation
address = "1472 Miller St."
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Object Diagrams

An object diagram shows a set of objects and
their relationships at a point in time.

¢ : Company
department department
/Jdl : Department d2 : Department
name = "Sales"

= ' name = "R&D"
object l.\_J link /—ﬂ

d3 . Department attribute value
name = "US Sales" ( anonymous object
p.. Person : ContactInformation
name = "Erin" @] .
ddress = "1472 Miller St."
emplyeelD = 4362 contact AcCress i

title = "VP of sales"
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Modeling Object Structures

r: Robot
[moving]
w : World
al : Area a2 : Area
wl : Wall w2 : Wall d& : Door w3 : Wall
width = 36 width = 96 width = 36 width = 96
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Components

A component is a logical, replaceable part of a
system that conforms to and realizes a set of
interfaces.

Relevant concepts

g

o 0O 0O O

Interface: a collection of operations. Interfaces are the
glue that binds components together.

Port: a window for accepting and sending messages
Internal structure: implementation of a component
Part: a unit of the implementation

Connector: a communication relationship between
two parts or ports
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Component Diagrams

Components are bound by interfaces.

required interface  provided interface

=] S =

L

Motion < —.\ —>O Imaging

.j dependency

component

usage realization

Interface declaration

=1 Z <<interface>> 2 J o =1

Motion  _®_ _ > ImageObserver Imaging
+ImageUpdate() : bool
component
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Component Diagrams (cont.)

Components can be nested.

Compiler %
lex: Lexical Analyzer parse: Parser
—O Compile
gen: Code Generator opt: Optimizer[1.,3] e:érnal
/. /. f interface
i | Nt |

| | \ \
part name  Dart type part part multiplicity
component being defined

2009/12/3 Yih-Kuen Tsay Software Development Methods, Fall 2009: UML Part II: Advanced Modeling 8 /17



SVVRL () IM.NTU

Events and Signals

“Things that happen” are called events.

They are used to model the occurrence of a
stimulus that changes the state of a system.
Events may include

o Signals

o Calls,

o The passing of time, or

2o A change in state

Events may synchronous or asynchronous.
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State Machines

A state machine models the lifetime of an object.

time event :
./ ./ send signal

mitial state  pfyer (2 seconds)/ send c.1sAlive

self-transition

./ event trigger

noise completion transition

Idle Searching final state

o

event trigeger with parameters
ouard condition
targetAt(p) [1sThreat]/

t.addTgreet(p)
“\ Tracking j

action
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Advanced States and Transitions

Entry/exit effects
nternal transitions
Do-activities

Deferred events

Submachines

Nonorthogonal vs. orthogonal states
(sequential vs. concurrent states)
History states

Fork and Join
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State (Statemachine) Diagrams

nitial state transition \

L Receiving nested state
ringing
headerOk
compl@tion Connected Processing
transitions

checkSumOk
hangUp Cleaning up )/ .\
> event
o event
Transmitting

_® Error | entry / pickUp :y action
/ / printReport \ exit / disconnect /. J
transition action \/‘

Idle

sendFax

composite state
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Processes and Threads

Flow of control
Active object
Process

Thread
Communication
Synchronization
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Communication

{ active object
synchronous message

\. b : Blackboard

cl: initialize(ﬁ
/\2: placePartialSolution()
c : BlackboardController 1: hasAHint(k)
anonymous role

=
-

active object 5. startSearC%’
_ KnowledgeSource

c3: k.evaluate()

flow sequence asynchronous message
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Timing Constraints

Some systems may be time-critical.

Even if not time-critical, meeting more stringent
timing constraints is a good indicator of
efficiency.

Typical timing constraints:

0 Duration

o Frequency
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Duration Constraints

{b-a< 10 ms} !

|
C !
duration ‘\
constraint

¢ : Client m: MapServer k: MapCache
I | I
: ' '
getMap(region) | |
q — L getMap(region) |
/. |
timing marks A — |
|
b— | Kom------- . |
|
|
|
|
|

time expression
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Improvements Made in UML 2.0

Hierarchical decomposition of structures and
support for component-based development:

2 Composite structure diagrams
Hierarchical decomposition of behavior

mproved integration between structural and
behavioral models

Support for executable models

o fully integrated Action Semantics
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