Version Control

Jim Yu




The Problem

Alice, Bob and Catherine cowork in a
project

Alice: web page

Bob: application flow

Catherine: database access

They are struggling for the inconsistencies
of the source files every day

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



The Problem

Updates to the database schema only works
on Catherine’s computer, but not on Alice’s
or Bob’s

Bob adds a new function to the utility code,
but the function is gone after syncing with
Catherine

They all have to remember what is modified
since last sync to avoid code break

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Version Control System

A centralized system for information sharing
A server manages the repository

Any number of clients can connect to the
server and read/write the files in the
repository

A write from one client creates a new
version of the affected files

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Version Control System

Another client can sync the newer version of
the file from the repository

1N

commits web page v2

o / upd tes web page v2

a

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Version Control System

Update history is kept in the repository
Any previous version can be retrieved

A commits web page v2

AR * B commits controller v3
N . C commits data access v4
mmt s web page \ oss

-LJ

mmtdt

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Version Control System

Non-overlapping updates to the same file
can be made safely

Overlapping updates needs manual

resolution
R —_ void fun1 () {
change to the —,
same line _, asatl
a=at3 — ¥
- void fun2 () { // added by Bob
Y
void fun3 () { // added by Catherine
Y
Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Operations

Import: initial addition to the repository to
make it versioned

Checkout: make a sync-able copy of the files
from the repository

Update: get the updates by others from the
repository

Commit: send your changes to the repository

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Operations

Add: add new files to the repository

Delete: delete files and propagate to the repository
Can deleted files to restored?

Diff: view your local (uncommitted) changes.
Diff 2 versions in the history?

Revert: discard your local changes
Resolve conflict

Software Development Methods, Fall 2010 Version Control [2010/10/21]
Thursday, October 21, 2010




Operations

Resolve: decide the final result to be
committed when conflicts happen

Branch: make a copy of the whole project to
be developed in parallel

Merge: propagate the changes in one branch
to another branch

trunk

—O 0 0Q 00—

\
branch \ merge | / merge
Q- O-O-O-Q— brancha

Software Development Methods, Fall 2010 Version Control [2010/10/21]
Thursday, October 21, 2010




Version Control in Practices

Version control all artifacts of your

project, including documents and unit
tests

Write summary comments in each commit
so others can see why you make the
change without looking at the code

Use branches for feature development in

parallel and merge the branches back to
trunk after development completes

Software Development Methods, Fall 2010 Version Control [2010/10/21]
Thursday, October 21, 2010




Version Control in Practices

Integrate your version control system with
bug tracking and other project
management systems
e.g. Bug #12345 is fixed in revision
#200001. You can cross reference the bug

information or revision from the either
system

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



Demo

13

Software Development Methods, Fall 2010 Version Control [2010/10/21]

Thursday, October 21, 2010



